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DEGREES IN WHICH THE RECURSIVE SETS 
ARE UNIFORMLY RECURSIVE 

CARL G. JOCKUSCH, JR. 

1. Introduction. One of the most fundamental and characteristic features 
of recursion theory is the fact that the recursive sets are not uniformly recur
sive. In this paper we consider the degrees a such that the recursive sets are 
uniformly of degree ^ a and characterize them by the condition a ' ^ 0 " . 
A number of related results will be proved, and one of these will be combined 
with a theorem of Yates to show that there is no r.e. degree a < 0 ' such that 
the r.e. sets of degree :ga are uniformly of degree ^ a . This result and a generali
zation will be used to study the relationship between Turing and many-one 
reducibility on the r.e. sets. 

2. Terminology. Our notation generally follows that of [7]. In particular 
we use letters such as A, B, W for sets of integers, / , g, h for total (number 
theoretic) functions, and ^, <p for partial functions. We write \nf(n) for the 
function / , fxs for the least number s, N for the set of natural numbers, <pe for 
the eth partial recursive function, and We for the eth r.e. set. 

We let <pe*{x) be <pe(x) if <pe(x) is computed within s steps, and otherwise 
<pe

s(x) is undefined. We fix a recursive pairing function from N X N onto N 
and write (e, i) for the code number of the pair (e, i). A degree is a Turing 
degree, although the latter term is sometimes used for emphasis. Boldface 
symbols such as a, b are used for degrees and d(A) denotes the degree of the 
set A. We write 0 for the degree of the recursive sets, a ' for the jump of the 
degree a, and a U b for the least upper bound of the degrees a, b. For sets 
A, B we write A ^ T B {A ^mB) HA is Turing (many-one) reducible to B, 
and A ®B for {2n : n £ A] KJ {2n + 1 : n G B). If $ is a partial function, 
p\f/ denotes the range of \f/, and \p is called recursively extendible if it can be 
extended to a (total) recursive function. For functions g, h we say that g 
majorizes h if g{n) ^ h(n) for all n 6 N and g dominates h if g(n) ^ h(n) for 
all but finitely many n Ç N (in which case (\n)[i + g(n)] majorizes h for some 
fixed i Ç N). We shall frequently use the result of Martin [6, Lemmas 1.1 and 
1.2] that for any degree a, a ' ^ 0 " if and only if there is a function g of degree 
^ a which dominates every recursive function. 

If/ is a binary function, then/ e denotes (\n)f(e, n). H 'if is a, class of (unary) 
functions and a is a degree, ^ is called 2i-unijorm (a-subuniform) if there is a 

Received October 13, 1971 and in revised form, January 5,1972. This research was supported 
by NSF Grant GP-23707. 

1092 

https://doi.org/10.4153/CJM-1972-113-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1972-113-9


RECURSIVE SETS 1093 

binary function/ of degree ^ a such that 

<^ = { / . : * € # } («if Q{fe:e£N\). 

If *$ is a class of sets, the preceding definition is to be interpreted by identify
ing each element of Çf with its characteristic function. 

3. Basic results. 

THEOREM 1. / f a is any degree, statements (i)-(iv) are equivalent. 
(i) a ' ^ 0 " . 

(ii) the recursive functions are a-uniform. 
(iii) the recursive functions are a-subuniform. 
(iv) the recursive sets are a-uniform. 
If 2L is r.e., then (i)-(iv) are each equivalent to (v). 
(v) the recursive sets are a-subuniform. 

Proof, (i) => (ii). Assume a ' ^ 0 " , and let g be a function of degree ^ a 
which dominates all recursive functions. Define the binary partial function \f/ 
by 4/((e, i), n) ~ pe*+'<n>(»). Let f((e, i), n) = \p((e, i), n) if f((e,i),m) is 
defined for all m ^ n; otherwise let /((e, i), n) = 0. Then if 

t(e,i)(=&n)\P({e,i)y n)) 

is total, f(e,i) = <Pe, and otherwise /<e,i> is nonzero for only finitely many 
arguments. Hence /<«,*> is recursive in either case. Also if <pe is total, then g 
dominates (\n)(iJLs(<pe

s(n)) is defined)) and so f(6ti) = <pe for all sufficiently 
large i. This proves (ii), and the implication (ii) => (iii) is trivial. 

