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1. Introduction. The notion of quantum field remains at this time still 
rather elusive from a rigorous standpoint. In conventional physical theory 
such a field is defined in essentially the same way as in the original work of 
Heisenberg and Pauli (1) by a function $(x, y, z, t) on space-time whose values 
are operators. It was recognized very early, however, by Bohr and Rosenfeld 
(2) that, even in the case of a free field, no physical meaning could be attached 
to the values of the field at a particular point—only the suitably smoothed 
averages over finite space-time regions had such a meaning. This physical 
result has a mathematical counterpart in the impossibility of formulating 
<t>(x, y, z, t) as a bona fide operator for even the simplest fields (in any fashion 
satisfying the most elementary non-trivial theoretical desiderata), while on 
the other hand for suitable functions / , the integral J<t>(x, y, zy t)f(x, y, z, t) 
dxdydzdt could be so formulated. This mathematical development began 
with the work of Fock (3), in which the field was treated in the conventional 
way without smoothing, but which gave a concrete representation for a free 
field that was capable of extension to a representation by bona fide operators, 
of the smoothed field operators, in the non-relativistic case, an observation 
that formed the basis for the independent work of Friedrichs (4) and Cook (5). 
The latter gave in rigorous terms the basic mathematical theory of the situa­
tion. Additional complications arise in giving an effective relativistic treatment, 
but it is now established that the suitably smoothed averages of the standard 
relativistic free real fields may be formulated as bona fide self-adjoint operators 
in Hilbert space in the strict mathematical sense (see below). 

There has not yet been analogous progress for the case of interacting fields, 
and in the work of Wightman (6), for example, it has merely been postulated 
that field averages could be given meaning as operators. The expectation 
values of functions of these operators in the so-called physical vacuum state 
determine the observable consequences of the theory, and instead of attempting 
to specify the theory by partial differential equations one may rather attempt 
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2 I. E. SEGAL 

this through a more direct description of such vacuum expectation values. 
The efforts of Kâllén and Wightman (7) have been directed towards a deter­
mination of possible forms for the vacuum expectation values of simple 
products of smoothed field operators, and in the case of the triple product 
certain highly refined analytical information has been obtained from the 
postulates of Lorentz-invariance, microcausality ( = ''local commutativity"), 
and positivity of the energy. The finiteness of the vacuum expectation values 
of such products may, however, be questioned, and in fact in conventional 
unrenormalized field theory they appear as infinite. In addition, even in the 
hypothetical case that these values are all finite, they do not necessarily fix 
the theory, that is, the vacuum expectation values of all (smooth) functions 
of the field operators. 

The situation is in a way rather similar to, although vastly more complex 
than, that with regard to the specification of a probability distribution by its 
moments. The moments need not be finite; and even when they are finite they 
do not necessarily determine the distribution (cf. for example (8)). The 
argument that such expectation values must be finite because they have 
simple physical interpretations (9A) is quite parallel to the argument that 
the second moment of the distribution on the line with element of probability 
7r_1(a2 + x2)~~1dx must be finite because it measures the physical parameter a 
representing the dispersion of the distribution ; speaking loosely in the manner 
of conventional physical theory, this second moment is easily seen to be 
proportional to a by an ''infinite constant." 

A rather natural way to attempt to remedy this situation is to pursue the 
analogue in the field-theoretic case for the characteristic function in the theory 
of probability distributions. This is always finite, is known to determine the 
distribution, and moreover is capable of being characterized intrinsically. The 
present paper obtains such an analogue in connection with a general (non-
pathological) state of a linear field. An interacting field on a particular space­
like surface can be transformed into a linear field (by taking it in the so-called 
interaction representation, as described for example in (9B)), whereupon its 
vacuum state transforms into an (analytically rather inaccessible) state of 
the linear field. The present results thereby have implications for the vacuum 
state of an interacting field. It would in certain respects be more useful to be 
able to treat the interacting fields directly, but the mathematically ambiguous 
character of such fields at present seems to make it out of the question to give 
any rigorous treatment of the matter, and in addition there is the apparent 
lack of any formal characterization for the generating functions isfe'S*'] 
(where E is the vacuum state expectation functional, $ is an interacting field, 
and / a general smoothing function) that would form the analogue for the 
"Heisenberg" fields of the present functional for a linear field. 

At any rate, we show here (rigorously) that a regular state of a linear field 
(of arbitrary unitary transformation properties) can be characterized by a 

functional on the corresponding classical wave functions. That is to say, for 
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example, that any regular state of the quantized hermitian Klein-Gordon field 
satisfying the equation 

• <t> = m2(j) 

is determined by a functional defined on the manifold of all classical real-
valued normalizable solutions of this equation. The generating functionals that 
arise in this way are characterized intrinsically, and it is shown how the state 
may be recovered from the functional. The attainment of these results requires 
the suitable grouping together of a fairly wide array of scientific developments, 
but the proofs do not involve any individual points of great technical difficulty. 

