# POINTS OF LOCAL NONCONVEXITY AND FINITE UNIONS OF CONVEX SETS 

MARILYN BREEN

1. Introduction. Let $S$ be a subset of $\mathbf{R}^{d}$. A point $x$ in $S$ is a point of local convexity of $S$ if and only if there is some neighborhood $U$ of $x$ such that, if $y, z \in S \cap U$, then $[y, z] \subseteq S$. If $S$ fails to be locally convex at some point $q$ in $S$, then $q$ is called a point of local nonconvexity (lnc point) of $S$.

Several interesting properties are known about sets whose lnc points $Q$ may be decomposed into $n$ convex sets. For $S$ closed, connected, $S \sim Q$ connected, and $Q$ having cardinality $n$, Guay and Kay [2] have proved that $S$ is expressible as a union of $n+1$ or fewer closed convex sets (and their result is valid in a locally convex topological vector space). For $S$ closed, connected, and $Q$ decomposable into $n$ convex sets, Valentine [7] has shown that $S$ is an $L_{2 n+1}$ set, and Stavrakas [4] has obtained conditions which insure that $S$ be an $L_{n+1}$ set. In this paper, we show that with suitable hypothesis, $S$ may be decomposed into $2^{n}$ or fewer closed convex sets.

Throughout the paper, $S$ is a closed, connected subset of $\mathbf{R}^{d}$, where $d=$ $\operatorname{dim}$ aff $S$. $Q$ denotes the set of lnc points of $S$, and $S \sim Q$ is connected. We assume that $Q=\bigcup_{i=1}^{n} C_{i}$ where each $C_{i}$ is convex. Since $Q$ is a closed set, without loss of generality we consider each $C_{i}$ to be closed. Further, we assume that $n$ is minimal in the following sense:

For every $i$, there are points of $C_{i}$ which do not belong to any $C_{j}$ for

$$
j \neq i, 1 \leqq i, j \leqq n \text {. That is, } C_{i} \nsubseteq \cup\left\{C_{j}: 1 \leqq j \leqq n, j \neq i\right\} .
$$

2. The dimension of the $C_{i}$ sets. Guay and Kay [2] have proved that when $Q$ is finite and nonempty, then $S$ is planar. A similar result is obtained in our setting, for if $Q=\bigcup_{i=1}^{n} C_{i}$ where $C_{i}$ is convex and essential, then dim $C_{i}=d-2$. The following lemma will be important in our proof.

Lemma 1. $S=\mathrm{cl}($ int $S$ ).
Proof. By appropriately adapting techniques employed in [1], it may be shown that $S \sim Q$ is dense in $S$. Thus $S \subseteq \mathrm{cl}(S \sim Q)$. Stavrakas [3] has proved that if $S$ (not necessarily closed) is a nonplanar subset of $\mathbf{R}^{3}$ with $S \subseteq \mathrm{cl}(S \sim Q)$ and $S \sim Q$ connected, then $S \subseteq \mathrm{cl}$ (int $S$ ). His proof generalizes easily to $\mathbf{R}^{d}$ where $d=\operatorname{dim}$ aff $S$, and so $S \subseteq \mathrm{cl}$ (int $S$ ) in our setting. Furthermore, since $S$ is closed, cl (int $S$ ) $\subseteq S$, and the lemma is proved.

Received September 17, 1973 and in revised form, September 26, 1974.

Definition 1. If $Q=\bigcup_{i=1}^{n} C_{i}$ where $C_{i}$ is convex, we say $C_{i}$ is essential if and only if for every $x$ in $C_{i}$, there is some neighborhood $\mathscr{N}^{\prime}$ of $x$ such that for $\mathscr{N}$ convex and $\mathscr{N} \subseteq \mathscr{N}^{\prime},(S \cap \mathscr{N}) \sim C_{i}$ is connected.

Note that for $x$ in $C_{i} \equiv C, C$ essential, and $\mathscr{N}$ a neighborhood of $x$ satisfying Definition $1, x$ is an lnc point for the connected set cl $T$, where $T \equiv(S \cap \mathscr{N})$ $\sim C$. Moreover, every point of $C \cap \mathrm{cl} \mathscr{N}$ is an lnc point for cl $T$ : For $y$ in $C \cap \mathscr{N}, y$ is an lnc point for $S$ and hence for $S \cap \mathscr{N}$. Since $S=\mathrm{cl}$ (int $S$ ), $\mathrm{cl}(S \cap \mathscr{N})=\operatorname{cl}[(S \cap \mathscr{N}) \sim C]=\operatorname{cl} T$, and $y$ is an lnc point for $\mathrm{cl} T$. Since the lnc points of cl $T$ form a closed set, each point of $C \cap \mathrm{cl} \mathscr{N}$ is an lnc point for $\mathrm{cl} T$. Trivially, $C \cap \mathrm{cl} \mathscr{N}$ is essential for $\mathrm{cl} T$ when $\mathscr{N}$ is convex.

