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EXTENSIONS OF UNIFORMLY SMOOTH NORMS
ON BANACH SPACES

R. FRY

We give a characterisation for the extension of uniformly smooth norms from sub-
spaces Y of superreflexive spaces X to uniformly smooth norms on all of X. This
characterisation is applied to obtain results in various contexts.

1. INTRODUCTION

Consider the following problem. Let V be some rotundity or smoothness property
of a norm on a Banach space X. Then given a subspace Y C X, and an equivalent norm
||-||y on Y with property V, is it possible to extend ||-||y to an equivalent norm on X
with property VI Equivalently, can ||-||y with property V be seen as the restriction of
an equivalent norm on X with property V? For separable spaces, and V the property of
being rotund or locally uniformly rotund, this problem has a positive solution ([9]). For
general X, if V represents the property of rotundity, local uniform rotundity, or uniform
rotundity, then the recent result of [5] gives a positive solution provided Y C X is
reflexive.

For the case in which V is a smoothness property, the situation appears to be more
delicate, and in certain situations is related to the complementability of the subspace Y.
There is an example from [2], which exhibits a Gateaux smooth norm |-| on CQ and a
y € co\{O}, such that |-| cannot be extended to a norm on fc, which is Gateaux smooth
at y.

We also have the following "negative" result of [14]. There exists a separable Banach
space X, a non-complemented subspace Y C X, and a Gateaux differentiate norm on
Y such that this norm cannot be extended to a Gateaux differentiable norm on X. This
result is proven via contradiction by using the supposed existence of such an extension
to show that Y is then complemented in X. In the same paper, additional connections
between smooth extensions and the complementability of subspaces are established by
showing that if X* is separable, and Y is a Hilbertian subspace of X with unit sphere Sy, '
then the Hilbertian norm on Y extends to a map <p : X -¥ R which as a function on X is
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Frechet smooth on Sy, with <p' locally Lipschitz on Sy, if and only if Y is complemented
([14, Theorem 1]). It is also shown in [14] that if Y is (linearly) complemented, the
smooth extension problem is easily solved.

Concerning positive results for the case in which V is a smoothness property, to the
author's knowledge, essentially no progress has been made from the time of [14]. In fact,
for non-complemented subspaces, we know of no positive result concerning the smooth
extension of norms in the infinite dimensional setting. We address this issue in Propo-
sition 1 where we give a characterisation for the extension of uniformly smooth norms
from subspaces of superreflexive spaces to uniformly smooth norms on the whole space,
somewhat in the spirit of [14, Theorem 1] described above. The techniques of our main
proposition are used to obtain a result concerning the approximation of norms on sub-
spaces of superreflexive spaces by the restrictions of uniformly smooth norms defined on
the whole space. This approximate solution to the uniformly smooth extension problem
also follows from a result mentioned in a Remark in [11], which uses a different approach.

We also discuss the relationship between uniformly smooth extensions of norms and
subspaces Y C X which are nonlinearly complemented. Here the situation is subtle.
Indeed, from classical results any closed subspace Y of a Banach space X is nonlinearly
complemented by a continuous projection (see for example, [13]), however, Y may not
be linearly complemented and the projection may possess no smoothness properties. On
the other hand, by a result of Lindenstrauss (see for example, [1]), if Y is reflexive and
nonlinearly complemented by a projection uniformly continuous on all of X, then in fact
Y is linearly complemented. Then again, there is a result of Holmes [8] which states in
part that for X superreflexive and Y C X, the metric projection onto Y is uniformly
continuous on bounded sets, although not Frechet smooth in general. From these results
one can see that if v : X —¥ Y is a continuous, nonlinear projection with X superreflexive
and Y is not linearly complemented, then the continuity or smoothness conditions on v

must be balanced with some care. In this direction we show, using our main proposition,
that the uniformly smooth extension problem has a positive solution if the continuous
nonlinear projection u is uniformly smooth and bounded on a neighbourhood of Sx (the
unit sphere of X).

2. NOTATION AND DEFINITIONS

All Banach spaces are assumed real and are denoted by X, Y, et cetera. The closed

unit ball and sphere of X are written Bx and Sx respectively. A closed ball of radius

r > 0 and centre p € X is denoted Br(p). If G C X, then the distance function to G.

dist(-,G) : X ->• K, is given by dist(x,G) = inf{||z - y|| : y 6 G}. The norm on a

Banach space is said to be uniformly Frechet smooth (or simply uniformly smooth) if the

limit,
Jim r 1 (||i + th\\-\\x\\),
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exists, is continuous and linear in h, and is uniform in (x,h) € Sx x Sx- Let U C X

be an open subset of a Banach space, and Y a Banach space. A map, f : U -> Y, is
similarly said to be Frechet differentiable or Frechet smooth at x 6 U if the limit,