(iii) => (i). Let/(e, n) be a function of degree ^ a such that every recursive 
function is an / e . Define g(n) = max{/g(w) : e ^ n). Then g dominates every 
fe and hence every recursive function. Since d(g) S a, (i) follows. Therefore 
the equivalence of (i)-(iii) is established. Also the implication (ii) =» (iv) is 
immediate. 

To show (iv) =* (i) we need a simple lemma which will also be useful else
where in the paper. The motivation of this lemma will be explained after the 
proof of Proposition 3. 

LEMMA 2. There is a recursive function g such that for every e, p<p0(e) £ {0, 1} 
and 

(a) (fe total => (fç(e) totalj 
(b) (pe not total => <pg^e) is not recursively extendible. 

Proof. Let <pk be a fixed partial recursive function such that p<pk C {0, 1} and 
<pk is not recursively extendible. For any pair (e, n), let \//(e, n) be the least 
number s such that either <pk

s(n) is defined or £>/(0), <p/(l), . . . , <pe
s(n) are 

all defined, and let \[/(e, n) be undefined if no such s exists. By the s-m-n 
theorem there is a recursive function g such that for all e and n, <p0(e) (n) = 
(fjt(n) if \//(e, n) is defined via the first alternative, <p0(e)(n) = 0 if \f/(ey n) is 
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defined through the second al ternat ive and (p0(e)M
 1S undefined otherwise. 

If ipe is total , then \f/(e, n) is defined for all n and so <pg(e) is total . If <pe is no t 
total , then <pg(e)W — <PkW f ° r all sufficiently large n and so <pgU) is not 
recursively extendible, and the L e m m a is proved. 

(iv) => (i). Assume t h a t / h a s degree ^ a and thefe's are exactly the recur
sive characterist ic functions. Then for all e, 

(1) cpe total <=» (3 *')[/< extends <pg(e)] 

** (3i)(Vn)(Vs)(Vy)[<P9{e)
sW =y=>Mn) = y] 

where g is the function from the Lemma. Bu t if T = \e : <pe to ta l} , the above 
equivalences show t h a t T is 2 2°(a) (i.e., 22° in the degree a ) . Since T is n 2 ° , 
it follows t h a t T is A2°(a) and so of degree ^ a ' by Post ' s Hierarchy Theorem. 
Since d(T) = 0 " [7, p . 264], (i) follows. 

Since the implication (iv) => (v) is trivial, it remains only to show t h a t 
(v) => (i) assuming a to be r.e. Assume t h a t (i) is false and t h a t / is a binary 
function of degree ^ a . We mus t show t h a t there is a recursive function 
with pr C {0, 1} such t h a t r ^ fe for all e. T h e construction of r is similar to 
the diagonal proof t h a t the recursive functions are not uniformly recursive, 
except t h a t during the construction we mus t work with an approximat ion 
to / ra ther than with / itself. Since / has degree ^ 0 ' , it follows from [10, 
Theorem 2] t h a t there is a recursive function g(e, n, s) such t h a t f(e, n) = 
\imsg(e, n, s) for all e, n. In fact, s i n c e / has degree ^ a and a is r.e., it follows 
from the proof of [10, Theorem 2] t h a t g m a y be chosen so t h a t there is a 
function h of degree ^ a such t h a t g(e, n, s) = f(e, n) for all s ^ h(e, n). 
Now define p(n) = ma.x{h(e, (e, n)) : e S n). Since p has degree ^ a and 
a ' J: 0", there is a recursive function q which p fails to dominate . Finally 
define r((e, n)) = 1 — g(e, (e, n), q(n)). Then r is a recursive function and 
r((e,n)) 7^ fe((e,n)) whenever n ^ e and q(n) è P(n) (since then 
q(n) è h(et (e, n)) and so g(e, (e, n), q(n)) = f(e, (e, n)) = fe((e, n))). This 
completes the proof of Theorem 1. 

