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Abstract

Objective: Automated surveillance methods increasingly replace or support conventional (manual) surveillance; the latter is labor intensive
and vulnerable to subjective interpretation. We sought to validate 2 previously developed semiautomated surveillance algorithms to identify
deep surgical site infections (SSIs) in patients undergoing colorectal surgeries in Dutch hospitals.

Design: Multicenter retrospective cohort study.

Methods: From 4 hospitals, we selected colorectal surgery patients between 2018 and 2019 based on procedure codes, and we extracted routine
care data from electronic health records. Per hospital, a classification model and a regression model were applied independently to classify
patients into low- or high probability of having developed deep SSI. High-probability patients need manual SSI confirmation; low-probability
records are classified as no deep SSI. Sensitivity, positive predictive value (PPV), and workload reduction were calculated compared to conven-
tional surveillance.

Results: In total, 672 colorectal surgery patients were included, of whom28 (4.1%) developed deep SSI. Both surveillancemodels achieved good
performance. After adaptation to clinical practice, the classificationmodel had 100% sensitivity and PPV ranged from 11.1% to 45.8% between
hospitals. The regressionmodel had 100% sensitivity and 9.0%–14.9% PPV.With bothmodels,<25% of records needed review to confirm SSI.
The regression model requires more complex data management skills, partly due to incomplete data.

Conclusions: In this independent external validation, both surveillance models performed well. The classificationmodel is preferred above the
regression model because of source-data availability and less complex data-management requirements. The next step is implementation in
infection prevention practices and workflow processes.

(Received 25 January 2022; accepted 20 May 2022; electronically published 21 June 2022)

Surgical site infections (SSIs) are among the most common health-
care-associated infections (HAIs) and result in increased costs,
morbidity, postoperative length of stay, and mortality.1–4

Reported SSI rates after colorectal surgery range from 5% to
30%, making them high-incidence procedures.5–8 Colorectal

surgeries are therefore incorporated in most SSI surveillance
programs.

In most hospitals, surveillance is performed manually. However,
this is experienced as labor intensive, and possibly inaccurate and
is prone to subjectivity and low interrater agreement, thus limiting
comparisons between hospitals.9–11 The increasing availability of data
stored in the electronic health record (EHR) offers opportunities for
(partially) automating SSI surveillance, thereby reducing theworkload
and supporting standardization of the surveillance process. To date,
several studies have published (semi)automatedmethods to automate
SSI surveillance after colorectal surgery. Unfortunately, most of these
are not feasible for Dutch hospitals (1) because they include elements
that are not representative of the Dutch clinical setting and practice,
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(2) because they have insufficient algorithm performance, (3) because
processing time is delayed or (4) because they are too complex for
application in real life.12–18

Two published semiautomated surveillance algorithms target-
ing deep SSI after colorectal surgery may be feasible for the
Dutch setting: a classification algorithm19 and a multivariable
regression model.20 The classification algorithm was pre-emptively
designed based on clinical and surveillance practices from a
French, a Spanish, and a Dutch hospital. The sensitivity was
93.3%–100% compared to manual surveillance, and the algorithm
yielded a workload reduction of 73%–82%. The regression model
was developed using data from a Dutch teaching hospital; we used
it to predict the probability of deep SSI for each individual patient.
This 5-predictor model had a sensitivity of 98.5% and a workload
reduction of 63.3%.20

External validation or actual implementation studies of new
methods for automated surveillance are scarce.21,22 As reported
by 2 systematic reviews, only 23% of the included studies used a
separate validation cohort23 and only 25% of automated surveil-
lance were used in clinical routine.24 Hence, knowledge about gen-
eralizability of automated surveillance models is limited, and
information about the path toward actual implementation is
needed.22,25,26

In this study, we present an independent and external valida-
tion of the previously developed classification and regression
model in new cohorts of patients that underwent colorectal sur-
geries in different types of Dutch hospitals.21 We investigated
the feasibility of data requirements for both algorithms. If feasible
and externally valid, these models can be implemented in SSI sur-
veillance practices and workflow processes.

