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G. J. WEIR'
(Received 13 May 1991; revised 21 November 1991)

Abstract

The Wiener-Hopf technique is applied to the quasi-linear infiltration problem of
flow from a shallow half-plane pond. Fully-saturated conditions hold immediately
under the pond, while on the surface away from the pond the linearised evaporative
loss is assumed to be proportional to the local relative permeability.

Evaporation from the non-wetted region increases the water flow from the pond
into the soil, thereby coupling to the effects from capillarity. Linearised evapora-
tion introduces an additional length scale and additional logarithmic expressions
to those derived previously. The total rate of volumetric flow into the soil from the
pond per unit length of perimeter, in addition to the usual gravity flow, increases
somewhat slowly as evaporation increases. The most extreme case considered in
this paper yielded an additional flow rate 63% greater than that obtained in the
absence of evaporation.

The interaction between evaporation and capillarity is enhanced in poorly-
draining soils, where the reduced ability to transmit liquid water need not be com-
pensated by a corresponding reduction in evaporative losses. However, in freely-
draining soils the interaction between evaporation and capillarity is probably small.

1. Introduction

The interaction between gravity, capillarity and geometry has been the subject
of recent theoretical studies in Australia by R. T. Waechter and
J. R. Philip {7), and in New Zealand by G. J. Weir [8]. This paper’s aim
is to modify a previous approach so that interactions from evaporation can
also be discussed.
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Evaporation from unsaturated soils can be classified (Hillel [2]) as being
either (almost) isothermal or non-isothermal. Both types of evaporation in-
volve highly nonlinear processes, especially because of simultaneous liquid
and vapour processes, and thermal effects. Further, evaporation rates de-
pend on multiple parameters, such as wind speed, energy fluxes, water table
depths, etc.

Some non-evaporative problems, by contrast, can be satisfactorily sim-
plified and nondimensionalised to yield linear equations with no free pa-
rameters. This paper considers such a problem, except that one boundary
condition is modified in a linear manner to allow an evaporative loss from
non-wetted regions. This idealised model problem allows significant progress
to be made analysing the corresponding linear equations.

In contrast, a discussion of the full physics of evaporative processes in soil
leads to very difficult equations. The basic equations (Pruess [6]) describe
conservation of water, air and energy in a porous medium. Water and air
occur in both the liquid and vapour phases, with Henry’s law approximat-
ing the ratio of mass fractions of each component in each phase. Darcy’s
law, together with relative permeability functions, will describe the flows of
each phase. Since capillarity causes each phase to be at different pressures,
evaporative processes in porous media are then described by three nonlinear
second-order diffusive equations.

Mathematical progress is made disregarding the vapour phase, and the
energy equation. This results in a single second-order (Buckingham’s) equa-
tion approximating flow of liquid water in soil. The medium is therefore
assumed isothermal, and air is assumed to be at atmospheric pressure and
have negligible density.

However, the vapour phase cannot always be ignored. In regions of very
low liquid relative permeability, the main mode of transport can occur in the
vapour phase. This difficulty is disregarded by arguing that in such regions
the mass flows are small, and therefore ignorable, relative to flows in regions
of high liquid relative permeability where the dominant mode of transport
occurs in the liquid phase.

Any discussion of evaporation necessarily involves the vapour phase, yet
inclusion of vapour transport introduces apparently intractable mathematical
difficulties. This paper attempts to avoid this difficulty by allowing a loss of
water from the soil to the atmosphere, which therefore approximates, crudely
at least, an evaporative loss. Additionally, in order to proceed mathemati-
cally, we ignore the vapour phase in the soil, which implies that our analysis
should be valid in regions of high liquid relative permeability, but invalid (to-
gether with many other published results) in regions where vapour transport
dominates.

https://doi.org/10.1017/50334270000008948 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000008948

[3] Linearised evaporation about a shallow half-plane pond 357

The ability of the air to transport water vapour from soil is often much
greater than the ability of the soil to supply water to the surface. In such cases,
liquid flow processes within the soil may be rate-determining, which may
justify their study, even when coupled with evaporative boundary conditions.
We shall proceed from this viewpoint, especially as it leads to interesting and
suggestive mathematics.

