DEGREES IN WHICH THE RECURSIVE SETS ARE UNIFORMLY RECURSIVE

CARL G. JOCKUSCH, JR.

1. Introduction. One of the most fundamental and characteristic features of recursion theory is the fact that the recursive sets are not uniformly recursive. In this paper we consider the degrees **a** such that the recursive sets are uniformly of degree $\leq a$ and characterize them by the condition $a' \geq 0''$. A number of related results will be proved, and one of these will be combined with a theorem of Yates to show that there is no r.e. degree a < 0' such that the r.e. sets of degree $\leq a$ are uniformly of degree $\leq a$. This result and a generalization will be used to study the relationship between Turing and many-one reducibility on the r.e. sets.

2. Terminology. Our notation generally follows that of [7]. In particular we use letters such as A, B, W for sets of integers, f, g, h for total (number theoretic) functions, and ψ , φ for partial functions. We write $\lambda nf(n)$ for the function f, μs for the least number s, N for the set of natural numbers, φ_e for the *e*th partial recursive function, and W_e for the *e*th r.e. set.

We let $\varphi_e^{s}(x)$ be $\varphi_e(x)$ if $\varphi_e(x)$ is computed within s steps, and otherwise $\varphi_e^{s}(x)$ is undefined. We fix a recursive pairing function from $N \times N$ onto N and write $\langle e, i \rangle$ for the code number of the pair (e, i). A degree is a Turing degree, although the latter term is sometimes used for emphasis. Boldface symbols such as **a**, **b** are used for degrees and $\mathbf{d}(A)$ denotes the degree of the set A. We write 0 for the degree of the recursive sets, a' for the jump of the degree \mathbf{a} , and $\mathbf{a} \cup \mathbf{b}$ for the least upper bound of the degrees \mathbf{a} , \mathbf{b} . For sets A, B we write $A \leq T B$ $(A \leq B)$ if A is Turing (many-one) reducible to B, and $A \oplus B$ for $\{2n : n \in A\} \cup \{2n + 1 : n \in B\}$. If ψ is a partial function, $\rho\psi$ denotes the range of ψ , and ψ is called *recursively extendible* if it can be extended to a (total) recursive function. For functions g, h we say that gmajorizes h if $g(n) \ge h(n)$ for all $n \in N$ and g dominates h if $g(n) \ge h(n)$ for all but finitely many $n \in N$ (in which case $(\lambda n)[i + g(n)]$ majorizes h for some fixed $i \in N$). We shall frequently use the result of Martin [6, Lemmas 1.1 and 1.2] that for any degree $\mathbf{a}, \mathbf{a'} \ge \mathbf{0''}$ if and only if there is a function g of degree $\leq a$ which dominates every recursive function.

If f is a binary function, then f_e denotes $(\lambda n)f(e, n)$. If \mathscr{C} is a class of (unary) functions and **a** is a degree, \mathscr{C} is called **a**-uniform (**a**-subuniform) if there is a

Received October 13, 1971 and in revised form, January 5, 1972. This research was supported by NSF Grant GP-23707.

binary function f of degree $\leq a$ such that

$$\mathscr{C} = \{ f_e : e \in N \} (\mathscr{C} \subseteq \{ f_e : e \in N \}).$$

If \mathscr{C} is a class of sets, the preceding definition is to be interpreted by identifying each element of \mathscr{C} with its characteristic function.

3. Basic results.

THEOREM 1. If **a** is any degree, statements (i)-(iv) are equivalent.

(i) $\mathbf{a'} \geq \mathbf{0''}$.

(ii) the recursive functions are **a**-uniform.

(iii) the recursive functions are **a**-subuniform.

(iv) the recursive sets are a-uniform.

If **a** is r.e., then (i)-(iv) are each equivalent to (v).

 (\mathbf{v}) the recursive sets are **a**-subuniform.