Methods

Study design

In this retrospective cohort study, 4 Dutch hospitals (1 academic, 2
teaching, 1 general), each with different, or different versions of,
EHR systems, extracted the data needed for algorithm application.
To obtain insights in hospitals’ clinical practice and patient care, a
questionnaire adapted from a previous study19 was filled in by the
hospital staff at the start of the study (Appendix 1 online).
Feasibility of the data collection (a precondition for implementa-
tion) was evaluated by assessing the completeness of the surveil-
lance population (denominator) and the ability of the hospitals
to automatically collect case-mix variables from their EHR.
Thereafter, we applied the 2 surveillance algorithms to the
extracted data. Model results were compared with conventional
(ie, manually annotated) surveillance.11 Approval for this study
was obtained from the institutional Review Board of the
University Medical Centre Utrecht (reference no. 20-503/C) and
from the local boards of directors of each participating site.
Informed consent was waived given the observational and retro-
spective nature of this study.

Surveillance population and data collection

The hospitals identified patients aged >1 year undergoing primary
colorectal resections in 2018 and/or 2019 based on procedure
codes in EHR data. Hospitals could use other data sources to estab-
lish inclusion rules to construct the surveillance population and to
distinguish secondary procedures or resurgeries. For the patients
included in the surveillance population, structured data were

extracted from the EHR including demographics, microbiological
culture results, admissions (ie, prolonged length of stay or readmis-
sion), resurgeries, radiology orders, antibiotic prescriptions, and
variables for case-mix correction (see Supplementary Table S1
in Appendix 2 online).

Outcome

The outcome of interest was a deep SSI (deep incisional or organ-
space) within 30 days after surgery according to the Dutch surveil-
lance protocol.27 In short, patients having purulent drainage from
the deep incision or from a drain that is placed through the wound,
or having an abscess, a positive culture from the organ space, or signs
and symptoms of infection in combination with wound dehiscence
and a positive culture of deep soft tissue, or other evidence of infec-
tion by direct examination were considered deep SSIs. The criterion
of a positive culture is not applicable in case of anastomotic leakage
or perforation following the surgery. In each hospital, infection con-
trol practitioners (ICPs) manually screened patients to identify deep
SSIs. This manual surveillance was considered the reference stan-
dard. All ICPs performing manual chart review received training
to ensure the quality of data collection and case ascertainment.11

Moreover, all hospitals participated in an on-site visit to validate
the conventional surveillance. Details about this on-site validation
visit are described below.

Feasibility of data collection

To evaluate the feasibility of the data collection, we evaluated the
completeness of the surveillance population (denominator data) by
comparing the patients selected by procedure codes with patients
included in the reference standard. Additionally, we compared
agreement between the case-mix variables (ie, risk factors: age,
sex, ASA classification, wound class, stoma creation, malignancy
and anastomotic leakage) that were extracted from the EHR with
the case-mix variables that were collected during conventional
surveillance.

Algorithm validation

Model validation of the classification model
The classification algorithm was based on the development study,
using 5 elements: antibiotics, radiology orders, (re)admissions (ie,
prolonged length of stay, readmissions or death), resurgeries, and
microbiological cultures (Fig. 1a and Supplementary Table S2 in
Appendix 2 online). All extracted data were limited to 45 days fol-
lowing the colorectal surgery to enable the algorithm to capture
deep SSIs that developed at the end of the 30-day follow-up period.
In accordance with the development study,19 patients were classi-
fied into low probability of having had a deep SSI (≤1 element
excluding microbiology, or 2–3 elements and no microbiology)
and high probability of having had a deep SSI (4 elements exclud-
ing microbiology, or 2–3 elements and microbiology). High-prob-
ability patients required manual SSI confirmation, and low-
probability patients were assumed free of deep SSI. If discrepancies
were found between the clinical practice reported in the question-
naire and the algorithm, we evaluated whether an adaptation of the
classification algorithm could have improved performance. When
an algorithm element could not be computed due to incomplete
data (eg, discharge date is missing so length of stay cannot be com-
puted), the patient scored positive on that element.
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Model validation of the regression model
The regression model utilizes wound class, hospital readmission,
resurgery, postoperative length of stay, and death to calculate the
probability of deep SSI. Coefficients estimated in the develop-
ment setting20 were multiplied with the predictor values of this
validation cohort to estimate SSI probability (Fig. 2 and
Supplementary Table S3 in Appendix 2 online). In accordance
with the cutoff point in the development study, patients were
classified into low probability of deep SSI (≤0.015) and high
probability of deep SSI (>0.015). High-probability patients
required manual SSI confirmation, whereas low-probability
patients were assumed free of deep SSI. In case a predictor could
not be automatically extracted by the hospital or had missing val-
ues, the predictor collected by the manual surveillance was used
to evaluate algorithm performance.