2. Model formulation

A shallow half-plane overlies a homogeneous half-space of porous material
(see Figure 1). The quasi-linear equation (Philip [4], Weir [8]) for unsatu-
rated steady liquid flow in the porous medium is

2 Ok
Vk=a a—z (1)
where V? is the Laplacian in Cartesian coordinates (X, Y, Z), k relative
permeability, a the usual constant quasi-linear inverse length parameter and
Z is directed vertically downwards. Coordinates are chosen so that the sur-
face of the porous medium is Z = 0, while the pond occupies the half-plane
Z =0, X <0 (see Figure 1).

evaporation

shallow pond T 1

k=1 X

Z

FIGURE 1. Schematic diagram of coordinate system for shallow half-plane
pond infiltration problem.

The vertical volumetric flux F, of fluid into the porous medium is

_ P8k (. _ 0K
F, = o (arc BZ)’ (2)
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where g is gravitational acceleration, k, fully saturated permeability, and
p, u are the density and dynamic viscosity of water.

We shall assume for mathematical convenience that over non-wetted sur-
face regions of the porous material, an evaporative loss produces a volumetric
flux F, out of the porous material of magnitude

F, = pgk hx/au, Z=0, (3)

where h is assumed a non-negative constant. Equation (3) represents a highly
idealised model of evaporation, so chosen to produce a linear evaporative
boundary condition. The parameter 2 can be chosen so that the total linear
evaporative loss has the required magnitude, but then the dependence of F,
on distance from the pond will be physically questionable. Nevertheless, (3)
does produce a surface mass loss, and so “linear” evaporation will be coupled
to gravity and capillarity. '
The coordinate transformation

(x,y,2)=(af2)(X, Y, Z), (4)
allows (1) to be nondimensionalised to

x> 9zr "oz’
since the problem is independent of y. Fully saturated conditions are as-
sumed immediately under the pond,

(5)

k=1, z=0, x>0, (6)
and from (2) and (3),
‘;—’;=2(1+h/a)x, 2=0, x>0, 7)

since F, and F, are directed oppositely.

On physical grounds we may assume that x is continuous at the origin
(0, 0), and then the solution of (5)-(7) may be represented as the Fourier
transform,

x=§/_°;%exp[icﬁz(u\/ucz)]d@ (8)

where the contour is indented above the origin in the & plane.
Equation (5) is satisfied, as is (6), and (7) will also hold whenever

G (OG_(O)=r+\1+&, 9)
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y=1+2h/a, (10)
and G_(¢) is analytic above —i, and G_(&) analytic below i.

3. Wiener-Hopf factorisation

The factorisation required in (9) is obtained by defining
G,&)=E+i)H, (&), G_(&)=E-i)H (&), (11)
from which
H (OH_ (&) =1+y(1+&)7%. (12)

The factorisation of H can then be performed directly (Carrier et al. [1],
page 382). Alternatively, it can be shown that

d G_(&)
| — (13)

y+1/1+E

2n[1 + & — ] v o1
& ln[\/1+éz—é” (14)
Ji+& 1+ +e

which, apart from notational changes, is given in (b}, page 91 of Noble [3].
The solution of (13) can then be written in the form

G_()/G_(0) = Aexp(if), (15)

A=[(r+i+e /(14,?)]*, (16)

and the definition of # involves integrating the right-hand side of (14) be-
tween 0 and &. (The definition for 6 here for zero & corresponds to —8
in an earlier paper (Weir [8]).) A and € are respectively even and odd in
&. All of the factors in the Fourier transform for x in (8) have now been
derived.

From (9), G_ = O(¢?) as & — co. The integrand in (8), for z = 0, is

then 0(53 / 2) and so k is continuous at the origin. Similarly, 8x/0z has an
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order x~} singularity on the surface z = 0, near the origin. This singularity
is physically acceptable, since it is shown in Section 5 to produce a finite flow
from the pond.

