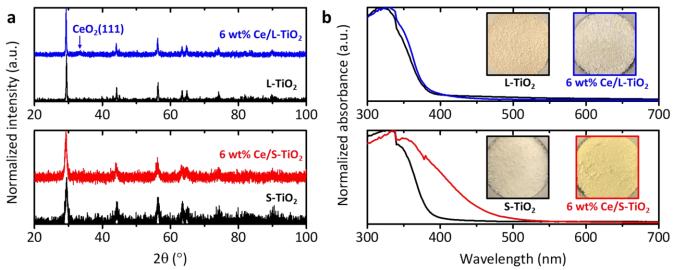
Characterization of Mixed Metal Oxide Interfaces Based on TiO₂-supported CeO_{2-x} Nanoparticles

Diane M. Haiber¹, Tu-Uyen Phan¹, Kartik Venkatraman¹ and Peter A. Crozier¹

^{1.} School for Engineering of Matter, Transport & Energy, Arizona State University, Tempe, Arizona 85287-6106, USA

High energy conversion efficiency for solar fuel generation through photocatalytic water splitting necessitates visible light absorbing, high quantum efficiency materials. Historically, TiO₂ has become a widely studied 'model' system for this application at the expense of visible light absorption. In 2009, photocatalytic degradation of methylene blue under visible light using TiO₂-supported CeO₂ was demonstrated and attributed to a 'coupled semiconductor' mechanism [1]. Here, the supported CeO₂ absorbs visible light photons (due an enrichment of Ce³⁺ at the grain boundaries) and transfers photoexcited electrons to TiO₂ due to its more negative conduction band minimum. More recent experimental evidence showing Ce³⁺ enrichment at the CeO₂-TiO₂ interface suggests a mixed-metal-oxide (MMO) mechanism wherein partially occupied Ce-4f levels introduce a donor state into TiO₂'s bandgap, effectively reducing the bandgap energy [2]. However, structure-activity relationships regarding the impact of increasing Ce³⁺ concentration on O₂/H₂ evolution rates remain inconsistent, possibly due to the inability to distinguish Ce³⁺ at the interface vs. in the bulk of CeO₂ particles [2,3]. By utilizing monochromated EELS, the electronic structure about mixed metal oxide interfaces may be directly characterized to elucidate the impact of Ce³⁺ species on the light absorbing properties.


To create the composite nanoparticles, Ce precursor was loaded onto differently-sized TiO₂ anatase nanoparticles. Synthesis of TiO₂ nanoparticles involved a two-step hydrothermal route in which P25 powder (80% anatase, 20% rutile) was first transformed into sodium titanate via reaction with 10-M NaOH followed by treatment at different pH's to control the final average particle size to give large (L) and small (S) TiO₂ anatase [4]. Each support was impregnated with aqueous Ce(NO₃)₃ to give 6 wt% Ce loading then calcined to remove precursors. Figure 1(a) compares the powder X-ray diffraction patterns of as-synthesized and as-loaded nanoparticles. All XRD patterns are consistent with phase-pure TiO₂ anatase and Scherrer analysis yielded average particle sizes of 66 and 14 nm for L-TiO₂ and S-TiO₂, respectively. Upon loading, the anatase support grows to >90 nm and the presence of CeO₂ nanoparticles ~8 nm in size are detected in 6 wt% Ce/L-TiO₂ whereas no change is seen in the XRD pattern from 6 wt% Ce/S-TiO₂. Figure 1(b) tracks the ultraviolet-visible absorption spectra for both composites wherein 6 wt% Ce/S-TiO₂ undergoes a significant increase in visible-light absorption evidenced by the shifted bandgap edge and white to yellow color change (inset, Figure 1(b)). No significant change in bulk optical absorption is observed for 6 wt% Ce/L-TiO₂.

Aberration-corrected, annular-dark field scanning transmission electron microscopy (ADF-STEM) was applied to reveals unique supported CeO₂ morphologies dominating the differently-sized TiO₂ supports. Figure 2(a) shows a Z-contrast image of an L-TiO₂ nanoparticle decorated with relatively large (>10 nm) CeO₂ nanoparticles. On the other hand, smaller CeO₂ nanoparticles and Ce single atoms (Ce₁) populate the surface of S-TiO₂, as shown in Figure 2(b). Using monochromated electron energy-loss spectroscopy (EELS), we aim to directly characterize the electronic structure of different CeO_x-TiO₂ morphologies and correlate these properties to photocatalytic performance. For example, similar to previous work by our research group looking at Pr-doped CeO₂, a joint density of states approach could

be applied to valence EELS data to deduce the energy position and width of bandgap states [5]. By applying this technique to valence EELS at the CeO_x -TiO₂ interface, we may be able to elucidate the electronic structure of these MMOs and correlate it with Ce^{3+} concentration providing insight into their enhanced photocatalytic activity.

References:

- [1] G. Magesh et al. *Indian J. Chem.* **2009**, 48A, 480-88.
- [2] S. Kundu et al. J. Phys. Chem. 2012, 116, 14062-70.
- [3] S. Luo et al. J. Phys. Chem. 2015, 119, 2669-79.
- [4] J. Nian and H. Teng. J. Phys. Chem. B 2006, 110, 4193-98.
- [5] W.J. Bowman et al. *Ultramicroscopy* **2016**, *167*, 5-10.
- [6] Support from the U.S. DOE (DE-SC0004954), National Science Foundation (CHE-1508667), use of AC-TEM, XRD, and UV-VIS equipment within the LeRoy Eyring Center for Solid State Science at ASU are gratefully acknowledged.

Figure 1. (a) Powder XRD and (b) UV-VIS absorption spectra of as-synthesized and Ce-loaded TiO₂ anatase composite nanoparticles.

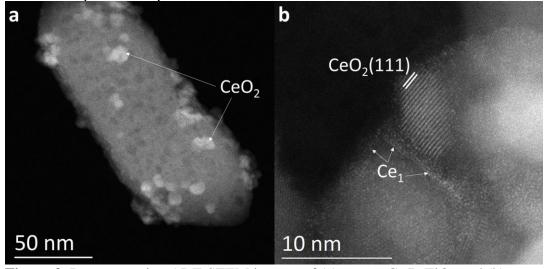


Figure 2. Representative ADF-STEM images of (a) 6 wt% Ce/L-TiO₂ and (b) 6 wt% Ce/S-TiO₂.