The present generating functional thus appears as considerably more 
economical, and mathematically distinctly more viable, than the character­
ization of a state through the expectation values of products of field operators. 
It has, however, a rather less direct connection with conventional practice 
in so-called renormalization theory than the product approach. 

In the present paper only Bose-Einstein fields are treated, but the same 
methods can be adapted to the case of Fermi-Dirac fields. 

2. The general linear boson field. The conventional treatments of 
linear field theory start from specific sets of linear partial differential equations, 
and arrive at formal operator-valued functions satisfying the same partial 
differential equations and certain non-trivial commutation relations, after a 
procedure that varies somewhat from equation to equation. The treatment 
for the photon case is in particular rather parallel to that for the scalar meson 
case, but involves additional technical complications, which are somewhat 
space-consuming and significantly complicate the notation. In addition these 
treatments have no immediate extension to systems that may be defined not 
by partial differential equations in ordinary space-time, but in a more general 
space-time manifold; or which are covariant not with respect to the Lorentz 
group, but with respect to a more general one. A further difficulty is a funda­
mental lack of uniqueness—for any given linear quantum field, there exist 
infinitely many others, satisfying the same commutation relations and partial 
differential equations, but no two of which are connected by a unitary trans­
formation (cf. (10)). 

It is therefore relevant that there is available a perfectly general, rigorous, 
and quite mechanical procedure for linear quantization, whenever the states 
of the classical system being considered form a complex Hilbert space (or in 
fact, somewhat more generally). The commutation relations in particular are 
fixed once the structure of this Hilbert space is specified, and no further 
examination of the field equations is required. This unique mathematical 
structure may appropriately be called the ''general linear boson field"; its 
use makes it possible to deal with the commutation relations for extensive 
classes of fields without the burden of complicated singular functions in the 
formalism, or the need to utilize generalized functions such as Schwartz' 
distributions in order to rigorize parts of the analysis. The quantization of a 
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photon field is in particular, for example, reduced to the classical (that is, 
unquantized) problem of showing that the real normalizable solutions of 
Maxwell's equations in a vacuum form a complex Hilbert space in a unique 
Lorentz-invariant manner. 

More generally, the normalizable classical solutions of a relativistic linear 
field equation form the complex Hilbert space § that is basic in the following 
for the treatment of the corresponding field. To present this development in 
the most elementary fashion, consider for example the real solutions of the 
Klein-Gordon equation 

• # = m24>. 

This is to be interpreted as a heuristic equation, for the relevant solutions are 
not necessarily conventional functions, but generalized ones. For a rigorous 
treatment it is simplest to take the Fourier transform 3> of <j> as basic. In 
such terms § consists of all complex-valued $ on the hyperboloid k2 = m2 

(here k is the vector with components (fe0, fei, k2, kz) and k2 denotes the Lorentz 
squared-length, k2 = kQ

2 - W - k2
2 - &3

2), such that $ ( - ft) = $(ft) 
(corresponding to the reality of the field) and with 

|*|*=J|$(*)|yx(*) < - , 
where dx(k) = \kQ\~ldk\dk2dkz, and is characterized as the unique regular 
measure on the hyperboloid (within a constant factor) that is Lorentz-in­
variant. The physical significance of the finiteness condition is more apparent 
if one deals, equivalently, with positive frequency rather than real solutions 
of the Klein-Gordon equation (cf. §3 of (11)), for these are conventionally 
interprétable as single-particle wave functions, and the normalizability 
corresponds to the existence in physical principle of an individual free particle 
(a non-normalizable wave function such as a plane wave having a somewhat 
ambiguous interpretation as a beam of particles). 

The description of the corresponding linear quantum field involves basically 
the formulation and labelling of the field observables, and in particular the 
specification of the commutation relations of the field variables. Convention­
ally this is achieved in a heuristic fashion, by postulating the existence of an 
essentially unique (that is, unique within unitary equivalence, when irreduci-
bility is present) operator-valued function <£ such that 

• (j> = m2<j) 

and the commutator [</>(x), <£(#')] = ~* iD(x — x'), where D is a certain 
singular function, and x is written in place of the 4-tuple (x, y, z, t). No such 
operator-valued function is known to exist, and actually there is practically 
conclusive evidence that it cannot exist in any literal sense; and in any event 
it could not be unique within unitary equivalence even if its range of values 
formed an irreducible set of operators. 

In order to deal in a mathematically clear and physically conservative way 
with such a matter, it is appropriate to make first a purely mathematical 
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construction and development; next to make a statement of what mathematical 
objects in this construction represent the observable or theoretically relevant 
physical objects associated with the physical system motivating the con­
struction ; and finally to establish the essential agreement between the resulting 
physical theory and the conventional one and/or experimental indications. 
The first part of this procedure should be mathematically rigorous ; the second 
part should be precise, but necessarily only in the sense of legal rather than 
mathematical definitions; while the third part may well involve quite heuristic 
elements, and in fact this is necessarily the case when dealing with a theory 
whose conventional form is heuristic, as is quantum field theory. Accordingly 
we proceed as follows. 

