REPRESENTABLE DUALITIES BETWEEN FINITELY CLOSED SUBCATEGORIES OF MODULES

RODERICK N. S. MACDONALD

1. Introduction and summary. This paper studies dualities (or contravariant category equivalences) between two categories of *R*-right and *S*-left modules which are *finitely closed*; that is, closed under submodules, factor modules and finite direct sums. Omitting the requirement that the categories contain all finitely generated modules from the classical Morita situation provides a generalization which substantially increases the number of such dualities.

We prove that a duality between two finitely closed categories A and B of modules is representable if and only if A and B consist of linearly compact modules. This encompasses work of Mueller ([7], [8]) for Morita dualities and of Goblot ([5], [6]). A linearly compact finitely closed category of modules is always an AB5*-category with no infinite direct sums; we demonstrate the converse for certain rings including all commutative ones, thus simplifying our characterization of representable dualities in these cases; we were however unable to obtain this result in general or to find a counterexample.

2. Terminology. Let R, S be two rings with identity and mod-R (respectively S-mod) the category of all R-right (respectively S-left) modules. Recall that an abelian category C is an AB5-category if for each $X \in C$ the subobjects of X form a complete lattice and for all subobjects Y of X and all updirected families $(X_i)_{i\in I}$ of subobjects of X, $\bigcup_I (X_i \cap Y) = (\bigcup_I X_i) \cap Y$. The dual of an AB5-category is called an AB5*-category. A subcategory A of mod-R is faithful if $\operatorname{ann}_R(A) = \{r \in R \mid Xr = 0 \text{ for all } X \in A\}$ is zero.

A finitely closed subcategory A of mod-R is abelian. Finite limits and finite colimits of A are the same as in mod-R. Clearly A is an AB5-category.

If A is a finitely closed subcategory of mod-R, then there is a right linear topology on R defined as follows: a right ideal I of R is open if and only if $R/I \in A$. We shall refer to this topology as the A-topology. For the A-topology on R, dis A is the Grothendieck category of all discrete topological A-modules. It is a full coreflective subcategory of mod-R, hence limits on dis A are the coreflections of limits in mod-R and colimits in dis A are the same as in mod-R. A generates dis A, thus A contains all finitely generated modules of dis A.

Let $F: A \to B$ be a duality between finitely closed subcategories of mod-R and S-mod, respectively. F is automatically an exact additive contravariant

Received June 15, 1977 and in revised form February 24, 1978.

functor. For any $X \in A$ the subobject lattices of X and FX are anti-isomorphic. Since A and B are both AB5-categories, they are also AB5*-categories.

3. Representable dualities. Let the contravariant functors $A \rightleftharpoons^{r} B$ be a

duality between the finitely closed subcategories A and B of mod-R and S-mod, respectively. We may assume without loss of generality that both A and B are faithful subcategories, since we can always pass to factor rings for which this is true.

There is a linear topology on S, the B-topology, which has as a basis of zero the left ideals V of S such that S/V is an object of B. With respect to the canonical epimorphisms, the S/V form a projective system whose limit is the completion of S in the B-topology. Applying the functor H to this projective system, we obtain a monoinductive system in A. Let $Q_R = \lim_{\to} H(S/V)$, where the colimit is formed in mod-R. Note that $Q \in \text{dis } A$.

LEMMA 1. There exists a ring homomorphism $\Sigma : S \to \hom_R(Q, Q)$, hence Q is an S-R bimodule.

Proof. For $s \in S$, define $\Sigma(s) : Q_R \to Q_R$ as follows: let V be an open left ideal of S, then $s^{-1}V = \{x \in S | xs \in V\}$ is also an open left ideal. Now consider the family of S-homomorphisms, $\rho_s : S/s^{-1}V \to S/V$, defined by $\rho_s(\overline{l}) = \overline{s}$ for each open V. Applying H we get the following:

where $\Sigma(s)$ is the unique *R*-homomorphism making the diagram commute for all *V*. Calculation now shows that Σ is indeed a ring homomorphism.

Lemma 1 allows one to consider $\hom_R(-, Q)$: mod- $R \rightarrow S$ -mod as a functor in the standard way.