The following version of a result by Valentine [7, Corollary 2] will be needed.
Lemma 2. If $[x, y] \cup[y, z] \subseteq S$ and no point of $Q$ lies in conv $\{x, y, z\} \sim[x, z]$, then conv $\{x, y, z\} \subseteq S$.

Theorem 1. If $C_{i}$ is essential, then $\operatorname{dim} C_{i} \leqq d-2$ (where $d=\operatorname{dim} \operatorname{aff} S$ ).
Proof. Clearly $\operatorname{dim} C_{i} \leqq d-1$. Assume that for $C_{i} \equiv C, \operatorname{dim} C=d-1$ to obtain a contradiction. Since by an early remark, $Q=\bigcup_{i=1}^{n} C_{i}$ where $n$ is minimal, we may select $x$ in rel int $C$ and in no other $C_{j}$ set. Let $\mathscr{N}^{\prime}$ be a neighborhood of $x$ satisfying Definition 1. There is some convex neighborhood $\mathscr{N}$ of $x, \mathscr{N} \subseteq \mathscr{N}^{\prime}$, with cl $\mathscr{N}$ disjoint from the remaining $C_{j}$ sets. Moreover, $\mathscr{N}$ may be selected so that cl $\mathscr{N} \cap$ aff $C \subseteq C$. Letting $T=(S \cap \mathscr{N}) \sim C$, clearly all the lnc points for $\mathrm{cl} T$ lie in $C$.

Since $\mathscr{N} \subseteq \mathscr{N}^{\prime}, T=T \sim C$ is connected. Also $T \sim C \subseteq \mathrm{cl} T \sim C \subseteq \mathrm{cl} T$, so cl $T \sim C$ is connected, and cl $T \sim$ aff $C$ is connected.

Let $H$ be the hyperplane determined by $C, H_{1}, H_{2}$ the corresponding open halfspaces. Certainly one of these sets, say $H_{1}$, contains points in cl $T$. The set $H_{1} \cap \mathrm{cl} T$ is locally convex, and since cl $T \sim \operatorname{aff} C=\mathrm{cl} T \sim H$ is connected, $H_{1} \cap \mathrm{cl} T$ is connected. Thus $H_{1} \cap \mathrm{cl} T$ is polygonally connected, and for $x, y$ in $H_{1} \cap \mathrm{cl} T$, there is a polygonal path $\lambda$ in $H_{1} \cap \mathrm{cl} T$ from $x$ to $y$. By repeated use of Lemma $2,[x, y] \subseteq \mathrm{cl} T$, and $H_{1} \cap \mathrm{cl} T$ is convex. Since $\mathrm{cl} T$ is not convex, there must be points of $\mathrm{cl} T$ in $H_{2}$, and $\mathrm{cl} T \sim C=\mathrm{cl} T \sim H$ cannot be connected, a contradiction. Thus, our assumption is false and $\operatorname{dim} C \leqq d-2$.

The proof that $\operatorname{dim} C_{i} \geqq d-2$ will require two easy lemmas. We adopt the following standard terminology: For $x, y$ in $S$, we say $x$ sees $y$ via $S$ if and only if $[x, y] \subseteq S$. For $\mathscr{N}$ a subset of $S$, we say $x$ sees $\mathscr{N}$ via $S$ if and only if $x$ sees every point of $\mathscr{N}$ via $S$.

Lemma 3. If $[x, z] \subseteq S \sim\left(\cup_{i=1}^{n}\right.$ aff $\left.C_{i}\right)$, then there is a neighborhood $\mathcal{N}$ of $x$ such that $z$ sees $\mathscr{N} \cap S$ via $S \sim\left(\cup_{i=1}^{n}\right.$ aff $\left.C_{i}\right)$.

Proof. Since $S \sim\left(\bigcup_{i=1}^{n}\right.$ aff $\left.C_{i}\right) \neq \emptyset$ is open in $S$, for every point $q$ on $[x, z]$ there exists a convex neighborhood of $q$ disjoint from $\cup_{i=1}^{n}$ aff $C_{i}$. Since $[x, z]$ is compact, clearly there is an open cylinder about $[x, z]$ disjoint from
$\bigcup_{i=1}^{n}$ aff $C_{i}$. Choose $\mathscr{N}$ to be a neighborhood of $x$ interior to the cylinder with $\mathscr{N} \cap S$ convex. For $p$ in $\mathscr{N} \cap S,[p, x] \cup[x, z] \subseteq S$, no point of $Q$ lies in conv $\{p, x, z\}$, so by Lemma $2,[p, z] \subseteq S$. Furthermore, $[p, z] \subseteq S \sim\left(\cup_{i=1}^{n}\right.$ aff $\left.C_{i}\right)$.