4. Asymptotics

The qualitative behaviour of the solution above can be inferred intuitively.
Immediately under the pond, conditions are fully saturated (x = 1), and so
sufficiently far to the left an almost saturated zone will occur beneath the
pond. Similarly, sufficiently far to the right, k¥ will be almost zero, and
these two regions (where x is approximately unity or zero) will be joined by
a boundary layer formed by capillarity and perhaps extending beneath the
origin.

Quantitative expressions for the asymptotic behaviour of this boundary

layer follow from
oo d&sin(éx — B) exp [z (1 -y/1 +§2)]

11

k=33 7 > (17
[ 2

~ % erfe(x/v3z) + L0 °"p§(_7:zx /22) (18)

(7 1)

Selecting the contour in (8) as the real axis, except for an upwards indentation
over the origin to avoid the pole, and using (14), gives (17). Keeping x finite,
but allowing z to be large in (17) yields (18), while (19) follows from (13)
and (14), being the derivative of € at zero £.

For sufficiently large values of z, the asymptotic result in (18) shows that
contours of constant k are parabolas of constant x” /2z . This is well known
[7] and so the new result is the correction term involving 8'(0) in (18). Table
1 shows that increased evaporation tends to increase asymptotic symmetry,
since the asymmetric term involving 8'(0) in (18) decreases with increasing
y . This seems reasonable since, as y increases, k¥ should tend to zero on
the surface to the right, and this limiting solution satisfies the symmetry
relationship [7],

6'(0) =

(19)

K(x,z)+x(-x,z)=1.
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The asymptotic result in (18) was obtained by keeping x finite, and allow-
ing z to be large Consequently (18) does not hold for large positive x and
sufficiently close to the surface z = 0. In this region, the method of steepest
descent can be applied to give (equation (13) in [4]),

x~x'(x,z)exp(z—\/x2+22), x>0, (20)

where x* is a relatively slowly varying function of x and z. For large
z and finite x, (20) shows that the parabolic combination x? /2z will be
important, which is consistent with (18), but for finite z and large positive
x, k decreases essentially as exp(—x).

An alternative derivation multiplies the integrand in (8) by G, (£)/G, (&)
and deforms the contour about i to ioo, giving

x=G_(Oexp(2) [ G, (exp(-EnIQde/ne

Q= [ysin (2\/62 -1 ) + \/éz — 1cos (Z\/éz_—_l)] G +E 1),

and so for small z and large x,

K~ /oo \/52 — lexp(—¢x)dé = wK, (x)/x ,
1

where
w = G_(0)G, (i)(1 + 7z) exp(2)/(ny"),
and K, is the modified Bessel function of index one.

5. Integral properties

The total flow from the pond per unit boundary length and the total evap-
orative flow per unit boundary length are perhaps the quantities of primary
interest in this paper. We show in this section that these can be determined
exactly.

The total flow per unit length of boundary from the pond into the porous
medium consists of a contribution from gravity, and additional flows TF,
and TF,, induced respectively by evaporation and a combination of capil-
larity and evaporation. The total gravity contribution is infinite, being pro-
portional to the wetted surface area. We shall ignore this gravity flow, and
concentrate instead on the flows induced by evaporation and capillarity. This
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can be justified intuitively, since the surface effects from capillarity and evap-
oration will be restricted to a boundary layer about the pond’s edge, whereas
all realistic ponds have finite area.