Proof. (i) \Rightarrow (ii). Assume $\mathbf{a'} \ge \mathbf{0''}$, and let g be a function of degree $\le \mathbf{a}$ which dominates all recursive functions. Define the binary partial function ψ by $\psi(\langle e, i \rangle, n) \simeq \varphi_e^{i+g(n)}(n)$. Let $f(\langle e, i \rangle, n) = \psi(\langle e, i \rangle, n)$ if $\psi(\langle e, i \rangle, m)$ is defined for all $m \le n$; otherwise let $f(\langle e, i \rangle, n) = 0$. Then if

$$\psi_{\langle e,i\rangle}(=(\lambda n)\psi(\langle e,i\rangle,n))$$

is total, $f_{\langle e,i \rangle} = \varphi_e$, and otherwise $f_{\langle e,i \rangle}$ is nonzero for only finitely many arguments. Hence $f_{\langle e,i \rangle}$ is recursive in either case. Also if φ_e is total, then g dominates $(\lambda n) (\mu s(\varphi_e^{s}(n)))$ is defined)) and so $f_{\langle e,i \rangle} = \varphi_e$ for all sufficiently large *i*. This proves (ii), and the implication (ii) \Rightarrow (iii) is trivial.

(iii) \Rightarrow (i). Let f(e, n) be a function of degree $\leq \mathbf{a}$ such that every recursive function is an f_e . Define $g(n) = \max\{f_e(n) : e \leq n\}$. Then g dominates every f_e and hence every recursive function. Since $\mathbf{d}(g) \leq \mathbf{a}$, (i) follows. Therefore the equivalence of (i)-(iii) is established. Also the implication (ii) \Rightarrow (iv) is immediate.

To show $(iv) \Rightarrow (i)$ we need a simple lemma which will also be useful elsewhere in the paper. The motivation of this lemma will be explained after the proof of Proposition 3.

LEMMA 2. There is a recursive function g such that for every $e, \rho \varphi_{g(e)} \subseteq \{0, 1\}$ and

- (a) $\varphi_e \text{ total} \Rightarrow \varphi_{g(e)} \text{ total},$
- (b) φ_e not total $\Rightarrow \varphi_{g(e)}$ is not recursively extendible.

Proof. Let φ_k be a fixed partial recursive function such that $p\varphi_k \subseteq \{0, 1\}$ and φ_k is not recursively extendible. For any pair (e, n), let $\psi(e, n)$ be the least number s such that either $\varphi_k^{s}(n)$ is defined or $\varphi_e^{s}(0), \varphi_e^{s}(1), \ldots, \varphi_e^{s}(n)$ are all defined, and let $\psi(e, n)$ be undefined if no such s exists. By the s-m-n theorem there is a recursive function g such that for all e and $n, \varphi_{g(e)}(n) = \varphi_k(n)$ if $\psi(e, n)$ is defined via the first alternative, $\varphi_{g(e)}(n) = 0$ if $\psi(e, n)$ is

defined through the second alternative and $\varphi_{g(e)}(n)$ is undefined otherwise. If φ_e is total, then $\psi(e, n)$ is defined for all n and so $\varphi_{g(e)}$ is total. If φ_e is not total, then $\varphi_{g(e)}(n) \simeq \varphi_k(n)$ for all sufficiently large n and so $\varphi_{g(e)}$ is not recursively extendible, and the Lemma is proved.

 $(iv) \Rightarrow (i)$. Assume that f has degree $\leq a$ and the f_e 's are exactly the recursive characteristic functions. Then for all e,

(1)
$$\varphi_e \text{ total} \Leftrightarrow (\exists i) [f_i \text{ extends } \varphi_{g(e)}]$$

 $\Leftrightarrow (\exists i) (\forall n) (\forall s) (\forall y) [\varphi_{g(e)}{}^s(n) = y \Rightarrow f_i(n) = y]$

where g is the function from the Lemma. But if $T = \{e : \varphi_e \text{ total}\}$, the above equivalences show that T is $\Sigma_2^0(\mathbf{a})$ (i.e., Σ_2^0 in the degree \mathbf{a}). Since T is Π_2^0 , it follows that T is $\Delta_2^0(\mathbf{a})$ and so of degree $\leq \mathbf{a'}$ by Post's Hierarchy Theorem. Since $\mathbf{d}(T) = \mathbf{0''}$ [7, p. 264], (i) follows.