Lemma 4. If $C_{i}$ is essential, $1 \leqq i \leqq n$, then $S \sim\left(\bigcup_{i=1}^{n}\right.$ aff $\left.C_{i}\right)$ is connected.
Proof. Since $S \sim\left(\cup_{i=1}^{n} C_{i}\right)$ is connected and locally convex, it is polygonally connected, and by standard arguments, since $S=\mathrm{cl}$ (int $S$ ), int $S \sim\left(\cup_{i=1}^{n} C_{i}\right)$ is polygonally connected and hence connected. By Theorem $1, \operatorname{dim} C_{i} \leqq d-2$, so int $S \sim\left(\cup_{i=1}^{n}\right.$ aff $\left.C_{i}\right)$ is connected. Again using the fact that $S=\operatorname{cl}($ int $S)$, $S \sim\left(\cup_{i=1}^{n}\right.$ aff $\left.C_{i}\right)$ is connected.

Theorem 2. If $C_{i} \neq \emptyset$ is essential, then $\operatorname{dim} C_{i} \geqq d-2$.
Proof. For the moment, let $Q=C \neq \emptyset$ and assume $\operatorname{dim} C \leqq d-3$ to obtain a contradiction. Select points $x, y$ in $S \sim$ aff $C$ for which $[x, y] \nsubseteq S$. (Clearly such points exist for otherwise $S$ would be convex.) Then since $S \sim$ aff $C$ is connected (by Lemma 4) and locally convex, there is a polygonal path $\lambda$ in $S \sim$ aff $C$ from $x$ to $y$. Without loss of generality, assume there is some $z$ in $S \sim$ aff $C$ for which $[x, z],[z, y] \subseteq S \sim$ aff $C$.

Use Lemma 3 to select a neighborhood $\mathscr{N}$ of $x$ such that $z$ sees $\mathcal{N} \cap S$ via $S \sim$ aff $C$. Moreover, since $[x, y] \nsubseteq S, \mathcal{N}$ may be chosen so that $y$ sees no point of $\mathscr{N} \cap S$ via $S$. Since $\operatorname{dim} C \leqq d-3$ and $S=\mathrm{cl}$ (int $S$ ), there is some $x_{0}$ in $\mathscr{N} \cap S$ with $x_{0} \notin$ aff $(C \cup\{z\})$. Clearly $\left[z, x_{0}\right] \subseteq S,\left[y, x_{0}\right] \nsubseteq S$.

Similarly, select a neighborhood $\mathscr{M}$ of $y$ such that $x_{0}$ sees no point of $\mathscr{M} \cap S$ via $S$ and $z$ sees $\mathscr{M} \cap S$ via $S \sim$ aff $C$. Choose $y_{0}$ in $\mathscr{M}$ with $y_{0} \notin$ aff $\left(C \cup\left\{x_{0}, z\right\}\right)$.

Then no point $p$ of aff $C$ may lie relatively interior to conv $\left\{z, x_{0}, y_{0}\right\}$, for otherwise $y_{0} \in \operatorname{aff}\left\{x_{0}, p, z\right\}$ and $y_{0} \in$ aff $\left(C \cup\left\{x_{0}, z\right\}\right)$, a contradiction.

Hence $\left[x_{0}, z\right],\left[z, y_{0}\right]$ are in $S \sim$ aff $C$, no point of aff $C$ is in conv $\left\{x_{0}, y_{0}, z\right\} \sim$ [ $x_{0}, y_{0}$ ], so by Lemma $2,\left[x_{0}, y_{0}\right] \subseteq S$. We have a contradiction, our assumption is false, and $\operatorname{dim} C \geqq d-2$.

To complete the proof, let $Q=\bigcup_{i=1}^{n} C_{i}$ where $n$ is minimal. For $C_{i}$ essential, let $C=C_{i}$. As in the proof of Theorem 1, select $x$ in rel int $C$ and in no other $C_{j}$ set, and let $\mathscr{N}^{\prime}$ satisfy Definition 1. Select a convex neighborhood $\mathscr{N}$ of $x$, $\mathscr{N} \subseteq \mathscr{N}^{\prime}$, with cl $\mathscr{N}$ disjoint from the remaining $C_{j}$ sets and with $\mathscr{N} \cap$ aff $C \subseteq$ $C$. Letting $T=(S \cap \mathscr{N}) \sim C$, by previous remarks, $C \cap \mathrm{cl} \mathscr{N} \equiv Q_{T}$ is the set of lnc points for $\mathrm{cl} T$. Also, $\mathrm{cl} T \sim C=\mathrm{cl} T \sim \operatorname{aff} C$ is connected.