We define, from (3) and (4),

TFe=/ Fdx = 20844 / kdx, onz=0, (21)
0 Uo 0
and from (2) and (4),
_ 0
TF +TF=”—gk1/ 9% 4x, onz=0. (22)
ce e ap oo 8z
The integral in (22) can be evaluated exactly since on z = 0 from (8)-(10)
and (14),
i - ;
0 o | e GO Y1+ +y—y—1|de
T
—o 0Z]y 2 J_o EG_(&)
_ 1 /°° G_(0)G, ()4 (y+1) /°° G_(0)d¢
e & 21 Jow E&G_()
_(1+y) }{ G_(0)d¢
2n &G6_(9)
= (1+7)6'(0). (23)
Similarly, on z =0, from (8) and (23),
oo 1 [~ G_(0)dg
xdx=——/ ——— = 01(0). 24
| metx =5 [ e =0© (24)
Consequently, from (21) and (24),
TF, = 2pgk h6'(0)/ua’ , (25)
while from (21), (22), (25) and (10),
TF,, = 2pgk,6'(0)/ap. (26)

Equations (25) and (26) have dimensions length 2 /time, and represent the
total volumetric flows per unit time per unit boundary length for evaporation
and capillarity-evaporation. Their ratio is simply

TF,/TF,, =h/a. (27)
The functional behaviour of (23)-(26) on y is tabulated in Table 1.
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TABLE 1. Functional dependence on y of nondimensional boundary flows
induced by evaporation and capillarity.

capillarity- additional
evaporation evaporation total outflow
7 n6'(0) (y = DHn6'(0)/2 | (1 +7)n6'(0)/2
1.0 1.000 0.000 1.000
1.1 0.968 0.048 1.016
1.2 0.938 0.094 1.032
1.3 0.911 0.137 1.047
1.5 0.861 0.215 1.076
2.0 0.760 0.380 1.141
3.0 0.623 0.623 1.246
4.0 0.533 0.799 1.332
5.0 0.468 0.936 1.404
10.0 0.301 1.354 1.655

Table 1 is constructed with the third column equalling the sum of the first two
columns. Column 1 indicates that the capillarity-evaporation flow term de-
creases with increasing evaporation, whereas the additional total flow (not
including the gravity flow) from the pond increases only slowly with in-
creasing evaporation. For low evaporation rates the additional total flow
results essentially from capillarity, whereas for large evaporation rates the
additional total flow results essentially from evaporation. The evaporation
and capillarity-evaporation flows are equal when y equals three.

6. Estimation of y

This section presents a number of arguments which allow the magnitude
of y to be estimated so that the total evaporative flow from the non-wetted
region will approximate the value expected to occur in practice. We begin
by presenting a qualitative picture of conditions about the pond’s edge for
almost isothermal evaporation.

In the non-wetted region, sufficiently far from the pond’s edge, the rela-
tive permeability for liquid transport will decrease sufficiently so that vapour
transport becomes important. This is sketched in Figure 2.

Vapour transport requires (in almost isothermal conditions) a gradient in
relative humidity to maintain the diffusive flow of water vapour. But in
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FIGURE 2. Liquid transport in a shallow pond.

an unsaturated porous medium occupied by water, the relative humidity H
satisfies

H = exp(gMy/RT), (28)

where g is gravitational acceleration (9.8 m/sec 2), M the molecular weight
of water (0.018 kg/mole), y water potential, R the gas constant (8.3 joules/
°K mole) and T is temperature (300 °K, say).

The quasilinear model of a porous medium used in this paper assumes
that relative permeability and water potential are related exponentially,

k =exp(ay), (29)

and so (28) and (29) imply
H=x°, (30)
e =gM/aRT. (31

Field measurements and theoretical estimates of a suggest
02m <a ' <5m,
and so from (31),

1.4x107° <e<35x107%. (32)
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In the vapour zone, relative humidity must be less than unity. Taking
0.99 as some typical value for H, and 0.00007 as an estimate for & gives
x = exp(—144). This infinitesimal value for x suggests the quasilinear
model for liquid transport has broken down, and that the vapour zone forms
not in response to the decrease in relative humidity in the soil, but from the
decrease of liquid diffusivity, D,, to a value approximately that for vapour
diffusion, D, [5].