Since the implication $(iv) \Rightarrow (v)$ is trivial, it remains only to show that $(\mathbf{v}) \Rightarrow (\mathbf{i})$ assuming **a** to be r.e. Assume that (i) is false and that f is a binary function of degree $\leq a$. We must show that there is a recursive function with $\rho r \subseteq \{0, 1\}$ such that $r \neq f_e$ for all e. The construction of r is similar to the diagonal proof that the recursive functions are not uniformly recursive. except that during the construction we must work with an approximation to f rather than with f itself. Since f has degree $\leq 0'$, it follows from [10, Theorem 2] that there is a recursive function g(e, n, s) such that f(e, n) = $\lim_{s \to a} g(e, n, s)$ for all e, n. In fact, since f has degree $\leq a$ and a is r.e., it follows from the proof of [10, Theorem 2] that g may be chosen so that there is a function h of degree $\leq a$ such that g(e, n, s) = f(e, n) for all $s \geq h(e, n)$. Now define $p(n) = \max\{h(e, \langle e, n \rangle) : e \leq n\}$. Since p has degree $\leq a$ and $a' \ge 0''$, there is a recursive function q which p fails to dominate. Finally define $r(\langle e, n \rangle) = 1 - g(e, \langle e, n \rangle, q(n))$. Then r is a recursive function and $r(\langle e, n \rangle) \neq f_e(\langle e, n \rangle)$ whenever $n \ge e$ and $q(n) \ge p(n)$ (since then $q(n) \ge h(e, \langle e, n \rangle)$ and so $g(e, \langle e, n \rangle, q(n)) = f(e, \langle e, n \rangle) = f_e(\langle e, n \rangle)$. This completes the proof of Theorem 1.

The next result shows that the implication $(v) \Rightarrow (i)$ of Theorem 1 is not true in general.

PROPOSITION 3. There is a degree **a** such that $\mathbf{a'} = \mathbf{0'}$ and the recursive sets are **a**-subuniform.

Proof. Let the predicate P(f) be true of the function f in case

$$\rho f \subseteq \{0, 1\} \& (\forall e) (\forall n) [\varphi_e(n) \text{ defined} \rightarrow f(\langle e, n \rangle) = \min\{1, \varphi_e(n)\}].$$

Then routine expansion shows that P is a Π_1^0 predicate and clearly $(\exists f) P(f)$ holds. Also P is *recursively bounded* because of the clause $\rho f \subseteq \{0, 1\}$. It now follows from a basis theorem of Soare and the author [4, Theorem 2.1] that there is a function f such that P(f) holds and $\mathbf{a'} = \mathbf{0'}$, where $\mathbf{a} = \mathbf{d}(f)$. Clearly the recursive sets are \mathbf{a} -subuniform, and so Proposition 3 is proved.

1094

It was the proof of Proposition 3 which led us to the proof of $(iv) \Rightarrow (i)$ in Theorem 1. The relevant observation is that if f is any function satisfying P(f) and φ_k is as in the proof of Lemma 2 (i.e., $\{0, 1\}$ -valued and not recursively extendible), then $(\lambda n)f(\langle k, n \rangle)$ is nonrecursive. Thus the mere existence of such a φ_k makes it immediately clear that the construction for Proposition 3 cannot yield a counterexample to $(iv) \Rightarrow (i)$, while a slightly more elaborate use of φ_k suffices to prove $(iv) \Rightarrow (i)$.

The proof of $(iv) \Rightarrow (i)$ yields a useful characterization of degrees satisfying (v).

PROPOSITION 4. For any degree **a**, assertion (v) is equivalent to the disjunction (i) \vee (vi) where (i), (v) are as in Theorem 1 and (vi) is the following:

(vi) there is a complete extension of first-order Peano arithmetic of degree $\leq a$.

Proof. Clearly (i) \Rightarrow (v) since (i) \Rightarrow (iv) \Rightarrow (v) by Theorem 1. Also $(vi) \Rightarrow (v)$ since if T is any complete extension of Peano arithmetic of degree $\leq a$, the family of sets definable in T is a-uniform and includes all recursive sets. It remains to show that $(v) \Rightarrow (i) \lor (vi)$, so assume that f is a function of degree $\leq a$ and every recursive characteristic function is an f_e . Let g be the function from Lemma 2, and assume that φ_k in the proof of Lemma 2 was chosen so that $\varphi_k^{-1}(0)$ and $\varphi_k^{-1}(1)$ are effectively inseparable. Now reconsider the equivalence (1) used in the proof of $(iv) \Rightarrow (i)$. It is no longer necessarily valid because we are not assuming that all f_e 's are recursive. However, if (1) is valid, then $\mathbf{a'} \ge \mathbf{0''}$ follows as before. So assume (1) is not valid. Since the left-right implication of (1) still follows from our weaker hypothesis, we see that there must be numbers e, i such that φ_e is not total and f_i extends $\varphi_{q(e)}$. But $\varphi_{g(e)}$ differs only finitely from φ_k , and so $f_i^{-1}(0)$ separates a pair of effectively inseparable sets (i.e., $\varphi_{g(e)}^{-1}(0)$ and $\varphi_{g(e)}^{-1}(1)$). It now follows from [4, Proposition 6.1] that there is a complete extension of Peano arithmetic recursive in f_i and thus of degree $\leq a$.