Mathematical construction. There is no compelling reason not to use 
terminology here that is indicative of the physical object being considered, 
and a great deal of circumlocution may be avoided in this way. In particular, 
the term "field" will be so used, but several different mathematical objects 
related to various heuristic types of fields must be distinguished. It will suffice 
here to deal with concrete, general, clothed, and zero-interaction linear boson 
fields. 

Definition 1. Let § be a real linear vector space, and let B be a given 
skew-symmetric bilinear form over § . 

(a) A concrete LBF (LBF = linear boson field) over ( § , B) is a map z —» 
R(z) from to § the self-adjoint operators in a complex Hilbert space $ such 
that 
(x) eŒ(z)eŒ(zn = eiR(z+zoeiB(z,zo (z> z> arbitrary in § ) . 

Two such fields, R(.) on $ and R'(.) on $ ' , over the same ( § , 5 ) , are 
unitarily equivalent in case there exists a unitary operator V from $ onto $ ' 
such that 

VR(z) V-1 = R'{z), for all z in H. 

(b) A bounded field observable of a given concrete LBF is defined as a bounded 
operator on $ that is a limit of a uniformly convergent sequence of operators, 
each of which is in the weakly closed ring of operators generated by the 
eiR{z), for z ranging over some finite-dimensional (but otherwise arbitrary) 
linear subspace of § . The set of all bounded field observables is then a uni­
formly closed self-adjoint algebra of operators on $ (cf. (12), referred to 
henceforth as " I" ) . 

(c) Two concrete LBF's R(.) and R(.)' on $ and $ ' , over the same 
( § , B), are said to be physically equivalent in case there is a one-to-one corres­
pondence between their respective bounded hermitian field observables 
preserving the operations of addition and squaring. A general LBF over 
( § , B) is defined as a physical-equivalence class of concrete LBFs. We note 
that when § is a complex Hilbert space and B is the canonically associated 
skew form (cf. below), there is only one general LBF. 

https://doi.org/10.4153/CJM-1961-001-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1961-001-7


6 I. E. SEGAL 

(d) A clothed LBF over ( § , B) is a couple consisting of a general LBF' 
over ( § , 5 ) , together with a given state E of the (abstract) algebra of field 
observables. E is said to be regular in case its restriction to the weakly closed 
ring of operators generated by the eiR(z\ as z ranges over a finite-dimensional 
subspace of § on which B is non-degenerate, is weakly continuous relative 
to the unit sphere of this ring, for every such finite-dimensional subspace, and 
some concrete representative for the general LBF. An LBF is properly clothed 
if the associated state E is regular. 

(f) When a real linear vector space § has in addition a designated structure 
as a complex Hilbert space, compatible with its real-linear structure, the nota­
tion ( § , B) will be understood to refer to § as a real linear vector space, 
with B(z, z') = \Im\{z, z')}\ and the notation § alone may refer to the 
couple ( § , B)} when it is clear from the context that it is this couple that is 
relevant. 

(g) As an example of a clothed LBF the zero-interaction LBF is defined as 
that clothed LBF over the complex Hilbert space § for which the given 
state E is invariant under the induced action of all unitary operators on § 
(cf. I, and especially Cor. 3.1 showing the uniqueness of the free LBF). 

Physical interpretation. If <j> is for example the conventional real Klein-
Gordon field and / is any smooth function on space-time that vanishes at 
infinity, the field average j<t>(x)f(x)d±x is just such an R(z). The appropriate § 
is just that defined above, consisting of all normalizable solutions of the 
Klein-Gordon equation; the appropriate z is that function on the mass hyper-
boloid (that is, the manifold k2 = m2) that coincides there with the complex 
conjugate of the Fourier transform of/; and the appropriate skew-symmetric 
form B{z, z') is just that defined equivalently as B(z,zf) = %jJD(x — x') 
f{x)f'{x')d^xd^x', where z' is related t o / ' in the same fashion as z t o / , and D 
is the conventional singular function such that [4>(x), </>(%')] = —iD(x — x'), 
or, in a form in which the finiteness of B{z, z') is more apparent, 

B(z,z') = - ~ z ( s&ikoz'(k)z(-k)d\(k) 

where M denotes the mass hyperboloid. The equation (x) is the bounded 
(Weyl) form of the infinitesimal relation 

[R(z),R(z')] = -2iB(z,z'), 

to which it is formally equivalent. 
Conventionally it was assumed, then, that the Klein-Gordon field is concrete 

and irreducible, and that this sufficed to define the field uniquely. The dis­
covery that in actuality this was very far from being the case led to the 
introduction of general linear fields in I, in which the more sophisticated form 
of quantum phenomenology developed originally in (13) is employed. The 
notion of physical equivalence above seems at first glance insufficiently 
restrictive, but it is shown in (13) that it implies that the two systems have 
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corresponding pure states, corresponding observables have identical spectral 
values and probability distributions in given states, etc., so that the two 
systems are in fact in all observable respects the same. 