LEMMA 2. Let $Q = \lim_{\to} H(S/V)$. There exists a monic natural transformation $\mu: F \to \hom(-, Q)$.

Proof. Since FX is an object of B, $FX = \lim_{\to} \operatorname{ann}_{FX}(V)$. Secondly, let $J_V : \operatorname{ann}_{FX}(V) \to \operatorname{hom}_S(S/V, FX)$ be the standard isomorphism, then $J_X = \lim_{\to} J_V : \lim_{\to} \operatorname{ann}_{FX}(V) \to \lim_{\to} \operatorname{hom}_S(S/V, FX)$ is an isomorphism. Because F, H is a duality, we have an isomorphism $K_V : \operatorname{hom}_S(S/V, FX) \to \operatorname{hom}_R(X, H(S/V))$; thus $K_X = \lim_{\to} K_V : \lim_{\to} \operatorname{hom}_S(S/V, FX) \to \lim_{\to} \operatorname{hom}_R(X, H(S/V))$ is an isomorphism. Since $Q_R = \lim_{\to} H(S/V)$, we have a unique map $t_X : \lim_{\to} \operatorname{hom}_R(X, H(S/V)) \to \operatorname{hom}_R(X, H(S/V)) \to \operatorname{hom}_R(X, I_V)$; $l_V : H(S/V) \to SQ_R$ being the canonical inclusion and b_V being the structure map of the filtered limit. Moreover, t_X is a monomorphism.

For each $X \in A$, define $\mu_X = t_X K_X J_X$. Thus, it is a monomorphism and is natural as t_X , K_X and J_X are. Note that μ_X was really constructed as a group homomorphism, but simple checking shows that it is actually an S-homomorphism.

Recall that a Hausdorff linearly topological module X is *linearly compact* if any finitely solvable system of congruences $x = x_k \pmod{X_k}$, where the X_k are closed submodules of X, is solvable. We call a *subcategory* A of mod-R *linearly compact* if each $X \in A$ is linearly compact with respect to the discrete topology. The basic properties of linearly compact modules are developed in Zelinsky [10].

LEMMA 3. Let $Q = \lim_{\to} H(S/V)$. If B is linearly compact, then $\mu_X : FX \to \hom_R(X, Q)$ is an isomorphism for all $X \in A$.

Proof. If X is a finitely generated module, then t_X is an isomorphism, hence so is μ_X .

Let X be any object of A, then by Lemma 2 $\mu_X : FX \to \hom_R(X, Q)$ is a monomorphism. Let $\sigma_f : X_f \to X$ be the inclusion of a finitely generated submodule X_f of X. Consider the following diagram:

Now $F\sigma_{f'}$, the dual of a monomorphism, is an onto map, and μ_{X_f} is an isomorphism since X_f is a finitely generated module. Let $\phi \in \hom_R(X, Q)$. Then there exists a $b_f \in FX$ such that $\phi|X_f = \mu_{X_f}F\sigma_f(b_f)$ for each finitely generated submodule X_f of X. Consider the congruence $b \equiv b_f \pmod{Ker} F\sigma_f$, f running over the finitely generated submodules X_f of X. As the finitely generated submodules are an updirected family, this congruence is clearly finitely solvable. Since $FX \in B$ and B is linearly compact, the congruence is solvable. Let b be a solution; then $\mu_X(b)|X_f = \phi|X_f$ for all finitely generated submodules X_f of X. Thus $\mu_X(b) = \phi$ and μ_X is an isomorphism.

THEOREM 4. A duality between finitely closed subcategories A and B of mod-R and S-mod is representable if and only if A and B are linearly compact.