T h e next result shows t h a t the implication (v) => (i) of Theorem 1 is not 
t rue in general. 

PROPOSITION 3. There is a degree a such that a ' = 0 ' and the recursive sets 
are a-subuniform. 

Proof. Le t the predicate P(f) be t rue of the f u n c t i o n / in case 

pfQ {0, 1} & (Ve)(yn)[<pe(n) defined - > / « e , n)) = min{ l , *>.(»)}]. 

Then routine expansion shows t h a t P is a II10 predicate and clearly Qf)P(f) 
holds. Also P is recursively bounded because of the clause pf CI {0, 1}. I t now 
follows from a basis theorem of Soare and the au thor [4, Theorem 2.1] t h a t 
there is a function / such t h a t P(f) holds and a ' = 0 ' , where a = d ( / ) . 
Clearly the recursive sets are a-subuniform, and so Proposit ion 3 is proved. 
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I t was the proof of Proposition 3 which led us to the proof of (iv) => (i) in 
Theorem 1. T h e relevant observation is t h a t if / is any function satisfying 
P(f ) and <pk is as in the proof of Lemma 2 (i.e., {0, 1}-valued and not recur
sively extendible), then (Xn)f((k, n)) is nonrecursive. Thus the mere existence 
of such a <pk makes it immediately clear tha t the construction for Proposition 3 
cannot yield a counterexample to (iv) => (i), while a slightly more elaborate 
use of <pk suffices to prove (iv) => (i). 

T h e proof of (iv) => (i) yields a useful characterization of degrees satisfying 

(v). 

PROPOSITION 4. For any degree a, assertion (v) is equivalent to the disjunction 
(i) V (vi) where (i), (v) are as in Theorem 1 and (vi) is the following: 

(vi) there is a complete extension of first-order Peano arithmetic of degree ^ a . 

Proof. Clearly (i) => (v) since (i) => (iv) => (v) by Theorem 1. Also 
(vi) => (v) since if T is any complete extension of Peano ari thmetic of degree 
5^a, the family of sets definable in T is a-uniform and includes all recursive 
sets. I t remains to show tha t (v) =» (i) v (vi), so assume t h a t / is a function 
of degree ^ a and every recursive characteristic function is a n / g . Let g be the 
function from Lemma 2, and assume tha t çk in the proof of Lemma 2 was 
chosen so t h a t <pk~

l{0) and <pk~
l(l) are effectively inseparable. Now reconsider 

the equivalence (1) used in the proof of (iv) => (i). I t is no longer necessarily 
valid because we are not assuming tha t a l l / / s are recursive. However, if (1) 
is valid, then a ' ^ 0 " follows as before. So assume (1) is not valid. Since the 
left-right implication of (1) still follows from our weaker hypothesis, we see 
t h a t there must be numbers e, i such tha t <pe is not total and ft extends (pg(e)-
But (pg(e) differs only finitely from <pk, and s o / 2

- 1 ( 0 ) separates a pair of effec
tively inseparable sets (i.e., ^ ( e ) _ 1 (0 ) and ^ ( e )

_ 1 ( l ) ) . I t now follows from 
[4, Proposition 6.1] t ha t there is a complete extension of Peano ar i thmetic 
recursive i n / * and thus of degree ^ a . 

Degrees of complete extensions of Peano ari thmetic were originally studied 
by Scott and Tennenbaum [9] and more recently by Soare and the author 
[4;5]. For instance, in [4, Corollary 2.2] it is proved tha t there is a complete 
extension of Peano ari thmetic whose degree a satisfies a ' = 0 ' and in [5, Corol
lary 4.3] it is proved t ha t 0 ' is the only r.e. degree satisfying (vi). From these 
results and Proposition 4, we immediately obtain new (but ra ther indirect) 
proofs of Proposition 3 and (v) => (i) for r.e. degrees. Similarly, we have the 
following corollary. 