Now since $S=\mathrm{cl}($ int $S$ ), $\operatorname{dim} T=d$. By applying the first part of this proof to $\mathrm{cl} T, \operatorname{dim} Q_{T} \geqq d-2$ and hence $\operatorname{dim} C \geqq d-2$, finishing the proof of the theorem.

Corollary. If $C_{i} \neq \emptyset$ is essential, then $\operatorname{dim} C_{i}=d-2$.
3. Expressing $S$ as a finite union of convex sets. The representation theorem requires the following lemma. (We note that a form of Lemma 5 appears in [4, Theorem 4].)

Lemma 5. If $Q=C$ and $C$ is essential, then every point of $C$ sees $S$ via $S$.
Proof. By Lemma $4, S \sim$ aff $C$ is connected. Let $q \in C$ and examine the set $A$ of points in $S \sim$ aff $C$ which $q$ sees via $S$. We assert that $A$ is open and closed in $S \sim$ aff $C$ :

Clearly if $\left(x_{j}\right)$ is a sequence in $A$ converging to $x \in S \sim$ aff $C$, then $q$ sees $x$ via $S$, and $A$ is closed in $S \sim$ aff $C$. To show $A$ open in $S \sim$ aff $C$, let $p \in A$. Then $[p, q) \subseteq S \sim$ aff $C$ and we may select a sequence $\left(q_{i}\right)$ on $[p, q$ ) converging to $q$. Choose a neighborhood $\mathscr{M}^{\prime}$ of $p$ with $\mathscr{M}^{\prime} \cap S \equiv \mathscr{M}$ convex and disjoint from aff $C$. For $i$ arbitrary and $r$ in $\mathscr{M},[r, p] \cup\left[p, q_{i}\right] \subseteq S$, no point of $C$ lies in conv $\left\{r, p, q_{i}\right\}$, so by Lemma $2,\left[r, q_{i}\right] \subseteq S$. Thus for every $i, q_{i}$ sees $\mathscr{M}$ via $S$. Since $S$ is closed, $q$ sees $\mathscr{M}$ via $S, \mathscr{M} \subseteq A$, and $A$ is open in $S \sim$ aff $C$.

Thus $A$ is open and closed in the connected set $S \sim$ aff $C$. If $A \neq \emptyset$, then $A=S \sim \operatorname{aff} C$, and since $S=\mathrm{cl}($ int $S$ ), $q$ sees $S$ via $S$.

Now define

$$
D \equiv\{q ; q \text { in } C \text { and } q \text { sees some point of } S \sim \text { aff } C \text { via } S\}
$$

By a theorem of Valentine [7, Lemma 1], every point of $S$ sees some point of $C$ via $S$, so $D \neq \emptyset$. Also, by the preceding paragraph, each point of $D$ sees $S$ via $S$, so $D$ is closed. Clearly conv $D \subseteq S$.

Since $C$ is essential, we assert that $C=D$ : Let $q \in C$ and let $\mathscr{N}^{\prime}$ be any neighborhood of $q$ satisfying Definition 1. For $\mathcal{N}$ a convex neighborhood of $q$ with $\operatorname{cl} \mathscr{N} \subseteq \mathscr{N}^{\prime}$, let $T=(S \cap \mathscr{N}) \sim C$. Then $\mathrm{cl} T$ is a closed connected set having $C \cap \mathrm{cl} \mathscr{N}$ as its set of lnc points. Again by Valentine's theorem, for every $t$ in cl $T \sim$ aff $C, t$ sees via $\mathrm{cl} T$ some lnc point $p$ of $\mathrm{cl} T$. Hence $t$ sees $p$ via $S, p \in C$, and $p \in D$. We conclude that every neighborhood of $q$ contains some point of $D$, so $q \in \mathrm{cl} D$. Since $D$ is closed, $q \in D$, and $C \subseteq D$. The reverse inclusion is obvious, and $C=D$, completing the proof.

Guay and Kay [2] have proved that for $Q$ a singleton point, $S$ is expressible as a union of two closed convex sets. The following theorem generalizes this result to the case in which $Q$ is convex.

Theorem 3. If $Q=C \neq \emptyset$ and $C$ is essential, then $S$ may be represented as a union of two closed convex sets.

Proof. By the corollary to Theorem 2, $\operatorname{dim} C=d-2$. Select points $x, y$ in int $(S \sim$ aff $C)$ with $[x, y] \nsubseteq S$ and $x \notin$ aff $(C \cup\{y\})$. Then $[x, y] \cap$ aff $C=\emptyset$. (Clearly this is possible by techniques used in Theorem 2 , since $S=\mathrm{cl}$ (int $S$ ).) Let $H, J$ denote the hyperplanes determined by $C \cup\{x\}, C \cup\{y\}$, respectively. And let $R$ denote the closed convex region determined by $H, J$ which contains $[x, y]$. Note that int $R \cap$ aff $C=\emptyset$ since $C \subseteq H \cap J$.