Proof. Assume that the duality between A and B is represented by the bimodule ${}_{S}Q_{R}$. Let Y be an object of B and (Y_{j}) $j \in J$ a downdirected family of subobjects of Y with intersection I. Note that $I = \lim_{\leftarrow B} Y_{j} = \lim_{\leftarrow S \text{-mod}} Y_{j}$. By duality Y, I and the Y_{j} are represented by X, V and modules X_{j} which form an updirected family of quotients of X with $V = \lim_{\leftarrow A} X_{j}$. For each $j \in J$, we have the exact sequence:

 $0 \to K_j \to X \to X_j \to 0$

Thus we have the exact sequence:

 $0 \rightarrow \lim_{\rightarrow} K_j \rightarrow X \rightarrow \lim_{\rightarrow} X_j = V \rightarrow 0$

with colimits taken in mod-*R*. (Since *A* is finitely closed, colimits of this type in *A* coincide with the corresponding mod-*R* colimits.) As $\hom_{R}(-, Q)$ is exact on *A* and takes colimits in mod-*R* to limits in *S*-mod, we see that $Y/I = \lim_{\leftarrow S - \text{mod}} Y/Y_{j}$. Thus for all downdirected families $(Y_{j})_{j \in J}$ of submodules of *Y* the natural map $Y \rightarrow \lim_{\leftarrow S - \text{mod}} Y/Y_{j}$ is onto, hence *Y* is linearly compact.

In the converse direction we will prove that the bimodule ${}_{S}Q_{R} = \lim_{\to} H(S/V)$, as constructed in Lemma 1, represents the duality.

First, F is naturally isomorphic to $\hom_R(-, Q)|A$ by Lemma 3. Secondly, from Lemmas 1, 2 and 3 we known that H is represented by ${}_{S}W_R = \lim_{\to} \hom_R(R/I, Q)$. Also ${}_{S}Q = \lim_{\leftarrow} \operatorname{ann}_Q(I)$ since $Q \in \operatorname{dis} A$. Let $f = \lim_{\to} f_I : {}_{S}W \to {}_{S}Q$ where $f_I : \hom_R(R/I, Q) \to \operatorname{ann}_Q(I)$ is defined by $f_I(\phi) = \phi(l)$. Thus f is an S-isomorphism since all the f_I are S-isomorphisms. We claim that f is also an R-homomorphism. Let ϕ be any element of W, then $\phi \in \operatorname{hom}_R(R/I, Q)$ for some I. By the definition of the R-action on W in Lemma 1, we know $\phi r \in \operatorname{hom}_R(R/r - l_I, Q)$ and $\phi r(x) = \phi(\bar{r}\bar{x})$. Hence $f(\phi r) = \phi r(\bar{l}) = \phi(r\bar{l}) = \phi(\bar{r}) = \phi(\bar{r}) = f(\phi)r$. Thus ${}_{S}Q_R$ is isomorphic as a bimodule to ${}_{S}W_R$, and ${}_{S}Q_R$ represents the duality.

A module X is called *finitely cogenerated* if for all downdirected families $\{X_i\}_{i\in I}$ of subobjects of X with $\bigcap X_i = 0$ there exists an $i \in I$ with $X_i = 0$. This is the case if and only if X is an essential extension of a finite socle (cf. Anderson and Fuller [1], Proposition 10.7).

Remark. If the duality between A and B is represented by the bimodule ${}_{s}Q_{R}$, then $Q' = \{x \in Q | xR \in A\}$ and $Q' = \{x \in Q | Sx \in B\}$, the coreflections of Q into dis A and dis B respectively, are S-R bimodules. Moreover Q = Q', and this bimodule represents the duality. Also each representable duality between A and B is represented by a unique (up to isomorphism) bimodule ${}_{s}Q_{R}$ with $Q_{R} \in \text{dis } A$ and/or ${}_{s}Q \in \text{dis } B$; in particular, we may choose $Q = \lim_{\to} H(S/V)$, the bimodule constructed in Lemma 1. As each H(S/V) is finitely cogenerated (since it is dual to a finitely generated module), clearly Q is essential over its socle. Henceforth we will assume that the duality between A and B is represented by the bimodule ${}_{s}Q_{R}$ with $Q \in \text{dis } A$ and $Q \in \text{dis } B$.

THEOREM 5. If the duality between A and B is represented by the bimodule ${}_{s}Q_{R}$, then Q_{R} (respectively ${}_{s}Q$) is an injective cogenerator of dis A (respectively dis B).

Proof. We show that Q_R is an injective cogenerator of dis A.