Degrees of complete extensions of Peano arithmetic were originally studied by Scott and Tennenbaum [9] and more recently by Soare and the author [4;5]. For instance, in [4, Corollary 2.2] it is proved that there is a complete extension of Peano arithmetic whose degree **a** satisfies $\mathbf{a'} = \mathbf{0'}$ and in [5, Corollary 4.3] it is proved that $\mathbf{0'}$ is the only r.e. degree satisfying (vi). From these results and Proposition 4, we immediately obtain new (but rather indirect) proofs of Proposition 3 and (v) \Rightarrow (i) for r.e. degrees. Similarly, we have the following corollary.

COROLLARY 5. If the recursive sets are a-subuniform, then either $\mathbf{a'} \ge \mathbf{0''}$, or every countable partially ordered set can be embedded in the degrees $\le \mathbf{a}$.

Proof. It is shown in [4, Corollary 4.4] that if **a** is the degree of any complete extension of Peano arithmetic, then every countable partially ordered set can be embedded in the degrees $\leq a$.

The converse of Corollary 5 is false. To see this let **a** be a nonzero r.e. degree with $\mathbf{a'} = \mathbf{0'} [\mathbf{8}, \S 6, \text{Corollary 2}]$. By a theorem of Sacks $[\mathbf{8}, \S 5, \text{Theorem 2}]$ every countable partially ordered set can be embedded in the degrees $\leq \mathbf{a}$, and yet the recursive sets are not **a**-subuniform by Theorem 1. More generally, we suspect that there is no degree-theoretic characterization whatever of the degrees **a** such that the recursive sets are **a**-subuniform. We remark also that Corollary 5 becomes false if either alternative is dropped from the conclusion. For the first alternative this follows from the theorem of Cooper [1, Theorem 1] that if $\mathbf{b} \geq \mathbf{0'}$ (in particular $\mathbf{b} = \mathbf{0''}$) there is a minimal degree **a** with $\mathbf{a'} = \mathbf{b}$; for the second alternative this follows from Proposition 3.

4. Applications.

COROLLARY 6. If **a** is an r.e. degree and $\mathbf{a} < \mathbf{0'}$, then the class of r.e. sets of degree $\leq \mathbf{a}$ is not **a**-uniform.

Proof. Assume the degree **a** yields a counterexample. Then the recursive sets are **a**-subuniform and so $\mathbf{a'} = \mathbf{0''}$ by $(\mathbf{v}) \Rightarrow (\mathbf{i})$ of Theorem 1. On the other hand, since the r.e. sets of degree $\leq \mathbf{a}$ are **a**-uniform, they are **0'**-uniform and so $\mathbf{a''} = \mathbf{0''}$ by a theorem of Yates [11, Theorem 9].

Corollary 6 answers a question raised by Yates at the end of [11]. S. B. Cooper and the author independently proved it by rather involved direct constructions before this simple argument was found. However, the present methods yield a strong generalization of Corollary 6 which does not seem accessible to direct proof.

COROLLARY 7. If \mathbf{a} , \mathbf{b} are r.e. degrees, $\mathbf{b} \leq \mathbf{a}$, and $\mathbf{b} < \mathbf{0'}$, then the following three statements are equivalent:

(a) the r.e. sets of degree $\leq \mathbf{b}$ are **a**-subuniform;

(c) there is an r.e. sequence of r.e. sets which is uniformly of degree $\leq \mathbf{a}$ and consists exactly of the r.e. sets of degree $\leq \mathbf{b}$.