On-site visit

All hospitals participated in an on-site visit to validate the conven-
tional surveillance. This process was executed by 2 experienced
surveillance advisors of the Dutch national HAI surveillance net-
work who were blinded for the outcomes of both the reference
standard and the algorithms. For each hospital, a sample of 20
patients was taken from the data according to the hierarchical rules
(Fig. 3). All false-negative results were included, to confirm their
deep SSI status. Additionally, records from every other group

(false-positive, true-positive, and true-negative results) were
included until 20 were gathered. The group size of 20 patients
was based on the time capacity of the validation team.

Statistical analyses

After data linkage, descriptive statistics were generated. To evalu-
ate data feasibility, missing data patterns were described, and no
techniques such as multiple imputation were performed to com-
plete the data. Both models were applied to the data extractions,
and results were compared with the reference standard.
Sensitivity, specificity, positive predictive value (PPV), negative
predictive value (NPV), and workload reduction were calculated
overall and were stratified per hospital. Workload reduction was
defined as the proportion of colorectal surgeries no longer requir-
ing manual review after algorithm application. A discrepancy
analysis was performed in case of any false-negative results (ie,
missed deep SSI); the algorithm elements were checked in the origi-
nal data. Data cleaning and statistical analyses for the classification
model were carried out in SAS version 9.4 software (SAS Institute,
Cary, NC). For the regression model, we used R version 3.6.1 soft-
ware (R Foundation for Statistical Computing, Vienna, Austria).

Results

Feasibility of data collection

Completeness of the surveillance population
The exact surveillance population could not be reconstructed
because there were no separate procedure codes or potential inclu-
sion rules to reliably distinguish secondary procedures or resur-
geries from primary procedures (range, 8.7%–22.0%, Table 1).
Vice versa, 0–25% of patients in the reference standard were not
identified when using inclusion rules based on procedure codes
(details in Table 1). Thus, 672 colorectal surgery patients were
included in this study, and 28 had deep SSIs (4.1%).

Completeness of data collection
Electronic collection of the minimum required data set from the
EHR was feasible for all variables except wound class. Hospital
A used text mining to establish the wound class. For hospitals B
and C, wound class as collected during manual surveillance

(a) (b)

Fig. 1. Classification model. (a) Previously developed classification algorithm to classify patients with high or low probability of having had a deep surgical site infection after
colorectal surgery. Figure originally published in van Rooden et al19 and used with permission. (b) Modified classification algorithm.

Fig. 2. Previously derived prediction rule for deep surgical site infection (DSSI) after
colorectal surgery. For each individual patient, the regression model returns a pre-
dicted probability of SSI which can be used to classify patients. Note. P(DSSI), prob-
ability of deep surgical site infection; LP, linear predictor.
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(reference standard) was used. For hospital D, wound class infor-
mation was not available in the source data.

Figure 4 shows the percentage of agreement between the case-
mix variables extracted from the EHR and those collected man-
ually. Disagreement was mostly related to incomplete data, either
variables were not registered in the original source or were not
available from source data at all.

Algorithm validation

The original classificationmodel had an overall sensitivity of 85.7%
(95% CI, 67.3%–96.0%) ranging from 72.7% to 100% between hos-
pitals, a specificity of 92.1% (95% CI, 89.7%–94.0%), PPV of 32.0%
(95% CI, 21.7%–43.8%) and an NPV of 99.3% (95% CI, 98.3%–
99.8%). For the performance per hospital, see Table 2. Only

Fig. 3. Hierarchic rules for sample
selection for on-site validation of refer-
ence standard.