A conceptual model for evaporation about our pond is then saturated con-
ditions under the pond; a constant evaporation rate due to atmospheric con-
trol to some distance from the pond, beyond which the evaporation rate
decreases due to vapour control. In order to proceed analytically we sim-
plify these boundary conditions by first replacing the saturated condition,
(6), under the pond by

* OK‘
2w -5 =2, z=0, x<0, (33)

which will be approximately true away from the pond’s edge. To avoid confu-
sion with conditions above we use the symbol x*. Secondly, we assume that
approximate to the pond atmospheric conditions establish the evaporation
rate at the maximum rate E from saturated soil,

2;c‘—‘?9"; =-2E/F,; z=0, 0<x<x", (34)

F,=pgk/u, (35)

where x* is the nondimensional distance to which atmospheric control ex-
tends, and F 2 is the saturated conductivity, or equivalently the steady volu-
metric flux from gravity.
Thirdly, we assume that evaporation is zero beyond x”,
ax*

2k 57 =0; z=0, x>x . (36)

The solution of (5) subject to (33)-(36) is then
x*(x,z)=£ /_o:of(é)exp[iéx+z<l— 1+§2>]d§, 37

1@ =7, - Be™ - nyRg (144148 ), (38)
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and so at the limiting position x* of atmospheric control on evaporation,

i(F, +E) o ..
k*(x*,0) = %t—) e dE e (1 +1/1 +52)
4

—o0

B [ &
nF, -°°¢(1+\/1+£2) ,
=2(Fg+E) /oo e"’".\/nz—ldn_ E (40)
1

an ,73 2Fg ’

(39)

The integral in (40) yields an exponentially damped function of x*, and
so for x* sufficiently great, "(x*, 0) will become negative. Consequently
we fix x* by requiring

K"(x*,0)=0, (41)
which from (40) yields
e _ [7 E
o = \/; 2NE+E,) "’ (42)
or
x> In(1.6F,/E), (43)

since in nature E is much less than F .

The total volumetric rate of loss of water from the soil, per unit length of
pond perimeter, for the function k™ is 2Ex"/a. Equating this to TF, gives
from (43), (25), (35) and (10),

n(y — 1)8'(0)/2 = (nE/F,) In(1.6F,/E), (44)

and so y can be read off from Table 1.

As an example, let E be 0.005 m/day, and consider values of F, 2 between
0.025 and 1 m/day. Then y varies between about 10 and 1.3, and the
corresponding nondimensional distances x* in (43) are respectively 2 and 6.
The corresponding additional total outflow is respectively between 63% and
5% greater than those for no evaporation.

These numerical examples indicate for freely draining soils (with F 2 equal-
ling about 1 m/day) that evaporative flows are relatively unimportant com-
pared to the capillarity-evaporative flows. However, for poorly draining soils,
the converse may be true. This implies for poorly draining soils evaporative
fluxes may be important, and flux-like equations derived subject to the as-
sumption of zero evaporation may require alteration.
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7. Conclusion

The unsaturated steady flow from a shallow half-plane surface pond of
water into a half-space of porous material has been discussed subject to the
quasi-linear assumption that relative permeability is exponentially related to
water potential, and that non-wetted surfaces suffer a volumetric flux loss
proportional to the local value of relative permeability. The two latter as-
sumptions were made in order to obtain linear equations, but whereas some
experiments justify making the quasi-linear assumption, there appears to be
no corresponding experimental support for the evaporative loss equation in
3).

The resulting two-dimensional linear mixed boundary value problem is
solved by performing a Wiener-Hopf factorisation. A referee has pointed
out that an essentially identical factorisation is described by Noble ([3], page
91) for electromagnetic diffraction from a half-plane. Consequently, the fac-
torisation result is simply stated in this paper.

Inclusion of a linearised evaporative loss term in the unsaturated bound-
ary region yielded an additional logarithmic expression. This logarithmic
expression, absorbed into (18) featured prominently in the asymptotic re-
sults as well as in the evaluations of the total flow from the pond and the
total evaporative flow from non-wetted regions.
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