(2.1) df(x)(h) = ifi + ) /(*)),
exists, is continuous and linear in h, and is uniform in h € Sx-

If / : U -> Y is Frechet differentiable at all x £ U with U C X open, A C U
is a subset, and the limit (2.1) is uniform for (x, h) 6 A x Sx, then we shall say that
/ is uniformly Frechet smooth on A, or simply uniformly smooth on A for short. The
collection of all such functions is written UF(A, Y). It is worth noting that if f(x) — \\x\\,
and we define (j>: Sx —> Sx- by 4>(x) = df(x), then the condition that <f>: Sx -> Sx- be
uniformly continuous is equivalent to the limit (2.1) being uniform in (x, h) 6 Sx x Sx (see
for example, [10, Lemma 5.5.9]). In this note, smoothness is meant in the Frechet sense.
(X, || ||) is said to be superreflexive if it admits a uniformly smooth norm equivalent to
|| -1|. For further information on superreflexive spaces, we refer the reader to [4, 10]. All
subspaces are assumed closed.

3. A CHARACTERISATION OF UNIFORMLY SMOOTH EXTENSIONS

For the purposes of this paper, let X be a superreflexive Banach space with uniformly
smooth norm ||-||, and Y a subspace with a given equivalent uniformly smooth norm ||-||y.
We suppose without loss of generality, that ||-|| ^ ||-||y on Y.

Our first result gives a characterisation of those subspaces Y of superreflexive spaces
X for which ||-||y can be extended to a uniformly smooth norm on all ofX. The techniques
of the following proof shall then be adapted to obtain results concerning such extensions
in other contexts.

PROPOSITION 1. Let X be a superretiexive Banach space, and Y a subspace
with an equivalent uniformly smooth norm \\-\\Y. Then there exists an extension of\\-\\Y

to a map uniformly smooth and bounded on a neighbourhood ofSx if and only if there
exists an equivaient uniformly smooth norm on X extending the norm \\-\\Y.

PROOF: Fix a subspace Y C X, a uniformly smooth norm ||-|| on X, and let
||-||y be an equivalent uniformly smooth norm on Y, which we can assume satisfies A ||-||,
^ Illly ^ II'Iliyi f°r some A > 0. Unless mentioned otherwise, all closed balls are taken
with respect to ||-||. Sufficiency is clear. For necessity, let / : X -> E be an extension
of | | | | y which is uniformly smooth on a neighbourhood of S* with sup{/(a;) : x € S*}
= \[~M < oo.

Now, for y G Y, f(y) = \\y\\Y > \\y\\, and hence for all y e Y\{0}, f(y/ \\y\\) > 1.
Since / is uniformly continuous on 5^, there is a 5 > 0 such that for any yo £ Sy and
V € B3g(y0) n Sx, we have f(y) > 1/2. We define the sets,

Si = {x e X : dist(x, Y) < 6}, and S2 = {x € X : dist(x, Y) > 26}.
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Let C € C°°(R, [0,1]) be such that CM = 0 if t ^ 3S/2, and C(f) = 1 if i ^ 2(5, and
put h(x) = C(dist(x, Y)). Since X is superreflexive, we have that h G UF(X, [0,1]) (see
for example, [12, Proposition 4.2.5]), and we have h = 0 on Si, and h — 1 on S2. For

ieX, set

<?(*) = y/f*(x) + h(x).

Note that we have g\Y = ||-||K, and 1/2 < ff(x/||a:||) < 1 + M, for all i e ^ \ { 0 } .

Also, both <?(x/||a;||) and (g(x/ \\x\\) J are uniformly continuous on the sets [x e X :

\\x\\ > r}, r > 0.

By composing ||-|| with appropriate smooth bump functions on K, we construct maps
£„ € UF[X, [0,1]) such that £n vanishes in a neighbourhood of the origin, and £n(x) = 1
for ||x|| > l /3n. Define ipn : X -»• K by,

/ ||*|| ( ^ / N O a a r ) ^ x ^ O
^ n ( X ) ~ \ 0 for x = 0

It follows from the definition of £„, that i/>n is uniformly smooth on bounded subsets of

X. Note that, ipn(x) > max{0,1/2 ||a;|| - l /3n} for all x e X, and also that for y € y

with IIJ/H > l/3n, we have ^n(y) = | | j / | | y .