COROLLARY 5. If the recursive sets are a-subuniform, then either a ' ^ 0 " , or 
every countable partially ordered set can be embedded in the degrees ^ a . 

Proof. I t is shown in [4, Corollary 4.4] t ha t if a is the degree of any complete 
extension of Peano ari thmetic, then every countable partially ordered set can 
be embedded in the degrees ^ a . 
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The converse of Corollary 5 is false. To see this let a be a nonzero r.e. degree 
with a ' = 0 ' [8, § 6, Corollary 2]. By a theorem of Sacks [8, § 5, Theorem 2] 
every countable partially ordered set can be embedded in the degrees ^ a , 
and yet the recursive sets are not a-subuniform by Theorem 1. More generally, 
we suspect that there is no degree-theoretic characterization whatever of the 
degrees a such that the recursive sets are a-subuniform. We remark also that 
Corollary 5 becomes false if either alternative is dropped from the conclusion. 
For the first alternative this follows from the theorem of Cooper [1, Theorem 1] 
that if b ^ 0 ' (in particular b = 0" ) there is a minimal degree a with 
a ' = b ; for the second alternative this follows from Proposition 3. 

4. Applications. 

COROLLARY 6. / / a is an r.e. degree and a < 0', then the class of r.e. sets of 
degree ^ a is not ^-uniform. 

Proof. Assume the degree a yields a counterexample. Then the recursive sets 
are a-subuniform and s o a r = 0 " by (v) =» (i) of Theorem 1. On the other 
hand, since the r.e. sets of degree ^ a are a-uniform, they are 0'-uniform and 
so a " = 0 " by a theorem of Yates [11, Theorem 9]. 

Corollary 6 answers a question raised by Yates at the end of [11]. S. B. 
Cooper and the author independently proved it by rather involved direct 
constructions before this simple argument was found. However, the present 
methods yield a strong generalization of Corollary 6 which does not seem 
accessible to direct proof. 

COROLLARY 7. / / a , b are r.e. degrees, b ^ a, and b < 0', then the following 
three statements are equivalent: 

(a) the r.e. sets of degree ^ b are a-subuniform; 
(b) b " = a ' = 0 " ; 
(c) there is an r.e. sequence of r.e. sets which is uniformly of degree ^ a and 

consists exactly of the r.e. sets of degree ^ b . 

Proof. The proof that (a) => (b) is the same as for Corollary 6, except that 
one should note that only subuniformity (not uniformity) is actually used by 
Yates [11, Theorems 8 and 9] to show b" = 0 " . Since (c) =» (a) is trivial, 
it remains only to prove that (b) => (c). From the assumptions b ^ a and 
b " = a ' it follows by relativizing [6, Lemma 1.2] to b that there is a function 
g* of degree ^ a which dominates every function of degree ^ b . It then 
follows from the proof of [10, Theorem 2] that there is a recursive function 
g{n, s) and a function h of degree ^ a such that g(n, s) = g*(n) for all s ^ h(n). 
Also, since b " = 0 " it follows from [11, Theorem 9] that there is a uniformly 
r.e. sequence of r.e. sets i?0, Ri, . . • consisting exactly of the r.e. sets of degree 
^ b . Let Re(s) be the finite subset of Re obtained by stage 5 in a fixed simul
taneous recursive enumeration of this sequence. Define 

S(e,i) = {n : (3 s)[n G Re(i + g(n, s))]} 
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The sequence \S(eti)} is clearly uniformly r.e. and also is uniformly of degree 
^ a since the quantifier over s in its definition is implicitly bounded by h(n). 
Furthermore if i is chosen so large that (\n)[i + g*(n)] majorizes 
(Xn)[(fjLs)[n G Re(s) vn ([ ReJ] then S(eti) = Re. However, this is not yet our 
desired sequence of sets because there is no reason to believe that every 
S(eti) is of degree ^ b . To obtain the desired sequence, we employ the trick of 
[11, Theorem 8] and define 