The distinguished state of a clothed LBF is physically the vacuum state, 
and a more conventional formulation may be obtained from the corres­
pondence between states and representations of operator algebras, which leads 
to the result (cf. I) that for any properly clothed LBF there is a concrete LBF 
with a distinguished vector v, whose transforms under the eiR{z) span the 
representation space $, and plays the role of the conventional physical vacuum 
state vector, in that the vacuum expectation value of the observable repre­
sented by the operator A is (Av,v). Conversely, such a concrete LBF with 
distinguished vector v gives rise to a properly clothed LBF associated with it 
in the foregoing fashion; and the concrete LBF-with-vector is uniquely 
determined, within unitary equivalence, by the clothed LBF. 

The definition of regular state is rather technical, but is admissible from a 
purely physical point of view, since only those values of the state on the field 
observables are involved; and is justified by the existence of various equivalent 
formulations. It is surely reasonable from an empirical-physical viewpoint to 
require that for a physical state E, E[eitR(z)] be a continuous function of /, 
for any fixed vector z in § , and the regular states are precisely those that have 
this property, and in addition are determined in a natural way by the expecta­
tion values E[eiR(z)] for all z. Alternatively, a regular state is one whose restric­
tion to any subsystem of a finite number of degrees of freedom (that is, the 
ring of operators generated by the eiR(z) as z ranges over a finite-dimensional 
subspace of § ) is a normalizable (possibly mixed) state in essentially the 
conventional sense, that is, it has the form E(A) = tr (AD) for some operator 
D of absolutely convergent trace. It should be noted that the present notion 
of regularity is more stringent than that employed in I, which permitted a 
theoretical generality that is physically not entirely appropriate. In fact 
Corollary 3.1 of I is correct (at least in proof) only with the present notion of 
regular state, by virtue of the possible existence of a pathological state other 
than the zero-interaction vacuum, which would agree with the zero-interaction 
vacuum on all sufficiently smooth observables, in particular on all observables 
that are uniform limits of products of those of the form f(R(z)), for some z 
and continuous function / that vanishes at infinity, but not on the weak limits 
of such. A state that is not determined by its values on such observables could 
be fully determined only through the use of infinite fields; it could never be 
obtained as a limit of states in cut-off theories. The restriction to regular 
states thus amounts to a type of universally covariant cut-off; in place of it 
one could substantially limit the observables to those '"smooth" ones obtainable 
in the fashion indicated, which it can reasonably be argued are the only ones 
that can actually be observed even conceptually. 

An interacting relativistic field on a particular space-like surface, in the 
interaction representation, gives a formal example of a linear boson field clothed 
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by the physical vacuum; in conventional theory, this clothing degenerates as 
the space-like surface recedes or advances into the infinite past or future, 
and the zero-interaction LBF is obtained. 

Formal equivalence of the present and the conventional formalisms. It must 
be shown how to define the conventional quantized field <£(x); that this 
satisfies the relevant partial differential equation and also the canonical 
commutation relations. To this end let h J denote the projection of the delta-
function at the point x on the manifold of solutions of the relevant partial 
differential equation, for example, bj is the reciprocal Fourier transform of the 
function in momentum space that agrees with eik'x on the mass hyperboloid 
and vanishes outside the hyperboloid, in the case of the Klein-Gordon equation. 
Then set <j>(x) = R(bx

f) ; dx
f is an improper element of § , but this is inevitable 

since </>(x) is an improper operator. That <j> as thus defined satisfies the given 
partial differential equations is a simple deduction from the Parseval formula 
for Fourier transforms. That the canonical commutation relations hold follows 
by substitution of 8X and bx*' for z and z' in the relation \R{z), R(z')] = 
- 2iB(z,zf). 

It must also be shown that conversely, from such a conventional quantized 
field </>, the present operators R(z) can be constructed. If / is any smooth 
function on space-time that vanishes at infinity, the operator j(j>(x)f(x)diX 
is defined as R(z), with z equal to the projection of/ on the space of solutions 
of the relevant partial differential equation. For a non-scalar field this definition 
extends with the use of the Lorentz-invariant inner product in the finite-
dimensional spin space for the field in question. Although the projection in 
question is singular as an operator in a Hilbert space, the s's may be analytically 
well defined for appropriate/, and thereby the R(z) also. 

3. Characterization and uniqueness of the generating functional. 
For any state E of a general linear boson field over ( § , B), the functional 
/z(z) = E[eiR(z)] is well defined, and may be called the generating functional 
for the state. From it, the expectation values of arbitrary products of the field 
(at distinct points) may be obtained by differentiation, at least heuristically, 
when such expectation values are finite. For foundational purposes what is 
essential is 

THEOREM 1. A (complex-valued) function IJL on § is the generating functional 
of a regular state E of the general linear boson field over ( § , B) with non-degenerate 
B if and only if the restrictions of /x to arbitrary finite-dimensional subspaces of 
§ are continuous, /z(0) = 1, and 

j,keF 

for arbitrary Zj in § and complex numbers ajt F being any finite index set. The 
functional JJL uniquely determines E. 
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The "only if" part follows from the obvious fact that 

(z:«ie"(,i))*(i:^"(,i>)>o, 
together with the relation (x). To prove the "if" part, let /JL be given satisfying 
the stated conditions. Put K0 for the set of all complex-valued functions on § 
that vanish except at a finite set of points, with the inner product 

( / ,g)= Z /(*)0OOM(* - 2VB(2 '2, ) 

z, z' 

( /and g in $0). This inner product is a positive semi-definite hermitian form, 
so the set of all / in $ 0 with (/,/) = 0 forms a linear subspace $</ of $o, 
and the quotient $ 0 /$o ' = $1 (say) has canonically defined on it a strictly 
positive definite hermitian form : 

(/', g') = ( / , « ) ; / ' = / + Ac' and g' = g + «,'. 