Table 1. Overview of Data Collection and Selection of Surveillance Population

Variable Hospital A Hospital B Hospital C Hospital D

Time period extractions 2019 2018–2019a 2019 2019a

Colorectal surgeries in reference standard, no. 205 167 221 142

Colorectal surgeries extracted automatically, no. 228 159 236 148

Matched records, no. 205 124 212 131

Deep SSI in matched records, no. (%) 7 (3.4) 3 (2.4) 7 (3.3) 11 (8.3)

Records in extractions that could not be linked to reference standard, no. (%)b 23 (10.1) 35 (22.0) 24 (10.2) 17 (11.4)

Records in reference standard that could not be linked to extractions, no. (%)c 0 (0.0) 43 (25.7) 9 (4.1) 11 (7.7)

Note. SSI, surgical site infection.
aUntil July 1, 2019.
bExplanation of mismatch: manual review of a random sample of these records showed these were mainly revision/secondary procedures, and for hospital C surgeries performed at another
hospital location that are excluded from manual surveillance.
cExplanation of mismatch:
Hospital B: incorrect inclusions in reference standard as they did not meet inclusion criteria (no primary procedure)
Hospital C: These surgeries were registered as executed by internal medicine department, while for the extractions only resections performed by surgery department were selected.
Hospital D: According to the national surveillance protocol the resection with the highest risk is to be registered in case of more resections during the same surgery. Hospital included the wrong
procedure in these cases.

Fig. 4. Percentage agreement of risk factors extracted automatically compared to manual annotation.
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8%–13% of the records required manual review after algorithm
application. In hospitals C and D, respectively, 1 and 3 deep
SSIs were missed by the algorithm (Table 3). In contrast to hospi-
tals A and B, both hospitals had reported in the questionnaires that
microbiological cultures were not consistently taken in case of sus-
pected infection, and this was reflected in the percentage of patients

meeting themicrobiology element. Therefore, we adapted the algo-
rithm and classified patients with 1 element (ie, radiology order,
antibiotics, readmission, or resurgery) as low probability
(Fig. 1b). This model resulted in higher sensitivity (overall sensi-
tivity, 100%; 95% CI, 87.7%–100.0%) but at the cost of lower
PPV and less workload reduction (Table 2).

Table 2. Algorithm Performance

Variable Sensitivity, % (95% CI) Specificity, % (95% CI) PPV, % (95% CI) NPV, % (95% CI) % Reduction

Classification model

Hospital A 100
(59.0–100.0)

90.4
(85.4–94.1)

26.9
(11.6–47.8)

100
(97.9–100.0)

87.4

Hospital B 100
(29.2–100.0)

89.3
(82.3–100.0)

18.8
(4.0–45.6)

100
(96.6–100.0)

87.2

Hospital C 85.7
(42.1–99.6)

92.2
(87.6–95.5)

27.3
(10.7–50.2)

99.5
(97.1–99.9)

89.7

Hospital D 72.7
(39.0–93.9)

97.5
(92.9–99.5)

72.7
(39.0–93.9)

97.5
(92.9–99.5)

91.6

Regression model 100
(39.8–100.0)

78.1
(71.4–83.9)

9.0
(2.5–21.8)

100
(97.5–100.0)

76.5

Hospital A 100
(29.2–100.0)

78.9
(70.1–85.9)

11.1
(2.3–29.2)

100
(95.9–100.0)

76.8

Hospital B 100
(59.0–100.0)

80.0
(73.8–85.3)

14.9
(6.2–28.3)

100
(97.7–100.0)

77.3

Hospital C NA NA NA NA NA

Hospital D 100
(39.8–100.0)

78.1
(71.4–83.9)

9.0
(2.5–21.8)

100
(97.5–100.0)

76.5

Modified classification model

Hospital A 100
(59.0–100.0)

77.8
(71.3–83.4)

13.7
(5.7–26.3)

100
(97.6–100.0)

75.2

Hospital B 100
(29.2–100.0)

80.1
(71.9–86.9)

11.1
(2.3–29.2)

100
(96.3–100.0)

78.3

Hospital C 100
(59.0–100.0)

77.6
(71.2–83.1)

13.2
(5.4–25.3)

100
(97.7–100.0)

75.0

Hospital D 100
(71.5–100.0)

89.2
(82.2–94.1)

45.8
(25.6–67.2)

100
(96.6–100.0)

81.7

Note. CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value.

