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In this position paper, I shall summarise the current status of sensor technologies in ruminant livestock farming with emphasis
on dairy cattle, outline the case for why I believe that sensor technologies could revolutionise global dairy farming in a positive
way, describe the significant barriers that exist if that goal is to be achieved and highlight the benefits to animal wellbeing,
profitability and sustainability that could result if the technologies are implemented to a significant extent. I shall not provide a
comprehensive review of the sensor technology literature since that has been done before, but I intend to provide a sensible
amount of background information and data that will allow the reader to obtain a picture not only of today’s sensor usage but,
more importantly, the possible future direction of dairy animal-oriented sensor technologies, and I shall substantiate my claims
and conclusions with relevant literature.
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Implications

Since this is a position paper, the implications are restricted
to what might transpire if sensor technologies were to come
into widespread use in the dairy industry. There is a potential
for the health and welfare of dairy animals to improve as a
result of better, more consistent and more frequent (even
continuous) monitoring. This would impact directly and
positively on farmer profitability, which could also benefit
from a reduced labour requirement, and the industry as a
whole could benefit from improved consumer perception
as a consequence of better animal wellbeing.

Introduction: changes, capabilities and challenges in
dairying

Some knowledge of the local and global dairy industries is
needed if one is to appreciate the potential impact of ‘smart
technology’. In the latter years of the 20th century, UK
dairy farms were small, cows were known individually and
incomes were often marginal. Dairy products were, and still
are, supermarket ‘loss leaders’, a key part of cheap food pol-
icies that proliferated across developed countries (Caraher
and Coveney, 2004). We worked long hours and, besides
attaching milking clusters, one of my regular jobs when
our cow numbers increased to more than 100 was the late
night walk through the herd looking for the increased activity
of cows in heat that would be inseminated the next day.

Later, as a lactation scientist, I became actively involved in
biological support to the engineering research that devel-
oped one of the first automatic milking systems (AMS)
(Hillerton et al., 1990), a technology that has come to
be regarded as a dairy industry harbinger of what Daniel
Beckmans dubbed Precision Livestock Farming (PLF)
(Berckmans, 2008 and 2014; John et al., 2016). What was
the point of AMS? Almost certainly it was intended to reduce
labour costs, although marketing of such systems has mainly
focused on farmer lifestyle and cow choice. What was the
chief capability that enabled AMS? In order to locate the
teats for cluster attachment, the early robotic arms needed
to know which cow they were dealing with so as to access
a database of udder coordinates, and so radiofrequency
identity (RFID: first patented by Hanton and Leach (1974)
as an indwelling rumen bolus radiofrequency device) was
the key element. Whether directly linked or not, the gradual
uptake of AMS has been accompanied by significant
increases in the size of dairy farms (Robbins et al., 2016),
a change that has been driven in large part by simple eco-
nomics: as the number of cows increases, the farm’s fixed
overhead costs are diluted, especially if AMS allows the
expansion to occur without extra labour. The dairy industry
is a curious mix of entrepreneurship (adoption of robotics)
and extreme conservatism; we were able to demonstrate
convincingly that encouraging more frequent attendance
at AMS could result in greater lactation persistency and
hence enable extended lactations (Pettersson et al., 2011),
but the equally clear demonstration that longer lactations† E-mail: chrisknight@breathescience.org
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can be economically advantageous (De Vries, 2006) has
never been accepted by farmers (or perhaps genetics
companies!), who still aim to maximise output from AMS
by increasing cow numbers, maximising the genetic potential
of the individual cow and rebreeding to an annual schedule.
These latter two objectives do not fit well together: high-
yielding dairy cows suffer from ‘infertility’, that is to say, a
reduced chance of rebreeding at around 60 days postpartum,
regarded by many as a key benchmark (but see Dobson et al.,
2007 for a critical analysis). Technology has come to the fore
in addressing this issue and the ‘herd walk-through’ is no
longer needed. Cows that show increased activity indicative
of estrous will be automatically flagged by a pedometer,
collar, ear tag, rumen bolus or other device incorporating
an accelerometer. Most importantly, the cost is not prohibi-
tive, due in no small part to very much cheaper computing
power (a modern ‘tablet’ contains processing capability that
would have cost a theoretical $10B in the 1960s: Michie
et al., 2020) and microcircuitry that ensures that sensors
are small (rumen boluses are now available for sheep and
goats, in addition to cattle: Castro-Costa et al., 2015).