Now let Uo(z'), for z' in § , denote the transformation on $ 0 : 

f(z)->eiB<"'«f(z-z?). 

Then Uo(z') is a linear operator with the inverse Uo( — zf). Also, 

(UoWf, UoWg) = (f,g) 

for arbitrary/, g, and z'. It follows that the map 

U1(z'):f-^Uo(z')f+ t o 

is a well-defined linear transformation on $1, that it has the inverse Ui(— z'), 
and that 

(C/i («')/', £ / i W ) = (/ ' ,g ') . 

Hence f/i(s) extends uniquely to a unitary transformation U{z) on the 
completion $ of $1. Now Uo(z)U0(z') = e ^ ^ Z / o O s + A from which it 
follows readily that 

U{z)U(z') = eiB(z>zfW(z + zf). 

In particular, [U{tz): — 0° <t< °° ] is a one-parameter group of unitary 
operators in $ . This one-parameter group is continuous; to show this it 
suffices, by the density of $1 in $, to show that (U(tz)f, g') is continuous 
for arbi t rary/ ' and g' in $1. But 

([/(te)/', g') = £ e
i B ( , z 'u ) / (M - fe)0(«')M(« - «')elfl<"',,'). 

Now if / has the values <n, . . . , <jn at vi, . . . , vn, respectively, and g has the 
values ri, . . . , rw at these points, and both functions vanish elsewhere, this 
sum is 

n(Vj + tz — vk) e e <TjTk, 
j,k 
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which represents a continuous function of t by the assumption on /x. Thus 
the one-parameter group has a self-ad joint generator R(z), and the R(z) 
satisfy the relations (x). 

If /o denotes the function defined by the equations /0(0) = l,/o(s) = 0 
for z 9* 0, then (/</,/</) = 1, and 

(U(z)U,U) = /*(*). 
Thus setting 

E(A) = (Af0',U), 

E is regular and has characteristic functional /z. 
To show that M determines E uniquely, let E' be an arbitrary regular state 

with characteristic functional /z. Then E! is weakly continuous relative to the 
unit sphere of the ring 21™ generated by the eiR(z) for z in 2ft, for all 3ft on 

which B is non-degenerate, and some concrete LBF. If E is similarly weakly 
continuous, etc., relative to the same concrete LBF, then the unicity follows 
from the circumstance that the finite linear combinations of the eiR(z\ z in StXÎ, 
form an algebra 21 ™ whose weak closure is 21™; this implies that the unit 

OjVJC VJl 

sphere in 21 ^ is weakly dense in that of 21™, according to a variant of an 
o,))Jt VJl 

argument due to von Neumann (14) (for full details cf. (15)). The assumed 
weak continuity of E and E' on 2Ï™ relative to the unit sphere, together with 

their agreement on the unit sphere of 2Ï ™, then implies their equality. 
Q,JJC 

To conclude the proof it therefore suffices to show the 

LEMMA. If a state E is weakly continuous on 21™ relative to the unit sphere 

for one concrete LBF, then the same is true for all concrete LBFs. 

To prove this, observe that as B is non-degenerate on 9ft, co-ordinates may 
be chosen so that in 9ft, z = (#i, . . . , xn) © (yi, . . . , yn) (9ft being of dimen­
sion 2n), and B has the form B(z,zf) = ^2jc(xkyk

f — xk'yk). The relations 
(x) then imply those on which von Neumann's proof of the uniqueness of the 
Schr0dinger operators is based, so that by his result, 21™ is, within multiplicity, 

and unitary equivalence, the conventional system of bounded observables in 
quantum mechanics for a particle with a 2?z-dimensional phase space. That 
is to say, 21™ is unitarily equivalent to an n-fold copy, for some finite or 

infinite cardinal number n, of the ring of operators generated by the exp(isqj) 
and the exp(itpk) (— oo < s, t < °° ; j , k = 1, 2, . . . , n) in their action on 
the space L2(En) of all complex-valued square-integrable functions on Euclid­
ean w-space. All that is relevant here is that the weak topology on the unit 
sphere of an operator ring is easily seen to be independent of the multiplicity 
n of its representation. Now for any two concrete LBFs, the resulting 21 are 
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within unitary equivalence multiples of the same ring of operators, and the 
lemma follows. 