Proof. The proof that (a) \Rightarrow (b) is the same as for Corollary 6, except that one should note that only subuniformity (not uniformity) is actually used by Yates [11, Theorems 8 and 9] to show $\mathbf{b''} = \mathbf{0''}$. Since (c) \Rightarrow (a) is trivial, it remains only to prove that (b) \Rightarrow (c). From the assumptions $\mathbf{b} \leq \mathbf{a}$ and $\mathbf{b''} = \mathbf{a'}$ it follows by relativizing [6, Lemma 1.2] to \mathbf{b} that there is a function g^* of degree $\leq \mathbf{a}$ which dominates every function of degree $\leq \mathbf{b}$. It then follows from the proof of [10, Theorem 2] that there is a recursive function g(n, s) and a function h of degree $\leq \mathbf{a}$ such that $g(n, s) = g^*(n)$ for all $s \geq h(n)$. Also, since $\mathbf{b''} = \mathbf{0''}$ it follows from [11, Theorem 9] that there is a uniformly r.e. sequence of r.e. sets R_0, R_1, \ldots consisting exactly of the r.e. sets of degree $\leq \mathbf{b}$. Let $R_e(s)$ be the finite subset of R_e obtained by stage s in a fixed simultaneous recursive enumeration of this sequence. Define

$$S_{\langle e,i\rangle} = \{n : (\exists s)[n \in R_e(i + g(n, s))]\}$$

1096

RECURSIVE SETS

The sequence $\{S_{\langle e,i}\}\)$ is clearly uniformly r.e. and also is uniformly of degree $\leq \mathbf{a}$ since the quantifier over s in its definition is implicitly bounded by h(n). Furthermore if i is chosen so large that $(\lambda n)[i + g^*(n)]$ majorizes $(\lambda n)[(\mu s)[n \in R_e(s) \lor n \notin R_e]]$ then $S_{\langle e,i \rangle} = R_e$. However, this is not yet our desired sequence of sets because there is no reason to believe that every $S_{\langle e,i \rangle}$ is of degree $\leq \mathbf{b}$. To obtain the desired sequence, we employ the trick of [11, Theorem 8] and define

$$T_{\langle e,i\rangle} = \{n : n \in S_{\langle e,i\rangle} \& (\forall m)_{\langle n} [m \in R_e(n) \Longrightarrow m \in S_{\langle e,i\rangle}]\}$$

Then $\{T_{\langle e,i}\}\)$ is uniformly r.e. and uniformly of degree $\leq a$ because $\{S_{\langle e,i}\}\)$ has these properties. Furthermore, if $S_{\langle e,i}\rangle = R_e$ then $T_{\langle e,i}\rangle = R_e$ and otherwise $S_{\langle e,i}\rangle$ is finite. From this and the other properties of $\{S_{\langle e,i}\rangle\}\)$, it follows that $\{T_{\langle e,i}\}\)$ satisfies the requirements of part (c).

Our original interest in the topic of this paper grew out of the following question: is there an r.e. Turing degree other than **0** or **0'** which contains a maximum r.e. *m*-degree? (We remark for background that **0'** has no maximum among all its *m*-degrees, but there do exist nonzero Turing degrees having maximum *m*-degrees (cf. [3, Problem 14-14] or [7, § 4]). Also by [7, §§ 7.6 and 8.4] every truth-table degree has a maximum *m*-degree and every *m*-degree has a maximum 1-degree.) The question posed above remains unanswered, but the following result gives some information on it and answers the corresponding question for reductions by primitive recursive functions. (We write $B \leq_{pr} A$ if $B = f^{-1}(A)$ for some primitive recursive function *f*.)

COROLLARY 8. (i) If **a** is an r.e. Turing degree having a maximum among its r.e. m-degrees and $\mathbf{a} < \mathbf{0'}$, then $\mathbf{a''} = \mathbf{0''}$.

(ii) If A is a noncreative r.e. set, then there is an r.e. set B of the same Turing degree as A such that $B \leq_{pr} A$.

(iii) There exists a Turing incomplete r.e. set A and a nonzero r.e. Turing degree **b** such that every r.e. set of Turing degree $\leq \mathbf{b}$ is $\leq_{pr} A$.

Proof. (i) Let A be an r.e. set in the maximum r.e. *m*-degree of **a**. Let $G(\leq_m A) = \{e : W_e \leq_m A\}$. As in [11], let $G(\leq_a) = \{e : W_e \leq_T A\}$. We claim $G(\leq_m A) = G(\leq_a)$. Clearly $G(\leq_m A) \subseteq G(\leq_a)$. Suppose $W_e \leq_T A$. Then $A \oplus W_e$ has degree **a** and so $A \oplus W_e \leq_m A$ by the maximality of A. Hence $W_e \leq_m A$. Direct expansion shows that $G(\leq_m A)$ is a Σ_3^0 set. In [11, Theorem 9], Yates showed that if $G(\leq_a)$ is Σ_3^0 and a < 0', then a'' = 0''.