Claim 1. Q_R is A-injective.

Let $0 \to Y \to X$ be an exact sequence in A. Since Q represents the duality, we have the exact sequence $\hom_R(X, Q) \to \hom_R(Y, Q) \to 0$. Thus Q is A-injective.

468

Claim 2. Q_R is dis A-injective. Let

where $X' \in \text{dis } A$, X_0 is a submodule of X' and $\phi_{X_0} : X \to Q_R$ is any R-homomorphism. Let $T = \{(X, \phi_X) | X_0 \subseteq X \subseteq X' \text{ and } \phi_X | X_0 = \phi_{X_0}\}$. Order Tas follows: $(X, \phi_X) \leq (Y, \phi_Y)$ if and only if $X \hookrightarrow Y$ and $\phi_Y | X = \phi_X$. Clearly this ordering is inductive, hence by Zorn's lemma there exists a maximal element (M, ϕ_M) . If M = X' we have proved the claim.

Assume $M \neq X'$. Select $a \in X' - M$, then $M \subset (\neq) M + aR$. Consider the following diagram:

$$M \cap aR \longleftrightarrow aR$$

$$\downarrow \phi_M | M \cap aR$$

$$\downarrow O_R$$

Note that $M \cap aR$ and aR are elements of A. Thus there exists a map $f: aR \to Q_R$ such that $f|M \cap aR = \phi_M|M \cap aR$. Define $h: M + aR \to Q_R$ by $h(M + ar) = \phi_M(M) + f(ar)$. This is a well defined R-homomorphism. Also $(M, \phi_M) < (\neq) (M + aR, h)$, but (M, ϕ_M) was maximal, a contradiction.

Claim 3. Q_R is a cogenerator of dis A.

First, Q_R cogenerates Y if and only if for each $0 \neq y \in Y$ there exists a $f: Y \to Q_R$ such that $f(y) \neq 0$. Secondly, for a bimodule ${}_{S}Q_R$, the natural map $X \to X^{**} = \hom_{S}(\hom_{R}(X, Q), Q)$ is a monomorphism if and only if Q_R cogenerates X. Thus Q_R cogenerates the category A. Let $X \in \text{dis } A$ and $0 \neq x \in X$. As $X \in \text{dis } A$, $xR \in A$ and thus there exists a map $\overline{f}: xR \to Q_R$ such that $\overline{f}(x) \neq 0$. By injectivity of Q_R , there is a map $f: X \to Q_R$ such that $f|xR = \overline{f}$; in particular, $f(x) \neq 0$. Thus Q_R cogenerates X.

PROPOSITION 6. If the duality between A and B is represented by the bimodule ${}_{S}Q_{R}$ then End ${}_{S}Q = \lim_{\leftarrow} R/V$, the completion of R in the A-topology.

Proof. A right ideal V of R is open in the A-topology if and only if $R/V \in A$. Consider $\operatorname{ann}_Q(V) = \operatorname{hom}_R(R/V, Q)$. Clearly $\{\operatorname{ann}_Q(v)\}$ is an updirected family of S-submodules and $Q = \lim_{\to} \operatorname{ann}_Q(V)$ (as $Q \in \operatorname{dis} A$). As $R/V \cong \operatorname{hom}_S$ $(\operatorname{hom}_R(R/V, Q), Q)$ we have $\operatorname{hom}_S(Q, Q) = \operatorname{hom}_S(\lim_{\to} \operatorname{ann}_Q(V), Q) = \lim_{\to} \operatorname{hom}_S(\operatorname{hom}_R(R/V, Q), Q) \cong \lim_{\to} R/V$. For a linearly topologized ring R, we write dis R for the Grothendieck category of discrete modules and R for the Hausdorff completion of R. If $X \in \text{dis } R$ then X can be considered as a \hat{R} -module. Hence we may identify dis R and dis \hat{R} . Moreover, $X_R \in \text{dis } R$ is a linearly compact R-module if and only if $X_R \in \text{dis } \hat{R}$ is a linearly compact \hat{R} -module (as X_R and $X_{\hat{R}}$ have the same underlying group and the same submodules).