This concludes the proof of the theorem, but it also follows and seems worth 
pointing out explicitly that we have the 

COROLLARY. If Wl is a linear subspace of § on which B is non-degenerate, 
then the ring 2 1 ^ of all field observables based on M is a factor of type Im, and 

the restriction of E to %OM has the form 

E(X) = tr(XDm) 

for some operator D^ of absolutely convergent trace relative to 2tçrY>. 

This is an immediate consequence of von Neumann's result used as above, 
together with the known form of the states of the ring of all bounded operators 
on a Hilbert space that are weakly continuous relative to the unit sphere. 
For this last result cf. for example (16, Theorem 14). 

4. Some examples. The generating functional of the zero-interaction linear 
boson field over a (complex) Hilbert space may be computed explicitly as 
follows. If C(z) denotes the creation operator for a particle with wave function 
z, as defined for example in (5), and R(z) denotes the closure of (C(z) + 
C(z)*)/V2, while E denotes the zero-interaction vacuum state, then the 
evaluation of E[eiR(z)] reduces to the case when § is one-dimensional (see 
Cor. 3.6 of (17)). The representation of eiR(z) in terms of the one-parameter 
unitary groups generated by the canonical p's and g's in one dimension leads 
to a familiar type of integral involving the normal distribution, and ultimately 
to the result 

for the zero-interaction vacuum generating functional. 
This may be used to obtain zero-interaction vacuum expectation values of 

arbitrary products of field values by noting that formally one has for any 
state E, 

E\R{Zl) . . . R{zn)} = rn{dn/dh . . . dtn}E[eihB{ll). .. e""B<*°]|«1-...-«^o, 

while 
illR(zi) itnR(Zn) _ iR(tlZl + ...+ tnZH)+i . tjtkB(Zj.Zk) 

which has zero-interaction vacuum expectation value 

j . k 

Of course, in general the indicated derivative as well as the expectation value 
of the product of field operators will fail to exist. However, it is easy to justify 
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In the bare field case the foregoing formal equality, and thereby obtain explicit 
expressions for the bare vacuum expectation values of products of fields. In 
the simplest non-vanishing case, there results the formula 

(also easily obtainable directly) having the conventional interpretation that 
the zero-interaction vacuum expectation value of the product of two field 
values is (1/2) the singular function providing the kernel for the symmetric 
form giving the Lorentz-invariant inner product, as is well known for special 
fields. 

Turning to general states, if all the regular states could readily be expressed 
in terms of zero-interaction field quantités, the use of the general LB F might 
be avoidable. Theoretically this would be rather extraordinary, in view of the 
general situation in quantum fields, and in fact quite explicit examples can 
be constructed to show that this is not the case. To show simply the existence 
of regular pure states that are not normalizable in the Fock-Cook representation, 
that is, not of the form £(^4) = (Av, v) for some normalizable vector v, one 
may proceed as follows. Take the representation of the bare field in terms of 
the space Z^Opn n) of square-integrable functionals over a real subspace § r 

of § such that § = § r + OQT, as given in (17). Let 6 denote the auto­
morphism of the algebra of field observables over § taking each canonical 
p into 2p and each canonical q into q/2 (this exists by Theorem 2 of I), and 
define Ee as the transform of the bare vacuum state under the induced action 
of 0, that is, £«(^4) = E(Ae), where £ denotes the bare vacuum state and 
A —» Ae the action of 0. Then Ee is evidently regular and pure, but may be 
seen to be non-normalizable as follows. 

As a basis for an indirect argument, assume that Ee(A) = (Au, u), for 
some u in £ 2 (§r) . Then for arbitrary x in § r , using the notation and Theorem 
3 of (17), with c = i 

Ee(eiQw) = f eix-v\u(y)\2dn(y), 

and since Ee(eiQ(x)) = E(eiQ(-x)/2), which is readily evaluated as 

it suffices to show 

f eix'vF{y)dn{y) ^ er1/8l*l2 

if £ i s an arbitrary element of £ i ( § n n). Such an £ i s an Li-limit of polynomial 
functions, so it suffices to show that if G(.) is any polynomial and 

g(x) = feta"G(y)dn(y), 

then 
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a = SUpx\g(x) - e-1/8l*'2| > Ô, 

where ô is > 0 and independent of G. But g(x) has the form 

g{x)=p{x)e-^\ 

where p is a polynomial, based, say, on the finite-dimensional subspace 
W of § . Now if x is in the orthocomplement of 9ft, p{x) = p(0)> whence 

^ • r I - x l z l 2 - l / 8 | z | 2 i 

a > inf« supoo<oo \ae 4 — e |. 
Simple calculus leads from this to the bound a > f. 

5. Special dynamics in terms of generating functionals. For the 
special but significant case of a Hamiltonian that is quadratic in the canonical 
variables, there is a remarkably simple formulation of the corresponding 
quantum dynamics. It gives the explicit time development of the generating 
functional, and hence of the system, in terms of the corresponding classical 
dynamics. 

If a classical motion with Hamiltonian quadratic in the canonical variables takes 

z —» Vtz( — oo < / < oo ; t = time) 

then the corresponding quantum-mechanical motion transforms generating 
functionals as follows: 

MO) ->n(Vtz). 