Following the proof of [4, Theorem V.3.2] or [7, Theorem 10.7], define a convex map

* n : int(4Bx) -^ K by,

{ n n n ^

Y^ xi^Pn (XJ) -x = Y^ Xixi> Yl Xi' = X' A> ^ °> n e N f •
Using the method of [7], since ipn is uniformly smooth on 4BX, we have that * n is

uniformly smooth on int(3i?x)- We write the derivative of *„ at x as Wn(x). Because
ipn(z) ^ max{0,1/2 \\x\\ - l / 3 n } , it follows that * n ( i ) ^ max{0,1/2 ||x|| - l / 3n} , and
hence that * n ( i ) ^ 1 implies | | i | | < 3. Set * n (x) = (Vn(x) + * n ( - x ) ) / 2 , and /xn

equal to the Minkowski functional of Bn = {x E X : $n(x) ^ l } . Since $n(0) = 0 and
B n C int(42?x) for all n, we have that fin is an equivalent norm on X for each n. Further,
since

ipn(x) ^ maxjo, - ||i|| - — J ^ maxjo, - ||x|| - - } ,
and

%l>n{x) = \\x\\ g(x/ \\x\\)£n(x) $ (1 + M) ||x||,

the same inequalities hold for ^ n , and so there are constants A\, A2 > 0, independent of

n, such that for all x e X and n ̂  1,

(3.1) A1\\x\\^^(x)^A2\\x\\
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Now, as in the proof of [4, Theorem V.I.3], we use the Implicit Function Theorem

on the equation ^ n f x / ( / / n ( x ) ) j = 1 to obtain,

H'n{x) = -(V'n{x)(x)y1:*'n(x) for x such that /xn(x) = 1.

Note that since $ n is convex, we have $n(x)(x) ^ $n(x) - 5n(0) = $ n (x) , and
hence for x such that /xn(x) — 1, we have ^b'n(x)(x) ^ 1. It follows that /xn(x) is Frechet
smooth. Further, since ^'n is uniformly continuous on the set Sn — {x 6 X : //n(x) = l } ,
we have that / in is uniformly smooth on Sn, and therefore /*„ is an equivalent uniformly
smooth norm on X.

Next, fix any x0 € X \{0} , pick n0 with ||xo|| > l/3no, and choose 6 > 0 so that
x € 5j(x0) implies ||x|| > l /3n0. Then for all m,n > n0, and x € ^ ( x o ) , we have
/xn(x) = nm(x), and so |/in(x) - /xm(x)| -»• 0 uniformly on Bs(x0). Since /un(x) ^ A2 \\x\\
for all n, fin also converges uniformly about the origin. It follows that there exists a
continuous map fi with fin —> fi. A similar argument shows that \j!n converges uniformly
in a neighbourhood about any x ^ 0, and hence /x is continuously Frechet differentiable
on X\{0} . Now, for x € 5 = {x € X : n(x) = l } , we have that /xn(x) = fj,m(x) for all
n, m > (1/3)(1 + M), and hence fi'n -4 //' uniformly on 5. Since the n'n are uniformly
continuous on 5 , it follows that fi' is uniformly continuous on 5. This, together with
(3.1), show that fj, is an equivalent uniformly smooth norm on X.

Next, let e e (0,1) and choose n0 so that (1 + A + M)/3n0 < e/4. Now, for
y e Y and any n, ipn(y) = €n(y) \\y\\y, and hence for y € Y with ||y|| ^ l /3n 0 , we
have ipno{y) = \\y\\y Therefore, for all n ^ n0 and y 6 K, IV'n(y) - |M| K | < e/2, or
\\y\\Y - e/2 < ^(2/) < IMIy + e/2. A convexity argument now gives that \\y\\Y - e/2
< *n(j/) < ||y||y + f / 2 , and so for all n^ n0 and y €Y, |*n(y) - | |y | | y | < e/2.

It follows that |/in(y) - | | j / | | K | < £\\y\\Y for n ^ n0 and y € ^ \ { 0 } , since ||-||y
is a norm and /j.n on Y is the Minkowski functional of the set {y e Y : <ffn(y) ^ l}.

Indeed, let n > nQ, y € Y\{0} and A > 0 so that ^ ( A ^ y ) = 1. Then we have,
| l - HA^j/Hyl < e/2, which implies that 1/1 - e / 2 > A/||t/||y > 1/(1 + e/2), and hence
\\y\\y ( (e/2)/( l - e/2)) > A - | |y| |y > ||y||y ( ( - e / 2 ) / ( l + e / 2 ) ) , from which the desired
inequality follows.