Larger herds, less intensive labour input, better reproduc-
tive management; these should certainly be regarded as
important changes that have occurred in the last few decades
driven by economics and assisted by technological capabil-
ities. So, what of challenges? In the developed world, obesity
is now commonly (but not yet scientifically) regarded as a
greater health risk factor than smoking. This belief can
actually be traced back almost to the millennium (Sturm
andWells, 2002), but the problem shows no signs of abating.
Fitness tracking is part of an increasing trend to exercise more
and live a better, healthier lifestyle, as recently reviewed by
Böhm et al. (2019). Lifestyle choices extend to diet, where
dairy products are often seen as obesogenic, hugely damag-
ing to the environment and associated with poor animal
welfare (see, e.g., Willett et al., 2019). The first two of
these arguments are totally refutable (see, e.g., Guo et al.,
2018 regarding obesity and for environmental sustainability,
official Food and Agriculture Organization (FAO) data (FAO,
2010) showing that dairy production and distribution gener-
ate less than 3% of global greenhouse gas emissions). The
third challenge is less easy to defend, since animal welfare
is a highly subjective issue, but is an area in which sensors
could have a very significant and positive impact. These ‘neg-
ative’ challenges are real and considerable, but dairying
should also be seen as a positive part of another equally large
societal challenge, our need to feed an expanding global
population (Reynolds et al., 2015). There are contrasting
views in this respect. In the developed world, consumers are
encouraged to reduce dairy consumption (Willett et al.,
2019), although the rationale for doing so is not particularly
clear; in a nutritional context lower intakes appear to be jus-
tified on the basis of (perhaps) doing no harm, rather than
doing good. In other parts of the world, the reality is rapid
expansion of dairy production capacities; megadairies com-
prising many tens of thousands of cows are operating in
Vietnam and under construction in Russia and China, for

instance (Vietnam Investment Review, 2018) whilst a major
project co-funded by governments and a major multinational
milk processor aims to revolutionise milk production in West
Africa (CARE Danmark, 2015). Global consumer demands
for dairy products are almost certainly set to expand consid-
erably, FAO predicting a 22% increase globally in the next
10 years with a concentration in India and Pakistan
(OECD, 2018). The challenges are clear, and it seems inevi-
table that technology will be instrumental in enabling sus-
tainable and ethical production standards in very large
herds and in areas of the world that have little tradition of
organised dairy production.

State of the art in dairy animal sensors

At the time of writing (late 2019), the search term ‘sensors and
dairy cows’ yields 6 400 000 Internet hits, and this headline
statement, taken from Dairy Global (2017): ‘Sensors used to
detect oestrus, lameness, disease and calving are being touted
as the next big thing in dairy production. It is not known,
however, if these sensor systems actually improve the health
and production of dairy herds’. Interestingly, replacing ‘cows’
by ‘animals’ in the search term reduced the number of hits
(by 60%!) The take-home messages are clear:

• there is a lot of interest in sensors
• most of this relates to use in cows
• it is not yet easy to justify the investment

Farmers are persuaded that investing in sensors that
deliver improved estrous detection is a price worth paying,
an analysis borne out by economic modelling (Rutten
et al., 2014 and 2018). By contrast, the same group con-
cluded that sensors for body condition score are not yet a
good investment, but may be in the future as the technology
improves (Rutten et al., 2018). This leads to another take-
home message:

• state of the art currently mainly comprises stand-alone
sensors for single applications

• some of these (estrous detection in particular) are more
mature than others

Perhaps it is not surprising, therefore, that estrous detec-
tion sensors dominate the market. In 2017, a colleague work-
ing for a manufacturer of sensors was able to identify 22
accelerometer-based commercially available sensor technol-
ogies for the neck, ear or leg, all but one of which professed
to detect estrous (Thorup, 2017). A year earlier, our own
review of the scientific literature identified 12 such products
(Caja et al., 2016). This should not be taken as an indication
of the rate of expansion in the market! Perhaps our colleague
did a better job than we did, but more likely this exposes a
further take-home message:

• many of the commercially available technologies have not
yet been independently tested under rigorous scientific
conditions
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which takes us back to our earlier statement questioning
whether sensors (yet) improve health and productivity. It is
perhaps relevant that a recent meta-analysis of human activ-
ity trackers (sensors) concluded that almost all of a large
research base (850/857 studies) were poorly controlled
and ‘No evidence was found for the effect of wearable activ-
ity trackers, on physical-activity-related outcomes’ (Böhm
et al., 2019). Before considering whether these problems
can be overcome such that sensors do have a future, it is
important to have a fuller picture of the range of sensors that
are available or conceived of.

Sensors fall into three broad categories, as shown in
Figure 1. The first is often referred to as ‘Wearable’ sensors
since these are found attached to the cow, but I prefer the
term ‘At Cow’ which then also includes devices swallowed
into the reticulorumen or inserted into the reproductive tract
(red zone in Figure 1). By analogy, the second category is
‘Near Cow’ (blue zone in Figure 1) and the third is ‘From
Cow’ (green zone in Figure 1). Near Cow includes all remote
sensors that could watch, listen to, track, weigh, record
or interrogate the cow or its immediate environment and
includes elements that are geographically very remote
(Global Positioning Satellite technology, GPS and cloud),
but still ‘near’ in the sense of enabling real-time interaction.
From Cow is the specific category of sensors that could
collect and analyse data relating to products that have
come from the cow, milk analysis being the prime example
but biomarker analysis of body tissues/fluids (e.g., hair,
saliva, sweat, nasal secretion, breath, faeces) also being
included.

I include the potential for robotic collection of biomarker
samples in the third category. To the best of my knowledge,
this possibility has not yet been considered even at a research
level, which leads us to consider which of these sensor tech-
nologies are not only commercially available but also in
actual widespread use. These are represented by the black
circles in Figure 1 and comprise numerous At Cow sensors
(very largely accelerometers and/or temperature sensors) that
in most cases communicate with cloud-based data manage-
ment, together with online milk analysis. Automatic milking
systems should also be mentioned as a non-sensor technol-
ogy that has seen widespread adoption (Svennersten-Sjaunja
and Pettersson, 2008). A comprehensive list of sensor tech-
nologies that were available in 2016 is available in tabular
form in Caja et al. (2016). Other technologies are commer-
cially available, such as image-based assessment of body
condition (Krukowski, 2009) and udder disease conditions
(Castro-Costa et al., 2014), force plates for automated BW
recording (Dickinson et al., 2013) and limb disease conditions
(Ghotoorlar et al., 2012) and sensors for monitoring rumen
pH and informing on rumen dysfunction (Sato et al.,
2012). I should add that this list is probably not comprehen-
sive, the references refer to the basic technology rather than
necessarily the commercial product and in some cases the
scientific case for the technology or product is not estab-
lished. Further consideration and comparison of a ‘successful
adoption’ (estrous detection) and a ‘failed adoption’ (auto-
mated weighing) is given by Maltz (2020). The rumen pH
bolus is an interesting case in point. The technology has been
available for some years, as have commercial products.

Figure 1 (colour online) Overview of sensor technologies associated with dairy animals (example is dairy cow but others could apply equally well). The red
zone and individual red dots show ‘At Cow’ sensors, chiefly accelerometer based but also in some cases including temperature, heart rate and pH analysis. The
blue zone shows ‘Near Cow’ sensors such as video and sound analysis, climate analysis, feed analysis, GPS and interaction with the cloud (the latter two
classified as ‘near’ on the basis of enabling real-time analysis). The green zone shows ‘From Cow’ sensors that monitor products coming from the cow (milk,
hair, saliva, sweat, nasal secretion, breath, faeces, etc.). The black circles represent the main technologies that are commercially available and in widespread
use. A cow is shown as example; many of the technologies are also applicable to other dairy ruminants. The figure is not exhaustive.
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However, the sensor is expensive and suffers from a short life
due to a combination of the acidic conditions in the rumen
and heavy power requirement. As a result, few (if any) farm-
ers have invested directly in such sensors, which are used
primarily for research (see companion paper by Dijkstra et al.)
or by feed companies or veterinarians offering a service to
farmers who have a herd-level nutritional problem. Many
more technologies are in research development, such as
image-based assessment of individual feeding behaviour
(Bloch et al., 2019), rumen function (Song et al., 2019)
and heart and respiratory rates (Beiderman et al., 2014).
Totally, novel sensor modalities under development include
laser reflection-based LiDAR for body composition (Huang
et al., 2018) and micro-Doppler radar for heart and respira-
tory rate (Michie et al., 2020).