(ii) Assume it is false. Then A cannot have Turing degree 0' since we could then take B to be creative. Since the family of sets $\leq_{pr} A$ is **a**-uniform, it follows from Corollary 6 that there is an r.e. set W such that $W \leq_T A$ and $W \leq_{pr} A$. Clearly if $B = A \oplus W$, then B satisfies the conclusion of (ii).

(iii) By [8, § 6, Corollary 5] there is an r.e. degree $\mathbf{a} < \mathbf{0'}$ such that $\mathbf{a'} = \mathbf{0''}$. By [8, § 6, Corollary 2] there is a nonzero r.e. degree $\mathbf{b} \leq \mathbf{a}$ such that $\mathbf{b'} = \mathbf{0'}$ and so $\mathbf{b''} = \mathbf{0''} = \mathbf{a'}$. By Corollary 7, there is a uniformly r.e. sequence of sets $\{T_n\}$ which is uniformly of degree $\leq \mathbf{a}$ and includes all r.e. sets of degree $\leq \mathbf{b}$. Let $A = \{2^n 3^j : j \in T_n\}$, so A is r.e. and has degree $\leq \mathbf{a}$. Then A is incomplete and every r.e. set of degree $\leq \mathbf{b}$ is $\leq_{pr} A$.

5. A variant of the basic result. Suppose f is a function of degree $\leq \mathbf{a}$ such that the f_e 's are exactly the recursive functions. Then there is, of course, a function h such that $f_e = \varphi_{h(e)}$ for all e, but in general there is no reason to suppose that h can be chosen to have degree $\leq \mathbf{a}$. Let us say that the recursive functions are \mathbf{a} -superuniform if there is a function h of degree $\leq \mathbf{a}$ such that $\varphi_{h(0)}, \varphi_{h(1)}, \ldots$ are precisely the recursive functions. (The notion is defined analogously for the recursive sets.)

THEOREM 9. For any degree **a**, the following three statements are equivalent:

- (vii) the recursive functions are **a**-superuniform;
- (viii) the recursive sets are a-superuniform;
- (ix) $\mathbf{a} \cup \mathbf{0'} \geq \mathbf{0''}$.

1098

Proof. The implication (vii) \Rightarrow (viii) is immediate. To prove (viii) \Rightarrow (ix) assume that h is a function of degree $\leq \mathbf{a}$ such that the $\varphi_{h(e)}$'s are exactly the recursive characteristic functions. Define $f(i, n) = \varphi_{h(i)}(n)$ and let g be the recursive function of Lemma 2. Then the equivalence (1) from the proof of (iv) \Rightarrow (i) in Theorem 1 holds. Since $f_i = \varphi_{h(i)}$ for all i, (1) can be rewritten as

(2)
$$\varphi_e \text{ total} \Leftrightarrow (\exists i) C(h(i), g(e))$$

where C(n, k) is the assertion that φ_n and φ_k are *compatible* (i.e. agree on the intersection of their domains). But C(n, k) is easily seen to be Π_1^0 and hence of degree $\leq \mathbf{0}'$. Thus C(h(i), g(e)) has degree $\leq \mathbf{a} \cup \mathbf{0}'$ and so (2) shows that $T(=\{e: \varphi_e \text{ total}\})$ is $\Sigma_1^0(\mathbf{a} \cup \mathbf{0}')$. But also T is $\Pi_1^0(\mathbf{0}')$ and so $\Pi_1^0(\mathbf{a} \cup \mathbf{0}')$. It follows that $\mathbf{0}'' = \mathbf{d}(T) \leq \mathbf{a} \cup \mathbf{0}'$.

To prove $(ix) \Rightarrow (vii)$ we need a more useful form of the assumption $0'' \leq a \cup 0'$.

LEMMA 10. If $\mathbf{0''} \leq \mathbf{a} \cup \mathbf{0'}$, then there is an r.e. set K and a binary function p of degree $\leq \mathbf{a}$ such that for all e, φ_e is total if and only if $(\exists i)[p(e, i) \notin K]$.