Remark. If there is a duality between the finitely closed subcategories A and B of mod-R and S-mod (represented by the bimodule ${}_{S}Q_{R}$) then there is a duality between the finitely closed subcategories A and B of mod- \hat{R} and \hat{S} -mod (represented by the bimodule ${}_{\hat{S}}Q_{\hat{R}}$) where \hat{R} (respectively \hat{S}) is the completion of R (respectively S) in the A-topology (respectively B-topology). Furthermore, if the duality is represented by Q, from Theorem 4 and Proposition 6 we have $\hat{R} = \text{End}_{\hat{S}}Q$, $\hat{S} = \text{End} Q_{\hat{R}}$, \hat{R} linearly compact in the A-topology.

4. Remarks on limits.

PROPOSITION 7. Let C be an AB5-category and $\{u_i: X_i \to X\}_{i \in I}$ an updirected family of subobjects of X; then $\lim_{x \to I} X_i = \bigcup_I X_i$.

Proof. Let $f_i: \{X_i \to D\}_{i \in I}$ be a compatible family. For each $i \in I$, define $\alpha_i: X_i \to \bigcup_I X_i$ as the factorization of $u_i: X_i \to X$ through the union. To prove that $\bigcup_I X_i$ is the colimit we must show that there is a unique map $t: \bigcup_I X_i \to D$ making the diagram

commute for all $i \in I$.

For existence of t we proceed as follows. Let (α_i, f_i) be the unique map defined by the diagram

where p_1 and p_2 are the projection maps. Note that (α_i, f_i) is a monomorphism as α_i is, and that the family $\{(\alpha_i, f_i) : X_i \to \bigcup_I X_i \oplus D\}_{i \in I}$ is updirected. Define $\bigcup X_i \to \bigcup_I X_i \oplus D$ as the union of the family $\{(\alpha_i, f_i) : X_i \to \bigcup_I X_i \oplus D\}_{i \in I}$. For each $i \in I$ define $\gamma_i : X_i \to \bigcup X_i$ as the factorization of $(\alpha_i, f_i) : X_i \oplus \bigcup_I X_i \oplus D$ through the union $\bigcup X_i$.

Consider the following commutative diagram for each $i \in I$.

We wish to show that P_1r is an isomorphism. Each X_i factors through $\operatorname{im}(P_1r)$, the image of P_1r . As $\operatorname{im}(P_1r)$ is a subobject of $\bigcup_I X$, it is also a subobject of X. Thus $\operatorname{im}(P_1r) = \bigcup_I X_i$, as $\bigcup_I X_i$ is the least subobject of X through which X_i factors. Consequently, P_1r is an epimorphism. Let $K = \ker P_1r$. Then by AB5, $K = K \cap \bigcup X_i = \bigcup(K \cap X_i)$. If $K \neq 0$ then $K \cap X_i \neq 0$ for some $i \in I$, but this is a contradiction as α_i is a monomorphism. As C is an abelian category, a map which is a monomorphism and a epimorphism is an isomorphism, thus P_1r is an isomorphism.

Define $t = P_2 r (P_1 r)^{-1}$. Diagram chasing shows that this is the desired map. For uniqueness, assume that we have two maps r, s making the following diagram commute for all $i \in I$.

Let (K, k) be the equalizer of r and s. Hence α_i factors through K for each $i \in I$. Note that K is a subobject of X. Thus K must equal $\bigcup_I X_i$ as $\bigcup_I X_i$ is the least subobject of X through which each X_i factors. Thus r = s.

COROLLARY 8. If C is an AB5*-category and $\{u_i: X_i \to X\}_{i \in I}$ is a downdirected family of subobjects of X, then $\lim_{\leftarrow I} X/X_i = X/\bigcap X_i$. Let A be a finitely closed subcategory of mod-R. We now consider the relationship between limits formed in A, dis A or mod-R.

PROPOSITION 9. Let R be a ring, A a finitely closed subcategory of mod-R and dis A the category of modules discrete for the A-topology, then the embedding $A \hookrightarrow \text{dis } A$ commutes with limits existing in A.