T(e,i) = {n : n G £<«,«>& (Vm){n[m G Re(n) => m G 5<e,z->]} 

Then {T(e>i)} is uniformly r.e. and uniformly of degree ^ a because [S(eti)} 
has these properties. Furthermore, if S(e>i) = Re then T(e>i) = Re and other
wise S(e>i) is finite. From this and the other properties of {S(eti)}, it follows that 
{T(eti)} satisfies the requirements of part (c). 

Our original interest in the topic of this paper grew out of the following 
question: is there an r.e. Turing degree other than 0 or 0 ' which contains a 
maximum r.e. w-degree? (We remark for background that 0 ' has no maximum 
among all its ra-degrees, but there do exist nonzero Turing degrees having 
maximum m-degrees (cf. [3, Problem 14-14] or [7, § 4]). Also by [7, §§ 7.6 and 
8.4] every truth-table degree has a maximum w-degree and every m-degree 
has a maximum 1-degree.) The question posed above remains unanswered, 
but the following result gives some information on it and answers the corre
sponding question for reductions by primitive recursive functions. (We write 
B ^pr A if B = f~1(A) for some primitive recursive function/.) 

COROLLARY 8. (i) If a is an r.e. Turing degree having a maximum among its 
r.e. m-degrees and a < 0', then a " = 0 " . 

(ii) If A is a noncreative r.e. set, then there is an r.e. set B of the same Turing 
degree as A such that B f£pr A. 

(iii) There exists a Turing incomplete r.e. set A and a nonzero r.e. Turing 
degree b such that every r.e. set of Turing degree ^b is ^ p r A. 

Proof, (i) Let A be an r.e. set in the maximum r.e. m-degree of a. Let 
G(^mA) = {e: We SmA}. As in [11], let G(rga) = [e : We ^TA). We 
claim G(^mA) = G ( ^ a ) . Clearly G(^mA) Ç G ( â ) . Suppose We^TA. 
Then A © We has degree a and so A © We ^m A by the maximality of A. 
Hence We ^mA. Direct expansion shows that G(^mA) is a 23° set. In 
[11, Theorem 9], Yates showed that if G ( ^ a ) is 23° and a < 0', then a " = 0 " . 

(ii) Assume it is false. Then A cannot have Turing degree 0 ' since we could 
then take B to be creative. Since the family of sets ^ p r A is a-uniform, it 
follows from Corollary 6 that there is an r.e. set W such that W ^T A and 
W fEpr^4. Clearly if B = A © W, then B satisfies the conclusion of (ii). 

(iii) By [8, § 6, Corollary 5] there is an r.e. degree a < 0 ' such that a ' = 0 " . 
By [8, § 6, Corollary 2] there is a nonzero r.e. degree b ^ a such that b ' = 0 ' 
and so b / / = 0 " = a' . By Corollary 7, there is a uniformly r.e. sequence of 
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sets {Tn} which is uniformly of degree ^ a and includes all r.e. sets of degree 
^ b . Let A = {2n3j :j 6 Tn}, so A is r.e. and has degree ^ a . Then A is 
incomplete and every r.e. set of degree ^ b is ^ p r A. 

5. A variant of the basic result. Suppose/ is a function of degree ^ a 
such that t h e / / s are exactly the recursive functions. Then there is, of course, 
a function h such t h a t / e = <ph(e) for all e, but in general there is no reason to 
suppose that h can be chosen to have degree ^ a . Let us say that the recursive 
functions are a-super-uniform if there is a function h of degree ^ a such that 
<Ph(o), <Ph(i)> • • • a r e precisely the recursive functions. (The notion is defined 
analogously for the recursive sets.) 