Proof. Let K be a creative set and let A be any set of degree **a**. Since $T \leq T A \oplus K$ (where $T = \{e : \varphi_e \text{ total}\}$) it follows from the formalism of relative computation of [7, Chapter 9] that we can effectively find for each e an index of an r.e. set S_e such that φ_e is total if and only if

 $(\exists \langle u, v, w, z \rangle) [\langle u, v, w, z \rangle \in S_e \& D_u \subseteq A \& D_v \subseteq \overline{A} \& D_w \subseteq K \& D_z \subseteq \overline{K}].$

Since $\{z : D_z \cap K \neq \emptyset\} \leq_m K$ by the *m*-completeness of *K*, there is a recursive function *q* such that for all *z*, $D_z \subseteq \overline{K}$ if and only if $q(z) \in \overline{K}$. For each *e*, let

$$T_e = \{q(z) : (\exists u) (\exists v) (\exists w) [\langle u, v, w, z \rangle \in S_e \& D_u \subseteq A \& D_v \subseteq \overline{A} \& D_w \subseteq K]\} \cup \{k\},\$$

RECURSIVE SETS

where k is a fixed element of K. Then $\{T_e\}$ is uniformly r.e. in A and all T_e are nonempty, so there is a function p(e, i) of degree $\leq a$ such that T_e is the range of $(\lambda i)[p(e, i)]$ for all e. This is the desired function.

To prove (ix) \Rightarrow (vii), first let s(e, i, n) be the least s such that either $\varphi_e^{s}(n)$ is defined or $p(e, i) \in K^s$. (Here p, K are from the Lemma and K^s denotes the subset of K obtained after s steps in a recursive enumeration. Note that s(e, i, n) is always defined since otherwise $\varphi_e(n)$ is undefined and $p(e, i) \notin K$, in contradiction to the Lemma.) Since the process of computing s(e, i, n) is effective once p(e, i) is given, there is a function h recursive in p (and therefore of degree $\leq a$) such that $\varphi_{h(\langle e, i \rangle)}(n) = \varphi_e(n)$ if s(e, i, n) is defined through the first alternative and $\varphi_{h(\langle e, i \rangle)}(n) = 0$ otherwise. Thus $\varphi_{h(\langle e, i \rangle)}$ is total for all e and i; furthermore, if φ_e is total, then there is an i such that $p(e, i) \notin K$ and clearly $\varphi_e = \varphi_{h(\langle e, i \rangle)}$ for this i.

COROLLARY 11. The recursive functions are not 0'-superuniform but there is a degree **a** incomparable with 0' such that the recursive functions are **a**-superuniform.

Proof. In view of Theorem 9, the first assertion is immediate and the second assertion follows from the theorem of Friedberg [2] that there is a degree **a** such that $\mathbf{a'} = \mathbf{a} \cup \mathbf{0'} = \mathbf{0''}$.

The first part of Corollary 11 can be easily proved by a direct diagonal argument; however we do not know how to prove the second part without using Theorem 9.

References

- 1. S. B. Cooper, Minimal degrees and the jump operator (to appear).
- 2. R. M. Friedberg, A criterion for completeness of degrees of unsolvability, J. Symbolic Logic 22 (1957), 159–160.
- 3. C. G. Jockusch, Jr., Relationships between reducibilities, Trans. Amer. Math. Soc. 142 (1969), 229–237.
- 4. C. G. Jockusch, Jr and R. I. Soare, Π_1^0 Classes and degrees of theories (to appear in Trans. Amer. Math. Soc.).
- 5. Degrees of members of Π_1^0 classes, Pacific J. Math. 40 (1972), 605–616.
- D. A. Martin, Classes of recursively enumerable sets and degrees of unsolvability, Z. Math. Logik Grundlagen Math. 12 (1966), 295-310.
- 7. H. Rogers, Jr., Theory of recursive functions and effective computability (McGraw-Hill, New York, 1967).
- G. E. Sacks, Degrees of unsolvability, Ann. of Math. Studies, No. 55 (Princeton Univ. Press, Princeton, N.J., 1963).
- D. Scott and S. Tennenbaum, On the degrees of complete extensions of arithmetic, Notices Amer. Math. Soc. 7 (1960), 242-243.
- 10. J. R. Shoenfield, On degrees of unsolvability, Ann. of Math. 69 (1959), 644-653.
- 11. C. E. M. Yates, Degrees of index sets II, Trans. Amer. Math. Soc. 135 (1969), 249-266.

University of Illinois, Urbana, Illinois