For $z$ in $(R \cap S) \sim$ aff $C, z$ cannot see both $x$ and $y$ via $S$, for otherwise $[x, z] \cup[z, y] \subseteq S \sim C$, no point of $C$ would be in conv $\{x, y, z\}$, and hence $[x, y] \subseteq S$, a contradiction.

Now let $S_{x}$ denote the closed subset of $S$ which $x$ sees via $S$. Then we assert that $\left(R \cap S_{x}\right) \sim$ aff $C$ is a convex set: For $p, q$ in $\left(R \cap S_{x}\right) \sim$ aff $C,[p, x] \cup$ $[x, q] \subseteq S$, no point of aff $C$ lies in conv $\{p, x, q\}$, and so conv $\{p, x, q\} \subseteq S \sim$ aff $C$. Thus $x$ sees $[p, q]$ via $S$, so $[p, q] \subseteq\left(R \cap S_{x}\right) \sim$ aff $C$. Similarly, if $S_{y}$ is the closed subset of $S$ which $y$ sees via $S,\left(R \cap S_{y}\right) \sim$ aff $C$ is convex.

We will show that

$$
(S \cap R) \sim \operatorname{aff} C=\left[\left(S_{x} \cap R\right) \sim \operatorname{aff} C\right] \cup\left[\left(S_{v} \cap R\right) \sim \operatorname{aff} C\right]:
$$

Let $z \in(S \cap R) \sim$ aff $C$. Lemma 4 implies that $S \sim$ aff $C$ is polygonally connected, so there is a polygonal path $\lambda$ in $S \sim \operatorname{aff} C$ from $z$ to $x$. Let $w$ denote the first point of $\lambda$ in bdry $R$. By repeated use of Lemma $2, z$ sees $w$ via $S$ and $[z, w] \subseteq S \sim$ aff $C$. To finish the argument, we consider two cases.

Case 1 . Suppose $w \in H$. By Lemma $5, C$ sees $S$ via $S$, so the $d-1$ dimensional sets conv $(C \cup\{w\})$, conv $(C \cup\{x\})$ lie in $S$. Moreover, since $H$ contains $x, w$ and $C$, each of the above convex sets lies in $H \cap R$. Since dim $C=d-2$, the sets conv $(C \cup\{x\})$, conv $(C \cup\{w\})$ necessarily intersect in some $p \in S \sim$ aff $C$. Then $[w, p] \cup[p, x] \subseteq S$, no point of $C$ lies in conv $\{w, p, x\}$, and by Lemma $2,[w, x] \subseteq S \sim$ aff $C$. Recall that by the preceding paragraph, $[z, w] \subseteq S \sim$ aff $C$, and again by Lemma $2,[x, z] \subseteq S$. Hence $z \in S_{x} \cap R$, the desired result.

Case 2. If $w \in J$, then by a similar argument, $[w, y] \subseteq S \sim$ aff $C,[y, z] \subseteq S$, and $z \in S_{\nu} \cap R$.

We conclude that $(S \cap R) \sim$ aff $C \subseteq\left[\left(S_{x} \cap R\right) \sim\right.$ aff $\left.C\right] \cup\left[\left(S_{y} \cap R\right) \sim\right.$ aff $C]$. Since the reverse inclusion is obvious, the sets are equal.

The sets $\left(S_{x} \cap R\right) \sim$ aff $C,\left(S_{y} \cap R\right) \sim$ aff $C$ are disjoint, non-empty convex sets and can be separated by a hyperplane $M$. Since $C$ sees $R \cap S$ via $S, C$ is in the boundary of each of the above convex sets, and aff $C \subseteq M$. Furthermore, $M$ can contain no point $s$ of $H \sim$ aff $C$ (or $J \sim$ aff $C$ ), for otherwise aff $(C \cup\{s\})=$ $H \subseteq M$, clearly impossible. Since $\operatorname{dim}(\operatorname{aff} C)=d-2=\operatorname{dim}(H \cap M)$, $H \cap M=$ aff $C$. Similarly $J \cap M=$ aff $C$ and (bdry $R$ ) $\cap M \subseteq$ aff $C$.