Estrous detection

Technologies that require specific mention are RFID and
tri-axial accelerometry since these are at the heart of estrous
detection. Both have been comprehensively reviewed by Caja
et al. (2016). Radiofrequency identity technologies include
large high-frequency transponders (e.g., neck collars) that
also enable collection and transmission of large data
packages as well as the cheaper miniaturised low-frequency
devices (ear tags, injectable devices or rumen boluses) that
are purely for identity. Both types of transponder are ‘passive’
(i.e., power resides with the receiving element) and the two
types are not inter-compatible. Radiofrequency identity tech-
nology is optional for most EU dairy cattle farmers, but com-
pulsory for the larger national populations (>600 000 head)
of small ruminants as the only way to trace and to build up
credible animal inventories.

Tri-axial accelerometers are small, cheap and robust. In
addition to estrous detection in cattle, they form the basis
of the activity trackers that many of us carry or wear.
Clearly, a device that measures changes in motion in three
axes is not capable of detecting the main physiological
indicators of estrous (pheromones) as a bull would.
Furthermore, it is not activity per se that identifies the onset
of estrous, rather, it is the change in activity of the individual
animal from day to day. Trying to identify which of, say, 200
cows in a herd were in estrous on a specific day using only
that day’s data would give very unreliable results. This is a
crucial observation that will underpin our later discussion
of sensor technology use for wellbeing evaluation; technol-
ogy is likely to be very much better at identifying change
within a cow across time than variation between cows within
a herd or between herds (‘benchmarking’) at a single point in
time. Accelerometers may be located at various points on the
animal (rear ankle, neck, ear, tailhead) as well as in the
rumen. All are capable of detecting estrous and some can
do more than that, especially if combined with a second
sensor modality. Examples are a gyroscope that provides
positional information to allow easier detection of lying/
standing time, and temperature thermistors that enable

calving detection when expelled from the vagina or, as we
shall see later, information on rumen function and general
health as part of a bolus sensor. For a detailed review of
estrous detection using sensors, see Mottram (2016).

Biomarkers

The third category of sensors identified in Figure 1 comprises
biomarkers of one sort or another. In current commercial use,
this relates exclusively to milk analysis. Milk can yield impor-
tant information relating not just to downstream consumer
properties (i.e., product quality) but also upstream animal
status (Duplessis et al., 2019). Systems are available for milk
composition (relevant to metabolic status: Leitner et al.,
2012; Larsen et al., 2016), somatic cell count and conduc-
tivity (relevant to udder disease status; Albrechtsen et al.,
2011) and, in one system, biomarkers of reproductive
(Bruinjé et al., 2019) and metabolic function. In contrast
to this rather restricted commercial usage, the amount of
research effort directed to biomarkers of one sort or another
is enormous, and beyond the scope of this position paper.
Fortunately, the field has been reviewed very recently by
de Almeida et al. (2019) in relation to health and welfare
and by Zachut et al. (2020) in relation to fertility and meta-
bolic regulation. Biomarkers show great promise, but a word
of caution is required. The physiological principle underpin-
ning the use of milk conductivity for mastitis detection was
first shown in the mid-70s (Linzell and Peaker, 1975), and it
took 30 years or more for the principle to be put into com-
mercial practice and some studies still question the validity
of the approach (Khatun et al., 2019).