THEOREM 9. For any degree a, the following three statements are equivalent: 
(vii) the recursive functions are là-super uniform; 

(viii) the recursive sets are a-super-uniform; 
(ix) a U O ^ 0 " . 

Proof. The implication (vii) => (viii) is immediate. To prove (viii) =» (ix) 
assume that h is a function of degree ^ a such that the ^(e) ' s a r e exactly the 
recursive characteristic functions. Define f(i, n) = <pna)M and let g be the 
recursive function of Lemma 2. Then the equivalence (1) from the proof of 
(iv) => (i) in Theorem 1 holds. Since ft = (ph^) for all i, (1) can be rewritten as 

(2) <pe t o t a l <=> (3 i)C(h(i),g(e)) 

where C(n, k) is the assertion that <pn and <pk are compatible (i.e. agree on the 
intersection of their domains). But C(n, k) is easily seen to be IIi0 and hence 
of degree ^ 0 ' . Thus C(h(i), g(e)) has degree ^ a \J 0 ' and so (2) shows that 
T(={e : cpe total}) is D ^ a U O ' ) . But also T is IIi0(0') and so IT^a U 0 ') . 
It follows that 0 " = A(T) ^ a U 0'. 

To prove (ix) => (vii) we need a more useful form of the assumption 
0 " ^ a U O ' . 

LEMMA 10. If 0" ^ a W O ' , then there is an r.e. set K and a binary function p 
of degree ^ a such that for all e, <pe is total if and only if Q i)[p(e, i) $ K\. 

Proof. Let K be a creative set and let A be any set of degree a. Since 
1 ^ T A ®K (where T = {e : ^e total}) it follows from the formalism of 
relative computation of [7, Chapter 9] that we can effectively find for each e an 
index of an r.e. set Se such that <pe is total if and only if 

(3 (u, v, w, z))\(u, v,w,z) Ç Se&DuQA&DvQÂ&DwQK&DiSQ K]. 

Since {z : Dz C\ K ^ 0} ^mK by the m-completeness of K, there is a recur
sive function q such that for all z, Dz ÇZ K if and only if q(z) £ K. For each e, 
let 

Te = {q(z) : (3u)Qv)Qw)[(u,v,w,z) 6 Se& Du Ç A & Dv C A 

&DWQK]} KJ {k}, 
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where k is a fixed element of K. Then {Te} is uniformly r.e. in A and all Te are 
nonempty, so there is a function p(e, i) of degree ^ a such that Te is the range 
of (\i)[p(e, i)] for all e. This is the desired function. 

To prove (ix) =» (vii), first let s(e,i,n) be the least 5 such that either 
(pe

s(n) is defined or p(e, i) 6 Ks. (Here p, K are from the Lemma and Ks 

denotes the subset of K obtained after s steps in a recursive enumeration. 
Note that s(e, i, n) is always defined since otherwise <pe(n) is undefined and 
p(e, i) £ K, in contradiction to the Lemma.) Since the process of computing 
s(e, i, n) is effective once p(e, i) is given, there is a function h recursive in p 
(and therefore of degree g a ) such that <Ph((e,i))(n) = <Pe(n) if s(e,i,n) is 
defined through the first alternative and <pK(e,i))(n) = 0 otherwise. Thus 
<Ph((e,i)) is total for all e and i; furthermore, if <pe is total, then there is an i such 
that p(e, i) £ K and clearly <pe = (ph((e,i)) for this i. 

COROLLARY 11. The recursive functions are not §'-superuniform but there is a 
degree a incomparable with 0 ' such that the recursive functions are 2L-super uniform. 

Proof. In view of Theorem 9, the first assertion is immediate and the second 
assertion follows from the theorem of Friedberg [2] that there is a degree a 
such that a ' = a U 0 ' = 0". 

The first part of Corollary 11 can be easily proved by a direct diagonal 
argument; however we do not know how to prove the second part without 
using Theorem 9. 
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