Proof. First, as dis A is a Grothendieck category, the limits in dis A of all diagrams exist. If $D: I \to A$ is a diagram in A with limit (X, Π_i) , then it has a limit (\mathscr{L}, ϕ_i) in dis A. Now the compatible family (X, Π_i) factor over (\mathscr{L}, ϕ_i) by a unique homomorphism $\Pi: X \to \mathscr{L}$. Also as \mathscr{L} is in dis A, \mathscr{L} is the filtered union of subobjects Y_k which lie in A. The restriction of ϕ_t to any of these Y_k yields a compatible family; hence, it factors over (X, Π_i) by a homomorphism $f_k: Y_k \to X$. As $\mathscr{L} = \bigcup_{\to} Y_k$ and the f_k are compatible with the order relation on the Y_k , we obtain a homomorphism $f: \mathscr{L} \to X$. The homomorphism f is easily seen to be the inverse of Π .

Definition. A is a meager finitely closed subcategory of mod-R if for all $X \in A$ there exists a $Y \in A$ such that $X \subseteq Y$ and Y is a finitely generated R-module.

PROPOSITION 10. Let A be a meager finitely closed subcategory of mod-R. If the A-topology has a basis of two sided ideals, then A is an AB5*-category, if and only if A is linearly compact.

Proof. Let A be an AB5*-category and let $\{Y_i\}_{i\in I}$ be a downdirected family of submodules of $X \in A$. X is linearly compact if and only if $X/\cap Y_i =$ $\lim_{\leftarrow \mod -R} X/Y_i$. Since A is an AB5*-category, we know $\lim_{\leftarrow A} X/Y_i = X/\cap Y_i$ (Corollary 8). By Proposition 9 $\lim_{\leftarrow \dim A} X/Y_i = \lim_{\leftarrow A} X/Y_i = X/\cap Y_i$. We claim that $\lim_{\leftarrow \dim A} X/Y_i = \lim_{\leftarrow \mod -R} X/Y_i$. As $X \in A$, it is a submodule of a finitely generated module. As the A-topology has a basis of two-sided ideals, there exists an ideal V open in the A-topology such that XV = 0. Now $\lim_{\leftarrow \mod -R} X/Y_i$ is a submodule of $\prod_{\mod -R} X/Y_i$. But $(\prod_{\mod -R} X/Y_i)V = 0$; hence $\lim_{\leftarrow \mod -R} X/Y_i$ is an object of dis A. Therefore, $\lim_{\leftarrow \mod -R} X/Y_i =$ $\lim_{\leftarrow \dim A} X/Y_i = X/\cap Y_i$, and X is linearly compact.

COROLLARY 11. If R is commutative, a meager finitely closed AB5*-subcategory of mod-R is linearly compact.

5. The Leptin topology. Let τ be a Hausdorff linear topology on a module X. Following Bourbaki [2, Chapter III, 2, Exercise 18], we define τ^* to be the linear topology on X with fundamental system of neighbourhoods of zero the filter basis generated by the submodules of X which are open under τ and completely-meet-irreducible. τ^* is sometimes called the Leptin Topology.

For a ring with topology τ , dis τ is the Grothendieck category of all discrete topological *R*-modules.

PROPOSITION 12. Let τ be a linearly compact Hausdorff topology on R. If $Q_{\mathbf{R}} \in \operatorname{dis} \tau^*$ is an injective cogenerator of $\operatorname{dis} \tau^*$ which is essential over its socle,

then Q_R is an injective cogenerator of dis τ . Also if $M \in \text{dis } \tau$ is essential over its socle, then $M \in \text{dis } \tau^*$.

Proof. Let $M \in \text{dis } \tau$ be essential over its socle. If $x \in M$, then xR is essential over its socle. As xR is linearly compact, socle(xR) is finite and $\text{ann}_R(x)$ is the finite intersection of completely-meet-irreducible right ideals of R which are open for τ^* . This implies that M is an object of dis τ^* .

As $\tau^* \subseteq \tau$ clearly dis $\tau^* \subseteq \text{dis } \tau$. Moreover, dis τ^* and dis τ have the same simple modules. Let $E(Q_R)$ be the injective hull of Q_R in dis τ . Since $E(Q_R)$ is essential over its socle, it is an object of dis τ^* , hence equals Q_R .