We assert that there is some point $w$ in $(S \cap M) \sim R$ : Otherwise $S \sim$ aff $C$ would be the union of the disjoint sets $\left(S \cap M_{1}\right) \cup\left[\left(S_{x} \cap R\right) \sim\right.$ aff $\left.C\right]$, $\left(S \cap M_{2}\right) \cup\left[\left(S_{y} \cap R\right) \sim\right.$ aff $\left.C\right]$, where $M_{1}, M_{2}$ are the open halfspaces determined by $M$, with $S_{x} \cap R \subseteq \mathrm{cl} M_{1}$ and $S_{y} \cap R \subseteq \mathrm{cl} M_{2}$. But each of these sets is closed in $S \sim$ aff $C$. The proof follows. Let

$$
K \equiv\left(S \cap M_{1}\right) \cup\left[\left(S_{x} \cap R\right) \sim \operatorname{aff} C\right]
$$

and let $p$ be any limit point of $K$. Then either $p$ is in $K$ or $p$ is in $M$ and hence in $R \cap M$. If $p \in(R \cap M) \sim$ bdry $R$, then $p \in\left(S_{x} \cap R\right) \sim$ aff $C \subseteq K$. If $p \in($ bdry $R) \cap M$, then $p \in$ aff $C$. We conclude that $K$ contains its limit points in $S \sim$ aff $C$, and $K$ is closed in $S \sim$ aff $C$. Similarly $\left(S \cap M_{2}\right) \cup$ [ $\left(S_{y} \cap R\right) \sim$ aff $\left.C\right]$ is closed in $S \sim$ aff $C$. However, this contradicts the connectedness of $S \sim$ aff $C$, and we conclude that $(S \cap M) \sim R \neq \emptyset$.

Now let $w$ be any point in $(S \cap M) \sim R$. We show that $w$ sees $S$ via $S$ :

For $p$ in $S \sim$ aff $C$, there is a polygonal path $\lambda$ in $S \sim$ aff $C$ from $w$ to $p$. For $[w, q] \cup[q, r]$ in $\lambda$, the only way that a point of aff $C$ may lie in conv $\{w, q, r\}$ is for $[q, r]$ to contain some point of (int $R) \cap S \cap M$. Then $q \notin M$ for otherwise either $[w, q]$ or $[q, r]$ would cut aff $C$. Without loss of generality, assume $q \in M_{1}$. If $r \in M_{2}$, then some point of [ $q, r$ ] would lie in $\left(S_{x} \cap \operatorname{int} R\right) \cap$ ( $S_{y} \cap$ int $R$ ), a contradiction since these sets are disjoint. Furthermore, $r \notin M_{1}$, for otherwise $[q, r]$ could not cut $M$. Hence $r$ must lie in $M$. For $s$ with $[r, s] \subseteq \lambda$, we may use Lemma 3 to select a neighborhood $\mathscr{N}$ of $r$ such that both $q$ and $s$ see $\mathscr{N} \cap S$ via $S \sim$ aff $C$. Select $r_{0}$ in $[q, r) \cap \mathscr{N} \cap S$ and replace $r$ by $r_{0}$ in $\lambda$. Since $r_{0} \in M_{1}$, no point of aff $C$ lies in conv $\left\{w, q, r_{0}\right\}$, and $\left[w, r_{0}\right] \subseteq$ $S \sim$ aff $C$, by Lemma 2 . We may repeat the argument for $\left[w, r_{0}\right] \cup\left[r_{0}, s\right]$. Inductively, if $\left[w, t_{0}\right] \cup\left[t_{0}, p\right] \subseteq S \sim$ aff $C$, then $\left[w, p_{0}\right] \subseteq S \sim$ aff $C$, where $p_{0} \in\left[t_{0}, p\right)$ is selected arbitrarily close to $p$. Hence $[w, p] \subseteq S$ and $w$ sees $S \sim \operatorname{aff} C$ via $S$. Since $S=\mathrm{cl}(\operatorname{int} S), w \operatorname{sees} S$ via $S$, the desired result.

Finally, if $u, v$ belong to $S \cap M_{1}$, then $[u, w] \cup[w, v] \subseteq S$, no point of $C$ is in conv $\{u, w, v\}$, and $[u, v] \subseteq S$. Thus $S \cap M_{1}$ is convex. Similarly, $S \cap M_{2}$ is convex, and the sets $\mathrm{cl}\left(S \cap M_{1}\right), \mathrm{cl}\left(S \cap M_{2}\right)$ are convex sets whose union is $S$, completing the proof of the theorem.

The set $C$ must be essential for Theorem 3 to hold, as the following example illustrates.

Example 1. Let $D$ denote the unit disk centered at the origin in the complex plane, $P$ the infinite sided convex polygon having sides $s_{n}=\left[t_{n-1}, t_{n}\right]$, where $t_{n}=\exp \left(\pi i / 2^{n}\right)$ for $n \geqq 0$. Further, let $R_{n}$ represent the closed region bounded by $s_{n}$ and bdry $D$ which does not contain $P$, let $P_{n}=n /(n+1) P$, and let $D_{1}=D \times[0,-1]$ in $\mathbf{R}^{3}$.