Table 3. Discrepancy Analyses and Explanation for Deep Surgical Site Infections (SSIs) Not Detected by Original Classification Algorithm (False-Negative Results)

False-Negative
Results

Algorithm
Elements, No.a Missing Elements Explanation

Patient 1, Hospital C 3 Microbiologyb

Resurgery
Treatment differed from regular treatment strategies as no reoperation was performed.
Thereby, the deep SSI was scored manually based on one short clinical note stating that pus
from the drain was observed.

Patient 1, Hospital D 2 Microbiologyb

Resurgery
Antibiotics

No reoperation was performed. The antibiotic treatment was not identified by the algorithm
as these were home-administered antibiotics, which were not included in the data selection.

Patient 2, Hospital D 3 Microbiologyb

Readmission
Reoperation took place 3 days after surgery, during the hospitalization of the index surgery;
no readmission needed.

Patient 3, Hospital D 3 Microbiologyb

Resurgery
Patient had an endosponge placement; however, this reintervention is not registered as
resurgery and performed as outpatient treatment by an internist, gastroenterologist or
endoscopist from the gastrointestinal and liver diseases specialty while for the data
extractions only resurgeries performed by same specialty as index surgery were selected

aAlgorithm elements are radiology orders, antibiotics, (re)admissions, resurgeries, andmicrobiology. Patients needed 4 elements excludingmicrobiology, or 2-3 elements andmicrobiology to be
classified as high probability by the algorithm. See also Fig. 1 and Appendix 2 (online).
bBoth hospitals had reported in the questionnaires that cultures were not consistently taken in case of suspected infection.
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The regression model could only be validated for hospitals A–C
because wound class was not available for hospital D. Similar to the
development study, patients with infected wounds (wound class 4)
were excluded, leaving respectively 187, 116, and 207 records from
hospitals A–C for analyses, including 4, 3, and 7 deep SSIs. For this
model, overall sensitivity was 100% (95% CI, 76.8%–100.0%); the
specificity was 76.9% (95% CI, 73.0%–80.5%); the PPV was 11.9%
(95% CI, 6.6%–19.1%); and the NPV was 100% (95% CI, 99.0%–
100%). With this algorithm only 22.7%–23.5% records required
manual review. The results per hospital are shown in Table 2.
Due to the small sample size and low number of deep SSIs, dis-
crimination and calibration were not evaluated.

No discrepancies were found during the on-site validation visit
in hospital D. In the other 3 hospitals, on-site validation revealed 5
additional deep SSIs: 2 were overlooked in the conventional sur-
veillance and 3 were initially classified as superficial SSIs. All addi-
tional deep SSIs were classified correctly as high probability by
both the (modified) classification model and the regression model.
Other findings of the on-site validation of the reference standard,
though not essential for the assessment of the algorithms, were
reclassifications of superficial SSIs to no SSI (n= 1), missed super-
ficial SSIs (n= 2), and incorrect inclusions (n= 8).

Discussion

This study demonstrated the external validity, both temporal and
geographical, of 2 surveillance algorithms that identify patients
with a high probability of deep SSI after colorectal surgery. Both
had a high detection rate for deep SSI and can be used for semi-
automated surveillance and, thus, to further improve efficiency
and quality of SSI surveillance.

Both the classification model, especially when adapted to local
practices, as well as the regression model, performed very well. To
select a model for use within an organization, we considered other
aspects of implementation. First, in case of incomplete data, the
original development study of the regression model used multiple
imputation techniques. For the classification model, the patient
scored positive on the algorithm element that could not be com-
puted due to incomplete data. This was a more convenient method
for which no complex data management techniques were required.
Second, according to the original study, patients with a dirty-
infected wound (ie, wound class 4) were excluded from the cohort
of the regression model. However, according to the national sur-
veillance protocol, these cases should have been included in the
surveillance. In addition, in 2 hospitals, wound class was not avail-
able in a structured format for automated extraction hindering
algorithm application. Third, the classification model was easily
be adapted to local practices. For the regression model, a sufficient
sample size was required for redevelopment or recalibration in case
of low predictive accuracy. This aspect may be challenging for
hospitals performing few colorectal resections. Therefore, the
(modified) classification model is more feasible and sustainable
for real-life implementation within hospitals, improving stand-
ardization and benchmarking. We know from a previous study
that the classification model has also been successful in other
European countries and in low-risk surgeries such as hip and knee
arthroplasties.19,28