Definition. Two Hausdorff linear topologies on X, τ_1 and τ_2 , are Leptin equivalent if $\tau_1^* = \tau_2^*$.

COROLLARY 13. Let τ_1 and τ_2 be two Leptin equivalent Hausdorff topologies on R, and let Q_R be essential over its socle. Then Q_R is an injective cogenerator in dis τ_1 if and only if it is an injective cogenerator in dis τ_2 .

Remarks. (1) Let A and A' be two finitely closed subcategories of mod-R. The A-topology equals the A'-topology if and only if A and A' contain the same finitely generated modules. Also the Leptin A-topology equals the Leptin A'-topology if and only if A and A' have the same finitely generated finitely cogenerated modules.

(2) A completely-meet-irreducible submodule of a linearly topologized module is closed if and only if it is open. Thus two topologies τ_1 and τ_2 are Leptin equivalent if and only if they have the same submodules closed. If τ_1 and τ_2 are Leptin equivalent and τ_1 is topological linearly compact, then τ_2 is also.

6. Results on rings.

LEMMA 14. (Goblot [5], théorème 2, page 1213). Let A be a finitely closed subcategory of mod-R, Q_R an injective cogenerator of dis A which is essential over its socle, $S = \text{End } Q_R$ and $B = \hom_R(A, Q)$. If A is an AB5*-category with no infinite direct sums, then B is a finitely closed linearly compact subcategory of S-mod, and $\hom_R(-, Q) : A \to B$ is a duality.

Definition. For A, a finitely closed subcategory of mod-R let $A_F = \{Y | \text{ there exists } X \in A \text{ finitely generated such that } Y \subseteq X \text{ (as modules)}\}.$

THEOREM 15. Let A be a finitely closed AB5*-subcategory of mod-R with no infinite direct sums. If A_F is linearly compact, then A is linearly compact.

Proof. By the discussion following Proposition 6, we may assume that R is complete and Hausdorff in the A-topology.

Let Q_R be an injective cogenerator in dis A which is essential over its socle, $S = \text{End } Q_R$ and $B = \hom_R(A, Q)$. By lemma 14, B is a finitely closed linearly compact subcategory of S-mod and $\hom_R(-, Q)$ is a duality between A and B. Note that since Q is the union of submodules in A, the B-topology on S is Hausdorff.

Since *B* is dual to a finitely closed subcategory and is linearly compact, it is an AB5*-category with no infinite direct sums. If we prove that ${}_{S}Q$ is an injective cogenerator of dis *B* which is essential over its socle and that R =End_S *Q*, then again by Lemma 14 hom_S(*B*, *Q*) consists of linearly compact *R*-modules. This proves the theorem; for if $X \in A$, then $i: X \to X^{**} =$ hom_S(hom_R(X, Q), Q) is a monomorphism, but $X^{**} \in \text{hom}_{S}(B, Q)$ is linearly compact, thus X is also.

Claim 1. $R = \operatorname{End}_{S} Q$.

Let $D = \hom_R(A_F, Q)$. As A_F is finitely closed, D is finitely closed. Moreover, D is contained in B. Since A_F is linearly compact, the duality between A_F and D is represented by the bimodule ${}_{S}Q_R$ (Sandomierski [9], Theorem 3.8). As $R/V \in A$ implies $R/V \in A_F$, we see that dis $A = \operatorname{dis} A_F$. Since $Q \in \operatorname{dis} A_F$, ${}_{S}Q$ is an injective cogenerator of dis D which is essential over its socle (see Theorem 5 and the remark preceding it). By Proposition 6, $R = \operatorname{End}_{S} Q$.

Claim 2. ${}_{s}Q$ is an injective cogenerator of dis B which is essential over its socle.

We showed above that ${}_{s}Q$ is an injective cogenerator of dis D which is essential over its socle. As A_{F} contains all finitely generated modules of A, Dcontains all finitely cogenerated modules of B. Thus the B-topology is Leptin equivalent to the D-topology. From Corollary 13, ${}_{s}Q$ is an injective cogenerator of dis B which is essential over its socle.