Sensors for wellbeing

Several of the estrous detection manufacturers now also offer
systems (usually add-on modules) that identify (or claim to
identify) cows that are at risk of health or welfare problems
of one sort or another: statements like ‘your herd’s health and
well-being, at your fingertips’ and ‘effective animal health
monitoring’ are easy to find on commercial Internet sites.
Principle amongst these are mastitis, lameness andmetabolic
disease detection, and it is probably no coincidence that
these are the major health problems afflicting dairy cows.
How realistic are the claims? From a scientific point of view,
there has been little or no independent validation of which I
am aware. Is that necessarily a problem? Consider the case of
mastitis. Automatic milking systems is a technology that has
been around for some time, and since there is no dairyman to
detect udder abnormalities during the milking process, AMS
requires a technological approach to mastitis detection.
Sensor modalities in use include somatic cell counting
(SCC), lactate dehydrogenase concentration and milk con-
ductivity. We have just mentioned scientific concerns about
some aspects of this (Khatun et al., 2019) but is there any
industry-level indication of significant problems? Frössling
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et al. (2017) documented AMS uptake in Sweden between
2008 and 2011 and showed that AMS was associated with
increased mastitis risk (elevated SCC), but that this effect
decreased over time and was less important than other
factors such as time of year. In Sweden as a whole, AMS
use increased but recorded mastitis incidence decreased over
the period, which could, of course, reflect either improved
udder health or detection failure. In short, the situation is
complicated but for this particular example, there is no real
evidence of a growing problem. In relation to animal
wellbeing as a whole, is this maintenance of status quo
satisfactory? Not in my view! Two of the major factors that
potentially decrease wellbeing are higher milk yields and
larger farms. The first of these has been recognised for many
years and is not straightforward (Knight et al., 2004), but it is
the second where technology can have real impact, and it
should be to improve, rather than to avoid deterioration.
The problem is simple. Economics drives the move towards
bigger herds and more animals per dairyman (see discussion
in Caja et al., 2016), so surveillance becomes more difficult.
The concept that technology could redress the balance by
providing a precise diagnosis of a specific problem in a
specific animal at a specific time is attractive, but almost
certainly unrealistic. Mastitis detection systems are set to
identify cows thatmay have a problem using algorithms that
attempt to balance false positives and false negatives in an
optimal way; the final decision that a cow does/does not
need treatment is made by a dairyman. The crux is to develop
systems that constantly monitor simple (but meaningful)
wellbeing-related parameters, looking for change indicative
of a suboptimal state (‘constantly’ will be qualified later and
should not be confused with ‘frequently’). Lying time is a
measurable trait that is almost certainly related to lameness
(Maselyne et al., 2017) and is, again, almost certainly how at
least one commercial sensor ‘detects’ lameness. The problem
is that lying time is also affected by many other factors, so the
same false-positive/negative issues apply, and it will prob-
ably be several years before the true efficacy of lameness
detection systems can be established. Other simple indicators
of wellbeing that can be measured using today’s state of the
art are feeding, rumination and drinking, and in the next
section we will see how this is done and how it could be
useful in the future.

Beyond state of the art

The premise of this position paper is that sensor technologies
could revolutionise global dairy farming in a positive way,
and Figure 2 summarises how that might be achieved. The
first priority is to identify an optimistic but achievable target,
here defined as Optimized Decision Support. The reasons for
this target are twofold:

• the focus is on improving overall husbandry, rather than
‘solving’ specific disease problems

• it is clear that the technology supports the farmer, and not
vice versa.

The second priority is to recognise the need for coordinated,
integrated and synergistic research and development (R&D)
effort from a spectrum of essential disciplines that include a
range of animal-related sciences together with an equally
broad range of technology-related sciences. This was a
major consideration in a recently completed COST Action in
technology for dairy animal health and welfare, FA1308
DairyCare (DairyCare, 2019). Sadly, such integration does
not always happen: animal scientists met recently at the
Ghent Conference of the European Association of Animal
Production to discuss (amongst other things) PLF, at exactly
the same time that engineers were meeting in Cork to discuss
the same issues in the European Conference on PLF.