To prove this, note that if the Hamiltonian is quadratic, then the motion 
in phase space § is linear. That is to say, for any fixed t, Vt is a non-singular 
transformation preserving the fundamental skew form B(z,z;) = ^kiPkQk 
— Pk<Lk), where z = (pu . . . , pn) © (#i, . . . , g»), where n may be finite, or 
there may be infinitely many degrees of freedom, in which case the appropriate 
modifications in the notation are obvious (cf. (18) for the infinitesimal situa­
tion in a finite number of dimensions and (19) for the global situation in any 
number of dimensions). Now for any such transformation, the corresponding 
quantum-mechanical motion may be uniquely given by the condition that it 
transform R(z) into R{Tz) (cf. I), so that it has precisely the stated effect 
on the generating functional. 

6. Restriction to regular observables instead of regular states. 
Instead of dealing with a restricted class of states of an extensive system of 
observables, one may contemplate dealing with all states of a restricted sub­
system of observables. A general bounded self-ad joint operator is an observable 
only in a quite theoretical way; a class of operators slightly closer to actual 
measurements than those merely generated by the canonical variables would 
be those expressible explicitly in terms of them. It turns out that for systems 
of a finite number of degrees of freedom, which may be used to approximate 
infinite systems, there is a natural way to make this idea effective. 
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Definition 2. A regular observable over a finite-dimensional linear space § 
with distinguished skew-symmetric form B, relative to a concrete LB F over 
( § , B), is one of the form 

f eiR^f(z)dz 

or uniformly approximable by such. Here / is integrable over § , while dz is 
the element of measure determined by B. 

The foregoing integral may be taken in the strong or weak operator topo­
logies (in the sense of (20)). The resulting class of operators is unaffected by 
a change in the measure employed, within absolute continuity. It is not 
difficult to verify that the notion of regular observable is invariant under 
physical equivalence, and therefore may be applied to elements of the general 
LBF over a finite-dimensional space. 

THEOREM 2. The regular observables form a uniformly closed self-adjoint 
algebray every state of which extends uniquely to a regular state of the general LBF 
over ( § , B), & being finite-dimensional; and every regular state arises in this way. 

That the regular observables form an algebra follows without difficulty 
from the relations (x), the general properties of the integrals involved, and 
the Fubini theorem. Now for any state E, 

\E[l^emz)f{z)dz'\\ < f$tf®\dz' 
so that by the known form of the general continuous linear functional in L±y 

these exists a bounded measurable function \i on § such that 

By the positivity of E> fx satisfies the inequality 

fx(z - z')eiB(z'z'f(z)f(z')dz dz' > 0. 

If [x were continuous, this would imply that /x is a generating functional. Now 
it is well-known that a measurable integrally-positive-definite function on a 
locally compact group differs from a continuous positive definite function 
on the group on a null set (in the sense of Haar measure on the group). An 
argument similar to that involved in the proof of this result yields the corres­
ponding result here, or this result may be derived from the theory of positive 
definite functions on groups; here we take the latter course, as this is illuminat­
ing in certain additional respects. 

Let G be the group (cf. (18)) of all pairs (s, s) with z in § and s real, and 
the multiplication 

(*, s) . (*', s') = (z + z',s + sf + B(z, z')). 

JJ 
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Then G is a Lie group with the obvious manifold structure. Set \(z, s) 
= iJi(z)e~is; then X is a measurable and integrally positive definite function 
on G, as is readily verified. By the result cited, it differs on a null set from a 
continuous positive definite function. Now § may be identified with the subset 
of G consisting of all elements of the form (z, 0), the map z —» (z, 0) being a 
homeomorphism into. It follows that /x differs on a null set in § from a con­
tinuous function \x'. 

Now \x will satisfy the positivity condition given in Theorem 1, as follows 
from the integral positivity condition by a simple approximation argument. 
Since (n'(zj — zk)e

iB{Zj'Zk) \ j , k = 1 , . . . , n) is a positive semi-definite hermitian 
matrix for arbitrary Z\,..., zn, and p! cannot vanish identically since E ^ 0, /x(0) 
must be positive. Setting JU" = M'/V (0), M" satisfies all the conditions of Theorem 
1, so there exists a regular state E' of the general LBF, say SI, over ( § , B), whose 
generating functional is / / ' . Now the unit sphere of the algebra 9? of regular 
observables is weakly dense in that of 21, by the result cited above, together 
with the easily established fact that the weak closure of SR is 21. In particular, 

sup Qr E'(X*X) = sup ^ E (X*X) 
XM, \X\<1 XeiK, \X\<1 

which shows, since E' is a state of 21, that the right side of the foregoing equality 
has the value unity. On the other hand, 

£'[ J'«"<*/(*)&] = (M'(O))-' f J(z)f(z)dz 

for arbitrary continuous / vanishing outside a compact set, as the integrals 
may then be taken in the Riemann sense; and by a simple approximation 
argument, it results that E'(X) = ( / / ( O ) ) " ^ ^ ) for arbitrary X in 9Î. Now 
as £ is a state of 9î, 

sup E(X*X) = 1, 
Xt<K,\X\ = l 

and it follows that /x'(0) = 1. 
Thus there exists a regular state E' of the full general LBF extending the 

given state E of the regular observables. That E' is unique follows from the 
density of the unit sphere of 3Î in that of 21. Conversely, if Er is a given regular 
state of 2Ï, its restriction to 9? is a positive linear functional which by the 
argument just given must have unit norm, and so be a state E. 