For both algorithms, however, several hurdles remain for
implementation. The exact surveillance population could not be
automatically selected by procedure codes, but a change in the cur-
rent inclusion criteria or target population could be considered. In
this study, 10%–22% of surgeries detected by procedure codes did

not concern a resection, were not the main indication for surgery
(but performed concomitant to other intra-abdominal surgeries),
or were not the first colon resection for that patient. Also, the var-
iables necessary for case-mix adjustment are sometimes difficult to
extract automatically. Although the search for a proper case-mix
correction is ongoing,14,29–32 automated extraction of a minimal
set of risk factors is necessary to interpret the surveillance results
and to maintain the workload reduction delivered by (semi)auto-
mated surveillance.

Two findings in this study emphasize that close monitoring,
validation of algorithm components, and future maintenance
are important to maintaining alignment with clinical practice
and guarantee high-quality surveillance. First, as appeared from
the questionnaire, 2 hospitals did not consistently obtain micro-
biological cultures in case of suspected deep SSI. We advise
researchers to first verify whether algorithms align with clinical
practice and consider adapting algorithms to differences sub-
sequently.23,33–35 Secondly, new treatment techniques should also
be evaluated regularly and algorithms adapted accordingly.
Endosponge therapy is increasingly used after anastomotic leak-
age; however, this intervention is often not registered or is
regarded as resurgery but as outpatient treatment performed
by a different specialty than the initial colorectal surgery. Each
hospital should therefore periodically evaluate care practices
and algorithm elements to select the appropriate resurgeries or
to include recently introduced interventions, such as endosponge
therapy, within the re-surgery element in the surveillance
algorithm.

This study had several strengths. We performed an indepen-
dent external validation in independent patient data from different
types of hospitals, as well as a temporal validation. Apart from
algorithm performance, automated selection of patients and
case-mix variables were investigated as well, which are prerequi-
sites for actual implementation.

This study also had several limitations. First, both algorithms
targeted deep SSIs only, but in colorectal surgeries 20%–50% of
SSIs are superficial.6,36 Debate continues regarding the inclusion
of superficial SSI in surveillance programs given their subjective
criteria and limited clinical implications.28,37,38 Second, we aimed
to validate all published automated surveillance systems that
appeared applicable to Dutch practice; however, automated sur-
veillance systems may have been developed by commercial com-
panies that were not published in scientific literature and were
therefore not included. Third, the small sample size and low num-
ber of deep SSIs resulted in large confidence intervals for the indi-
vidual hospitals and impeded the evaluation of discrimination and
calibration.39,40 Although a larger validation cohort is preferred,
the numbers used in this study reflect the reality of surveillance
practices. Although underpowered, the overall sensitivity and hos-
pitals’ individual point estimates were satisfying, and this study
provided valuable insights into implementation. Fourth, for both
manual- and semiautomated surveillance, postdischarge surveil-
lance was limited to the initial hospital. In the Dutch setting,
patients return to the operating hospital in case of complications,
so this will likely not lead to underestimation of SSI rates. SSI
benchmarking or widespread implementation of this semiauto-
mated algorithm may be hampered for countries without this fol-
low-up. Last, as actual widespread implementation of automated
surveillance is still limited,24–26 this study provides insights into
validity and data requirements needed for implementation of semi-
automated SSI surveillance after colorectal surgery. However, this
study did not include a full feasibility study including economic,
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legal, and operational assessments. We emphasize that successful
implementation also depends on organizational support, informa-
tion technology knowledge, staff acceptance, change management,
and possibilities for integration in workflows.

In this independent external validation both approaches to
semiautomated surveillance of deep SSI after colorectal surgery
performed well. However, the classification model was proven pre-
ferrable to the regression model because of source data availability
and less complex data-management requirements. Our results
have revealed several hurdles when automating surveillance. The
targeted surveillance population could not be automatically
selected by procedure codes, and not all risk factors were complete
or available for case-mix correction. The next step is implementa-
tion in infection prevention practices and workflow processes to
automatically identify patients at increased risk of deep SSI.
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