COROLLARY 16. A finitely closed AB5*-subcategory A of mod-R without infinite sums is linearly compact in each of the following situations:

- (1) R is topological linearly compact and $A \subseteq \text{dis } R$.
- (2) R is commutative.
- (3) R is a right noetherian and right fully bounded ring.
- (4) R is semi-artinian.

Proof. (1) $X \in \text{dis } \tau$ is finitely generated if and only if there exist $V_i \in \tau$, $i = 1, \ldots, n$, such that we have an exact sequence $R/V_i \oplus \ldots \oplus F/V_n \rightarrow X \rightarrow 0$. Since each R/V_i is linearly compact, X is linearly compact. Thus A_F is linearly compact. Now apply Theorem 15.

(2) A_F is a meager finitely closed AB5-subcategory, thus by Corollary 11, A_F is linearly compact. Now apply Theorem 15.

(3) A right noetherian ring R is right fully bounded if and only if it has condition (H); that is, for every right ideal I there exist $b_1, \ldots, b_n \in R$ such that $\operatorname{ann}_R(R/I) = b_1^{-1}I \cap \ldots \cap b_n^{-1}I$ (Gabriel [4], Lemma 2, page 423 and Cauchon [3], Corollary 2, page 1156). As $R/I \in A$ implies $R/I \in A_F$, the A-topology on R is also the A_F -topology. If I is open for the A-topology $x^{-1}I$ is open for all $x \in R$. Note that $\operatorname{ann}_R(R/I)$ is the largest two sided ideal contained in I. By condition (H), there exist b, \ldots, b_n such that $\operatorname{ann}_R(R/I) = b_1^{-1}I \cap \ldots$

REPRESENTABLE DUALITIES

 $\bigcap b_n^{-1}I$. As finite intersections of open ideals are open, $\operatorname{ann}_R(R/I)$ is open. Thus the A-topology has a basis of two sided ideals. Since A_F is a meager finitely closed AB5*-subcategory of mod-R, A_F is linearly compact (Proposition 10). Now apply Theorem 15.

(4) This result does not depend on Theorem 15. A ring R is semi-artinian if every right R-module is essential over its socle. If $X \in A$, then the socle of X is finite and X is a finitely cogenerated module.

Let Q be an injective cogenerator of dis A which is essential over its socle, $S = \operatorname{End} Q_R$ and $B = \hom_R(A, Q)$. By Lemma 14, B is a finitely closed subcategory of S-mod and $\hom_R(-, Q) : A \to B$ is a duality. For $X \in A$, Xis complete in the Q-topology since it is finitely cogenerated, and therefore X is Q-reflexive (Mueller [7], Lemma 1, page 61). Hence ${}_{S}Q_{R}$ represents the duality between A and B and thus A is linearly compact (Theorem 4).

References

- 1. F. W. Anderson and K. R. Fuller, Rings and categories of modules (Springer, 1973).
- 2. N. Bourbaki, Eléments de mathématique, Algèbra commutative, Chapter 3 (Herman, 1960).
- **3.** G. Cauchon, Les T-anneaux et la condition de Gabriel, C.R. Acad. Sci. Paris 277 (1973), 1153–1156.
- 4. P. Gabriel, Des categories abeliennes, Bull. Soc. Math. France 90 (1962), 323-448.
- 5. R. Goblot, Sur les anneaux linéairement compact, C.R. Acad. Sci. Paris 270 (1970), 1212–1215.
- 6. Sur deux classes de categories de Grothendieck, Thèse, Univ. de Lille, 1971.
- 7. B. J. Mueller, On Morita duality, Can. J. Math. 21 (1969), 1338-1347.
- 8. Linearly compactness and Morita duality, J. Algebra 16 (1970), 60-66.
- 9. F. Sandomierski, *Linearly compact modules and local Morita duality*, Proceedings of the Ring Theory Conference, Salt Lake City, Utah, March, 1971.
- 10. D. Zelinsky, Linearly compact modules and rings, Amer. J. Math. 75 (1953), 79-90.

McMaster University, Hamilton, Ontario