There are a number of potential R&D routes from current
state of the art towards the target which coalesce into two
common elements, a need for data integration (considered
below) and then a business model for implementation (con-
sidered later). Is there a need for new sensors to extend the
state of the art? Is there a need for more of the sensors that
we already have? I take the view that neither are essential,
but both will happen and both are likely to speed progress.
On the issue of new sensors, there is a need to work back-
wards from a target to identify how technology can achieve
that target, rather than forwards from a technical possibility
to a now redefined target that may not be really what is
needed. The example of rumen bolus sensors is relevant.
A major manufacturer of rumen pH boluses is currently test-
ing the market for additional biochemical functionalities
(ammonium and nitrate) to be added to their sensor.
Whilst these may have relevance to researchers investigating
nitrogen cycling, the relevance to farmers is difficult to see
and the sensor is likely to suffer the same limited lifetime
issues as the existing pH sensor. Those with knowledge of
physiological rumen function will know that rumenal muscu-
lar contractions of three distinct types mix digesta, regurgi-
tate it for rumination and remove methane by eructation. It is

Figure 2 (colour online) Beyond state of the art: schematic of research and
development routes to optimised sensor-based decision support for dairy
animal husbandry. The red shaded routes represent the likely minimum
effort required to achieve the objective. R&D= research and development;
IOT: Internet of things.
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our belief that a pressure sensor could record these different
contractions and therefore give farmer-relevant information
on animal wellbeing (target: impaired rumen function is a
‘first stop’ for veterinary diagnosis) as well as carbon foot-
print (target: evidence-based low carbon footprint has poten-
tial economic value), and with funding from the Hannah
Dairy Research Foundation and as a collaboration between
Spanish animal scientists and Scottish engineers, we hope
to develop such a sensor (Castro-Costa et al., 2019).

Adding more and more of the same sensors to the global
dairy sector takes us into the realms of ‘big data’ and ‘the
Internet of Things, IoT’ (reviewed by Michie et al., 2020).
Internet of Things is the concept that ‘things’ (people or
animals but also pieces of equipment, vehicles, sensors,
etc.) can be connected through local communication wireless
networks and the Internet (cloud communication). If large
amounts of data are linked together in this way, it potentially
becomes something referred to as big data and may accrue
increased value. Do current generation dairy animal sensors
produce big data? Emphatically no! The size of big data is
generally accepted to be in the zetabyte range (zeta is
1021 so a zetabyte is a kilobyte raised to the seventh power)
approximating to data from 6bn smartphones. Additional
criteria apply; the data should have variety, be obtained in
real time or approaching it and be fit for purpose (the four
Vs: Volume, Variety, Velocity and Veracity). Accelerometer
sensors, for example, can potentially collect very large
amounts of data, but the amount that they communicate
(transmit to a receiver and thereafter the IoT) is constrained
by battery power. To get around this problem, the data are
processed locally by the sensor device using algorithms that
identify summary features relevant to the trait of interest, and
it is this data that is then sent onwards. So the sensor may be
sensing constantly, but for practical reasons the measure-
ments are packaged into summaries covering discrete
windows of time, corresponding to observation frequency.
A typical estrous detection sensor will function effectively
sending just 1 or 2 kilobytes of data daily! (Michie et al.,
2020). In short, big data is a misconception, but on the other
hand all of the commercially available sensors are IoT
enabled, and in one specific case the manufacturer is heavily
targeting this aspect and offers a product that is built around
integrating data from very many customers globally into an
artificial intelligence (AI) system (Connecterra, 2019).

In current practice, although manufacturers claim to offer
‘complete solutions’, no one sensor system individually offers
everything that could be achieved using a full combination of
all systems operating together, so for maximum benefit the
farmer’s only course of action is to invest in more than one
system, shown as ‘Multiple Sensors’ in Figure 2. Furthermore,
almost without exception, the different technologies operate
‘stand alone’ and will not communicate with each other,
limiting the usefulness of the IoT. However, there may be cir-
cumstances in which multiple sensors do achieve a specific
objective. Some smartwatch devices produced for golfers
employ an accelerometer to detect shots, which works well
for drives and fairway shots, but not for putts. Although the

device could probably be made more sensitive to overcome
this problem, this would introduce another problem, namely
false positives. The solution adopted by the manufacturer is
to supply an additional accelerometer that attaches directly
to the putter, detects the shot and communicates it to the
smartwatch. I am not aware of a similar approach being
taken by dairy sensor manufacturers, but it could be done.

We have previously mentioned the ‘Combined Sensor’ in
relation to, for instance, temperature and activity in a single
rumen bolus. This approach will doubtless be repeated, and I
would suggest that a single rumen bolus could potentially
include sensors detecting activity, temperature, pressure
and heartbeat.