Inductively, for each $n \geqq 1$, attach a copy $P_{2 n}{ }^{\prime}$ of $P_{2 n}$ to $D_{1}$ along $s_{2 n}$ at an appropriate angle so that for $S_{2 n} \equiv D_{1} \cup \operatorname{conv}\left(R_{2 n} \cup P_{2_{n}}{ }^{\prime}\right)$, the lnc points of $S_{2_{n}}$ are exactly $s_{2 n}, S_{2 n} \sim s_{2 n}$ is connected, $S_{2 n} \cap S_{2 i}=D_{1}$ for $i<n$, and the $P_{2 n}{ }^{\prime}$ sets converge to $P$. If $S=\cup_{n=1}^{\infty} S_{2 n}$, then $S$ has $P$ as its set of Inc points, $S \sim P$ is connected, yet $S$ is not a finite union of convex sets.

Using Theorem 3, it is possible to obtain the following representation theorem.

Theorem 4. If $Q=\bigcup_{i=1}^{n} C_{i}, C_{i}$ is essential for $1 \leqq i \leqq n$, and

$$
\left(\text { rel int } C_{i}\right) \cap C_{j}=\emptyset \text { for } i \neq j
$$

then $S$ may be represented as a union of $2^{n}$ or fewer closed convex sets.
Proof. By the corollary to Theorem 2, $\operatorname{dim} C_{i}=d-2$ for each $i$. For $C_{1}$, as in the proof of Theorem 1, select a point $x$ relatively interior to $C_{1}$ and in no $C_{i}, i \neq 1$. Let $\mathscr{N}^{\prime}$ be a neighborhood of $x$ satisfying Definition 1, and let $\mathscr{N}$ be a convex neighborhood of $x$ disjoint from the remaining $C_{i}$ sets, with $\mathrm{cl} \mathscr{N} \cap$ aff $C_{1} \subseteq C_{1}, \mathscr{N} \subseteq \mathscr{N}^{\prime}$. Letting $T=(S \cap \mathscr{N}) \sim C_{1}$, by previous arguments, cl $T \sim C_{1}$ is connected, $\operatorname{dim} T=d$, and $C_{1} \cap \mathrm{cl} \mathscr{N} \equiv Q_{T}$ is the
set of lnc points of $\mathrm{cl} T$. Clearly $Q_{T}$ is convex and essential and has dimension $d-2$. By repeating the argument used in the proof of Theorem 3 , we may select a hyperplane $M$ so that $\mathrm{cl}\left(T \cap M_{1}\right), \mathrm{cl}\left(T \cap M_{2}\right)$ are convex sets whose union is $\mathrm{cl} T$.

We assert that all lnc points for $\operatorname{cl}\left(S \cap M_{1}\right), \operatorname{cl}\left(S \cap M_{2}\right)$ are in $\cup_{i=1}^{n} C_{i}$ : For $y$ in $C_{1} \sim\left[\bigcup_{i=2}^{n} C_{i}\right]$, since $x \in$ rel int $C_{1},[x, y]$ is disjoint from $\bigcup_{i=2}^{n} C_{i}$. For every point $p$ on $[x, y]$, select a neighborhood $\mathscr{N}_{p}$ of $p$ disjoint from $\bigcup_{i=2}^{n} C_{i}$ and with $\left(S \cap \mathscr{N}_{p}\right) \sim C_{1}$ connected. Reduce to a finite subcollection $\mathscr{N}_{1}, \ldots$, $\mathscr{N}_{j}$ of the $\mathscr{N}_{p}$ sets which covers $[x, y]$. Choose a convex neighborhood $U^{\prime}$ of $[x, y]$ with cl $U^{\prime} \subseteq \mathscr{N}_{1} \cup \ldots \cup \mathscr{N}_{j}$, and let $U \equiv\left(U^{\prime} \cap S\right) \sim C_{1}$. Clearly the lnc points for cl $U$ are exactly $C_{1} \cap \mathrm{cl} U, \mathrm{cl} U$ is closed, connected, and cl $U \sim C_{1}$ is connected. Using the fact that $\mathrm{cl} U \cap \mathrm{cl} T$ is $d$ dimensional, the previous argument for $\mathrm{cl} T$ may be adapted to $\mathrm{cl} U$ to show that $M$ separates $\mathrm{cl} U$ into two convex sets, $\mathrm{cl}\left(U \cap M_{1}\right)$ and $\operatorname{cl}\left(U \cap M_{2}\right)$. Moreover, $y$ cannot be an lnc point for $\mathrm{cl}\left(S \cap M_{i}\right)$, for $U^{\prime}$ is a neighborhood of $y$ whose intersection with $\operatorname{cl}\left(S \cap M_{i}\right)$ is convex, $i=1,2$. Thus the lnc points for $\operatorname{cl}\left(S \cap, M_{1}\right)$, $\operatorname{cl}\left(S \cap M_{2}\right)$ lie in $\cup_{i=2}^{n} C_{i}$, the desired result.