Finally, for any fixed t/o € ^ \ { 0 } a n d e' S (0,1), working in a neighbour-
hood Bg(y0) C Y of j/o such that 0 ^ B*(l/o), and using our above estimate with
e < e'/{5 + \\yo\\), we can find an no — no(yo) so that for all n > n0, |Mn(y) - l|y||y| < e'
on Bg(y0). Since fin -¥ fj. locally uniformly on V, this implies |/*(y) — ||y||y| < e' on a
neighbourhood of y0, and so n\Y = \\-\\Y, since e' and j / 0 were arbitrary (the case y0 = 0
is clear). D
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4. SOME APPLICATIONS

4.1 . UNIFORMLY SMOOTH EXTENSIONS AND NONLINEAR PROJECTIONS. Let us

observe (see for example, [14]), as mentioned in the introduction, that if Y c X is
linearly complemented, with P : X —> Y a continuous, linear projection, then the smooth
extension problem can be solved. Indeed, with the notation mentioned above, define a
norm on X by

Then ||-||E is an equivalent uniformly smooth norm on X which extends the norm

\\-\\Y on Y. As noted previously, for Y nonlinearly complemented one must proceed more

carefully. The following proposition addresses the case in which Y is complemented by a

continuous, nonlinear projection uniformly smooth and bounded on a neighbourhood of

Sx-

PROPOSITION 2 . Let X be superreRexive, and Y a subspace. Suppose that
there exists a continuous nonlinear projection v : X —* Y which is uniformly smooth and
bounded on a neighbourhood of Sx- Then any equivalent uniformly smooth norm on Y
can be extended to an equivalent uniformly smooth norm on all of X.

P R O O F : The proof proceeds almost exactly as the proof for Proposition 1, by putting

f(x) = !Hz)!J2
y. and g(x) = y/f(x) + h(x). •

4.2. APPROXIMATE UNIFORMLY SMOOTH EXTENSIONS. We next use the uniform
approximation result from [3] and the techniques of the proof of Proposition 1 to obtain
the following. This result also follows from a variation of a result mentioned in [11]
(see Propostion 2.5 there and the Remark following), where the techniques of infimal
convolutions are used.

PROPOSITION 3 . ([11]) Let X be superreRexive, and Y C X a subspace. Then

any equivalent norm on Y can be uniformly approximated on bounded subsets ofY by

the restrictions of norms uniformly smooth on X.

P R O O F : Let (A", ||-||) and Y be as in the statement of the theorem, \\-\\Y an equivalent
uniformly smooth norm on Y, B C Y bounded and e € (0,1). Fix r > 4 so that
B C Br = Br(0) C X. We let A > 0 be as in the proof of Proposition 1, and fix n for
the remainder of the proof large enough so l /3n < e/((3 + A)Ar). We first observe that
Ully can be extended to an equivalent norm | | | | £ on X (see for example, Lemma II.8.1
[4]) which we can suppose satisfies ||-||£ ^ ||-||. Because ||-||E is Lipschitz, by [3] there
exists a uniformly smooth map pc : X —> K such that

(4.1) | | | x | | E - p £ ( x ) | <e /2 r 2 for all x £ Br.

The proof proceeds by replacing the extension / in Proposition 1 with the uniformly

smooth map pe defined above for which (4.1) holds. The method of proof is essentially the
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same as for Proposition 1, and so we present only a few details for the readers convenience,

using the same notation as above. As mentioned, we use here f(x) — pe(x), and again

choose g(x) = y/f2(x) + h(x). We have similar to before that 1/4 < g{x/ \\x\\) ^ 3, for

all x € X \ { 0 } , and also have similar bounds on ipn(x). For y e BTC\Y with \\y\\ ^ l/3n,

we have </>„(</) = ||y|| f{y/ \\y\\), and so, fa(y) ~ \\v\\Y\ = \\y\\ \f{v/\\v\\) - \\v/\\v\\\\B

^ \\y\\ (e/2r2) < e/2r. Hence by choice of n we have that |^n(y) - | |y| |y | < e/2r for all

y € Br n Y. If we let nn be the uniformly smooth norm on X associated with ij)n as given

in Proposition 1, then one can check as before that \\\y\\ - Mn(y)| < £ on BT n Y. Hence,

/in is the required extension. D

We end this note with the simple observation that the previous proposition can be
cast in a slightly different form as follows. If (Y, |-|) is a superreflexive Banach space, let
Z be the space of all uniformly smooth norms on Y equivalent to |-| (the norm |-| need
not be uniformly smooth.) Define a metric on Z by,

p(nun2) = s u p j | n i ( i ) - n 2 ( x ) | : x

Then in this notation we have,

COROLLARY 1 . Let X be superreSexive, and (Y, | | ) a subspace. Then the set of
equivalent uniformly smooth norms on Y which can be extended to a uniformly smooth
norm on X is dense in (Z,p).

PROOF: Let e > 0, and fix any uniformly smooth norm ||-||y € Z. Then from

Corollary 1 we have that there exists a uniformly smooth norm fis on X with \\\y\\Y

— ^t{v)\ < ^ for all y € (BY, |-|). Therefore /i£ is the desired norm. D

This corollary should be compared with the result of [6] which states that if (X, | | )
admits a locally uniformly rotund norm, then the set of all equivalent locally uniformly
rotund norms on X is residual in (Z, p), where here Z is the collection of all norms on X

equivalent to | | .
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