Data mining is an increasingly familiar concept in many
scientific fields and can be defined simplistically as ‘the proc-
ess of discovering patterns in large data sets’. The ‘cocktail
party effect’ is a good example of what is happening: in a
crowded and noisy room your attention is defocused from
the background ‘babble’ (which your brain filters out) and
focused onto a specific word or words, such as your own
name. Another example is the processing of collected sensor
data that is done by the device before transmission, where
the raw activity data (for an accelerometer) are filtered to
identify a ‘signature’ left by the step that the animal has just
taken (or the golf shot just made). Steps proved to be
relatively easy to find, and data mining algorithms have
now advanced to the point where signatures for eating
and ruminating can also be identified from several of the
commercial accelerometer-based sensors (Michie et al.,
2020). Another interesting example is rumen temperature.
It quickly became obvious that temperature would fall every
time that the cow drank, and this signature was crystal clear
even to the naked eye. So, wellbeing indicators including
feeding, rumination and drinking are all already available.

Beyond data mining employing a ‘static’ algorithm, AI or
Machine Learning constantly moves the goalposts, in other
words, as more and more data arrive the algorithm automati-
cally adapts or ‘learns’. Cognitive computing is another term
for this phenomenon, the goal being to simulate human
thought processes in a computerised model. Artificial intelli-
gence has arrived for dairy husbandry management! The firm
marketing it is Dutch and their approach is built around
existing sensor technology coming from many, many cows
around the globe but with the additional input of the farmer
adding a simple assessment of what the data mean to him,
based on prompts from the system. As the database grows,
the system will progressively get better and better at inter-
preting the data that sensors are generating. This is a
long-term prospect; in the shorter term variation in how
the farmers assess the data will likely limit gains made in
the final interpretation.

Data integration is the next essential stage of the process,
and is an area in which a lot could be achieved quickly, were
it not for commercial sensitivities that restrict data sharing.
All of the commercial systems do already integrate and com-
pare data, in particular that coming from the same individual
animal on consecutive days. The principle is simple; the
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system compares the cow’s current status with her previous
status and then with the desired status for an animal at
this stage of the lactation cycle, and if these values do not
match an alert is raised. Comparison with the rest of the herd
is also important; reduced water intake in one cow indicates
a possible health problem in that cow, but if it is replicated
across the herd it is a supply problem. It is integration of data
coming from different sensors manufactured by different
companies that is the problem: for understandable reasons,
there is often a reluctance to allow access. In addition to
these commercial factors, combining and integrating data
from a number of sensors is fraught with difficulty, not least
being the ‘synchronize watches’ issue. The data sent by a
sensor inevitably includes a time stamp, and when different
sensors are all sending, it is essential that the time stamps are
exactly coordinated.

A variation of this data integration approach was described
by Caja et al. (2016), which they called Progressive Integration.
The principle is simple. A sensor (proposed as a multifunction
rumen bolus, but it need not be) interrogates the cow
constantly, and whilst her status remains within predefined
‘normal’ limits she is classified ‘green’. If a potential problem
is detected the system internally changes her status to ‘amber’,
triggering additional attention from the system (not, at this
stage, from the farmer). The example used was that she might
now be followed by a drone that was monitoring her
interactions with other animals and her environment. If this
additional level of attention also raises questions about her
status, she moves to ‘red’ and next time that she is milked,
shedding gates automatically divert her into the holding area
for cows requiring attention from the farmer or veterinarian. To
assist their decision, a robotic arm would have taken samples
of saliva (for instance) for diagnostic biomarker analysis whilst
she was being milked.