Let $A_{1}, A_{2}$ denote the components of $S \sim M$ containing $T \cap M_{1}, T \cap M_{2}$ respectively. Let $B_{1}$ denote the union of those components of $S \sim \operatorname{cl}\left(A_{1} \cup A_{2}\right)$ whose closure contains points of $A_{1}, B_{2}$ the union of the remaining components of $S \sim \operatorname{cl}\left(A_{1} \cup A_{2}\right)$. Define $P_{1} \equiv \operatorname{cl}\left(A_{1} \cup B_{1}\right), \quad P_{2} \equiv \operatorname{cl}\left(A_{2} \cup B_{2}\right)$. Since $S=\mathrm{cl}($ int $S)$ and $S \sim Q$ is connected, the closure of every component of $S \sim \operatorname{cl}\left(A_{1} \cup A_{2}\right)$ necessarily contains points of at least one of $A_{1}, A_{2}$. Hence $P_{1}, P_{2}$ are connected, and $S=P_{1} \cup P_{2}$.

By our choice of $B_{1}, B_{2}$, it is clear that $P_{1} \neq P_{2}$. Moreover, our previous argument for $\operatorname{cl}\left(S \cap M_{1}\right), \operatorname{cl}\left(S \cap M_{2}\right)$ shows that the lnc points for $P_{1}, P_{2}$ lie in $\cup_{i=2}^{n} C_{i}$. We assert that $P_{1} \cap C_{i}, P_{2} \cap C_{i}$ are convex for $2 \leqq i \leqq n$ : If $P_{1} \cap C_{i}=\emptyset$ or $P_{1} \cap C_{i}=C_{i}$, the result is trivial. Otherwise, each of $A_{1}, A_{2}$ contains points of $C_{i}$, and $P_{1} \cap C_{i}=\left(\mathrm{cl} M_{1}\right) \cap C_{i}, P_{2} \cap C_{i}=\left(\mathrm{cl} M_{2}\right) \cap C_{i}$, each a convex set.

We have $P_{1}$ closed, connected, $P_{1} \sim\left(\cup_{i=2}^{n} C_{i}\right)$ connected, and the lnc points for $P_{1}$ a union of $\leqq n-1$ essential convex sets (and similarly for $P_{2}$ ). Hence the argument may be repeated for each of $P_{1}, P_{2}$, and for $C_{2}$, to obtain $\leqq 2^{2}$ sets, each having the above properties and with lnc points a union of $\leqq n-2$ convex sets. Inductively, repeating the argument $n$ times, we obtain $\leqq 2^{n}$ closed connected sets having no lnc points (and thus convex by a theorem of Tietze [5]). Therefore, $S$ is expressible as a union of $\leqq 2^{n}$ closed convex sets, completing the proof.

The following example shows that the number $2^{n}$ in Theorem 4 is best possible.

Example 2. Let $S \subseteq \mathbf{R}^{3}$ be the set in Figure 1. Then $Q$ is expressible as a union of $n=2$ essential convex sets, yet $S$ may not be decomposed into fewer than 4 convex sets. The example may be extended to higher values of $n$ by
considering a prism whose basis is a $2 n$ - gon and removing wedges appropriately from non-basis facets.


## References

1. Marilyn Breen, Essential and inessential points of local nonconvexity, Israel J. Math. 12 (1972), 347-355.
2. Merle D. Guay and David C. Kay, On sets having finitely many points of local nonconvexity and property $P_{m}$, Israel J. Math. 10 (1971), 196-209.
3. Nick M. Stavrakas, A generalization of Tietze's theorem on convex sets in $\mathbf{R}^{3}$, Proc. Amer. Math. Soc. 40 (1973), 565-567.
4.     - On the polygonal connectivity of polyhedra and the closures of open connected sets, Bull. Amer. Math. Soc. 79 (1973), 403-406.
5. H. Tietze, Über Konvexheit im kleinen und im grossen und über gewisse den Punkten einer Menge zugeordnete Dimensionszahlen, Math. Z. 28 (1928), 697-707.
6. F. A. Valentine, Convex sets (McGraw-Hill, New York, 1964).
7. -Local convexity and $L_{n}$ sets, Proc. Amer. Math. Soc. 16 (1965), 1305-1310.

The University of Oklahoma, Norman, Oklahoma