It should be remarked that the connection with the theory of positive definite 
functions can be misleading, if not utilized with care. For example, when 
5 = 0, the condition of Theorem 1 becomes ordinary positive definiteness 
(apart from the normalization), but the theorem is then irremediably false, 
as it asserts essentially that an arbitrary positive definite function is the 
Fourier-Stieltjes transform of an absolutely continuous measure. The introduc­
tion of a non-degenerate B thus has roughly the qualitative effect of eliminating 
the possible discontinuous and continuous but singular parts of the associated 
state. 
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7. Possible further developments. A number of problems emerge from 
the foregoing work. Some typical ones of interest are as follows. 

1. The zero-interaction vacuum is the only regular state of the general 
LBF over a complex Hilbert space § that is invariant under all unitary 
operators on &. Presumably it is, more cogently, the only such state invariant 
under a physically relevant representation of the Lorentz group, say, that 
associated with a relativistic particle of integral spin. For a particle of positive 
mass ( = minimum proper value of the infinitesimal generator of translations 
it time), it is clear that there exist no normalizable states in the Fock-Cook 
representation other than the zero-interaction vacuum that are invariant, 
but it remains to be proved that this is the case for all regular states. In the 
vanishing mass case the situation is less clear, and correspondingly more 
interesting. 

2. It seems probable that any symplectic transformation in a complex 
Hilbert space § (that is, a real-linear transformation leaving invariant the 
imaginary part of the inner product) will effect a transformation of the zero-
interaction vacuum of the general LBF over p̂ into a state that is not normaliz­
able in the Fock-Cook representation, except when the transformation is 
unitary; this would generalize the example given above of such a state.* 

3. When § is finite-dimensional, i±(z) is essentially the Fourier transform 
of Wigner's quasi-probability distribution ((21); cf. also (22) and the literature 
cited there, especially the paper by Moyal). Now a classical motion takes a 
z into a z', while a quantum-mechanical one takes a generating function n into 
another y,'> The determination of the precise relation between y! (z) and 
JU(Z'), shown above to be identical in the case of a quadratic Hamiltonian, 
is connected with the problems of interpretation considered by Wigner and 
later authors. Although it seems fairly clear that no exact result is to be 
hoped for, even a simple approximate relation between the two functions 
might well be quite useful. 

4. The difficulty forming the basis of the preceding problem also suggests 
the more extensive question of the extent to which a theory similar to the 
present one, but covariant under the entire group of classical contact trans­
formations rather than merely the symplectic group, can be set up. In such 
a theory the analogue to the smoothed field operators R(z) would perhaps 
be a function R(Z) defined for infinitesimal contact transformations Z, and 
satisfying in place of the commutation relations involved above, the relations 

[R(Z), R{Zf)] = R([Z, Z'\) + Q (Z, Z'), 

where 12 denotes the fundamental second-order differential form on § (that is, 
the well-known form ^jcdpkdqk in the case of a finite number of degrees of 
freedom, while in the infinite case it is an analogous form determined by the 
field commutators). The main difficulty here is not the presence of the term 

* Remark added in proof. This result has been established in the meantime by David Shale. 
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R([Z, Z']), which was absent above because Z and Z' were essentially infini­
tesimal translations in § and so had vanishing commutator, but rather the 
circumstance that the Œ (Z, Z') are not constant numbers, but scalar functions 
on § , the multiplications by which naturally do not commute with the Z's. 

A possible way around this difficulty is the employment of a suitable 
analogue to the group G employed above, such as the group whose Lie algebra 
(that is, associated infinitesimal group) consists of all pairs (Z, /) , where Z 
is an infinitesimal classical contact transformation a n d / is a function on phase 
space, with the commutation relations 

[(Z,/) , (Z' , / ' )] = ([Z, Z'], Zf -Z'f + Q (Z, Z')). 

That these define a Lie algebra (that is, notably that the Jacobi conditions 
hold) follows from the fact that 12 is a closed form, using the expression for the 
derivative of a form in terms of the form itself, together with brackets of 
vector fields and the operations of the vector fields on values of the form 
(cf. (23), § 1). A pair such as (Z,/) may be interpreted as the generator of a 
contact transformation in the tangent bundle of the phase space § , a con­
struction that has been suggested in another form and connection in (24) for 
the finite-dimensional case, and which leads to difficulties of interpretation 
as pointed out there. On the other hand, the linearity of § has ceased to play 
a role; the same construction can be made for any manifold § (endowed with 
a suitable form 12, determined in physics from the equations defining § ) . The 
approach therefore opens up a possible way of quantizing non-linear systems 
covariantly with respect to the group of all classical contact transformations. 
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