Business models

Development of serviceable sensor systems is one thing,
commercial adoption is quite another. Unless farmers are
persuaded of the benefits they will not invest, and whilst
RFID has become a legal requirement in some EU countries,
it seems unlikely that legislators will ever go as far as to
require the use of husbandry-related sensor systems.
Wellbeing-related sensor data could add value to the primary
product, but historically it has usually been processors and
retailers that have exploited added value, not farmers, and
there is little reason to believe that this will change. What
is needed, therefore, is a route to market, or business model.
A major outcome from the DairyCare COST Action will be a
‘blueprint for action’ (Knight, 2020). This will include a novel
proposal for how the provision of sensor technologies to
dairy farmers might be structured in the future, shown sche-
matically in Figure 3. The commercial sensitivity of data has
already been mentioned, but there is also a related
issue of data ownership. This arises from the recognition that
data have value. To the farmer, the immediate value is the

improvement in animal health and performance, and hence
profitability. He may also perceive an additional potential
value whereby the data are provided to others who would
have an interest in it, such as feed and genetics companies,
processors, retailers and even the consumer. This is an under-
standable attitude to take, but a number of pitfalls can be
seen. Firstly, the manufacturers of the sensors may well feel
that they have a claim to the data. Secondly, whilst many
farmers are very business conscious, they would not neces-
sarily have the relevant skill sets or time to fully exploit the
value of the data. Thirdly, this approach leaves the farmer in
the position of having to invest capital sums in every piece of
sensor equipment that may be valuable to him and, further-
more, to reinvest on a regular basis as upgrades become
available. Fourthly, the maintenance costs associated with
the technologies would fall on the farmer. Fifthly, the costs
that will need to be borne by the farmer are rather difficult to
predict such that budget and cash flow become a problem.
Finally, the farmer has total responsibility for collecting and
understanding the data which, as we have said before, may
be coming from a number of different systems. With these
points in mind, the DairyCare business model deliberately
takes a service provider approach, whereby the technologies
are never owned by the farmer, but by a service provider. The
farmer enters into a contract with the service provider know-
ing when and how much he will pay. The service provider
installs and maintains the technologies that are most
relevant for that farmer, purchasing them from a number
of different technology developers if necessary. The data
are collected by the service provider who becomes respon-
sible for the data integration and decision support steps iden-
tified in Figure 2. From the farmer’s point of view, the
decision support is exactly that: he does not need to worry
about anything other than giving his full attention to those
cows that have been identified by the system as being most
at need. This relationship between farmer and service pro-
vider is the inner loop identified in Figure 3. Given that data
do have value, the service provider will be the one to exploit

Figure 3 (colour online) A potential data-based business model for how
sensor-based husbandry support might be introduced to a dairy cow farm
(reproduced with permission from Knight, 2020). Vet= veterinarian.

Sensor techniques in ruminants

s193

https://doi.org/10.1017/S1751731119003276 Published online by Cambridge University Press

https://doi.org/10.1017/S1751731119003276


this value by appropriate interaction with the other players
identified in the figure, and the potential returns will be
reflected in the contract price agreed with the farmer. The
further advantage of this sort of approach is that it over-
comes the problem that technological approaches might only
be affordable, or apply to, the largest farms. In this scenario,
a cluster of say, 20 farms of 250 head all instrumented by the
same service provider would in effect be equivalent to a sin-
gle farm of 5000. The nature of the service provider is flexible.
It could simply be a commercial company, but equally it could
be a farmer cooperative or a national agency such as a breed
improvement service.

Conclusions

The estimated global value of animal biosensor technologies is
expected to exceed $20 billion by 2020 (Neethirajan et al.,
2017) and a large share of that will be in dairy, so it is true
to say that sensor systems for dairy husbandry have come a
long way in a relatively short time. Since the only market to
have been rigorously exploited to date is estrous detection,
it is equally true to say that they are still in their infancy in com-
parison towhat could become possible in the future. There is no
reason why sensors systems could not find widespread use for
health and welfare monitoring, and to do that not just in dairy
cows but in other dairy species as well. Technologies capable of
measuring relevant parameters such as eating and drinking
already exist, and the ability to extract relevant information
from complex datasets is growing all the time. The need for
technologies that will assist husbandry is growing as dairy
farms expand in size, and the potential for wellbeing data to
add value to the primary product is there to be exploited.
Success will require coordinated effort from a spectrum of
biologists, engineers and business experts in areas of R&D
and marketing that are identifiable. There is a potential for
sensor systems to benefit not just the farmer and their animals,
but also other players in the dairy foods chain as well as con-
sumers. Indeed, it is probably not an overstatement to say that
sensor-based husbandry support could be a key element of the
dairy sector’s vital future contribution to global food security.
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