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Crossed Products by Semigroups
of Endomorphisms and Groups
of Partial Automorphisms

Nadia S. Larsen

Abstract. We consider a class (A, S, α) of dynamical systems, where S is an Ore semigroup and α is

an action such that each αs is injective and extendible (i.e. it extends to a non-unital endomorphism

of the multiplier algebra), and has range an ideal of A. We show that there is a partial action on the

fixed-point algebra under the canonical coaction of the enveloping group G of S constructed in [15,

Proposition 6.1]. It turns out that the full crossed product by this coaction is isomorphic to A oα S.

If the coaction is moreover normal, then the isomorphism can be extended to include the reduced

crossed product. We look then at invariant ideals and finally, at examples of systems where our results

apply.

Introduction

Crossed products of C∗-algebras by semigroups of endomorphisms have been suc-

cessfully employed in giving direct, elegant proofs of the uniqueness of C∗-algebras

generated by various families of isometries, such as Toeplitz algebras of totally or-

dered abelian groups [2] and of certain nonabelian groups [15], which include the

Toeplitz-Cuntz algebras of [7]. Another variant of crossed product which is different

from the classical situation of group actions by automorphisms, involves partial ac-

tions by automorphisms, and was introduced by Exel [8] to study circle actions on

C∗-algebras. Crossed products by partial actions were treated by McClanahan [21] in

the setting of more general groups, and were subsequently characterised from differ-

ent perspectives by Quigg and Raeburn [26], and Exel, Laca and Quigg [11]. Further,

the techniques of partial actions were used by Exel and Laca to construct and study

Cuntz-Krieger algebras associated to infinite matrices [10].

Most of the examples of [26] of C∗-algebras which are partial crossed products

are also known to be semigroup crossed products; see e.g. [5] for the Cuntz algebras

On and [15] for the Toeplitz-Cuntz algebras and more general Toeplitz algebras asso-

ciated by Nica [23] to quasi-lattice ordered groups. The same is true by [15] for the

universal C∗-algebra of a quasi-lattice ordered group, which is identified in [11] with

a partial crossed product.

We were asked by R. Exel whether the semigroup crossed products of [20] are

isomorphic to crossed products by partial actions. It is our goal here to answer this

question in the affirmative by realising a certain class of semigroup crossed products

as full partial crossed products. The setting of [20] includes many of the important
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examples available at present: the Hecke C∗-algebra of Bost and Connes [4, 16], the

generalisations of this in [3, 12] and the two-prime analogue of [19], and certain

Hecke C∗-algebras from topological dynamical systems introduced by Brenken [6].

There are two established methods to tackle semigroup crossed products: one is to

use direct arguments, based on the universal characterisation of the crossed product

as a C∗-algebra generated by covariant representations; the other is to view the semi-

group crossed product as a full corner in a unique group crossed product obtained by

dilation; cf. [14, 24] for the most general case to date, namely that of actions of Ore

semigroups. Both methods have their importance. The first one provides, as men-

tioned in our first paragraph, an effective framework for studying Toeplitz algebras.

Further, it was used by Laca and Raeburn [16] and Brenken [6] to identify the Bost-

Connes Hecke C∗-algebra as a semigroup crossed product, and afterwards by Laca

in his characterisation of phase transitions on certain semigroup crossed products

[13], which generalises the remarkable result of Bost and Connes from [4]. Dilation

theory was used by Murphy to study nuclearity and simplicity of crossed products

by abelian semigroups [22], and by Laca and Raeburn to compute the primitive ideal

space of the Bost-Connes Hecke C∗-algebra [17].

To prove Theorem 2.1, which is our main result, we use the universal character-

isations of semigroup and partial crossed products, which are also invoked in [11],

although there the arguments are of a different nature due to the specific internal

structure of the C∗-algebras. Our approach to partial actions and their associated

crossed products is based on [26], where the equivalence of the underlying concepts

with the similar definitions employed in [21, 11] is established. The features of the

systems of [20] together with the ingredients in the main result of [26], which char-

acterises C∗-algebras that are (reduced) partial crossed products, will lie at the base of

our choice of semigroup crossed products and their subsequent realisation as partial

crossed products.

We recall in Section 1 the basic concepts needed to define semigroup crossed prod-

ucts and partial crossed products, and we introduce our class (A, S, α) of semigroup

dynamical systems. We assume that S is an Ore semigroup, for which therefore there

is an enveloping group G, such that G = S−1S, and G is uniquely determined up to

canonical isomorphism. In Section 2 we construct a partial action of G on the fixed

point algebra of A o S under the canonical coaction defined in [15, Proposition 6.1].

For this we use an idea from the proof of [26, Theorem 4.1]. Theorem 2.1 shows

that the semigroup crossed product A oα S is isomorphic to the full crossed product

of the fixed point algebra by the partial action of G. Section 3 specialises to some

semigroup systems for which the fixed point algebra will be isomorphic to A. For

such systems we compare the ideals of A which are extendibly α-invariant, and the

ideals that are invariant under the resulting partial action. The extendibly invariant

ideals (called so by Adji, see for instance [1]), preserve short exact sequences under

the formation of semigroup crossed products (cf. [1] in the case of positive cones of

totally ordered abelian groups and [18] for Ore semigroups). Here we show that the

slightly intricate condition of extendible invariance is the same as invariance in the

sense of partial actions (defined for instance in [11, Section 2]). The last section is

devoted to examples.

After this paper was submitted, the author’s attention was drawn to the results
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in [9], from which our Theorem 2.1 can also be deduced.

1 Semigroup Systems and Partial Systems

We recall (see e.g. [15]) that a semigroup dynamical system (A, S, α) consists of a C∗-

algebra A, a semigroup S, and an action α of S by endomorphisms of A. A pair (π,V ),

where π is a non-degenerate representation of A on a Hilbert space and V is a rep-

resentation of S by isometries on the same space, is called a covariant representation

if

π
(

αs(a)
)

= Vsπ(a)V ∗

s , for a in A and s in S.

The crossed product, denoted A oα S, is generated as a C∗-algebra by a covariant

representation (iA, iS), where iA : A → A oα S preserves approximate units and

iS : S → M(A oα S) is a semigroup homomorphism. This pair is universal, in

the sense that to any covariant representation (π,V ) of (A, S, α) corresponds a non-

degenerate representation π×V of the crossed product, such that (π×V ) ◦ iA = π,

and π ×V ◦ iS = V .

Let S be a cancellative semigroup which is right-reversible, in the sense that for any

s, t in S we have Ss∩ St 6= ∅. Such S is called an Ore semigroup (see [14] for examples

relevant to C∗-algebras). There is an enveloping group G such that G = S−1S, which

is unique up to canonical isomorphism. We shall assume that S ∩ S−1
= {e}, where

e is the unit element of G.

The semigroup systems (A, S, α) that are of interest to us have the properties:

(i) S is an Ore semigroup with enveloping group G.

(ii) The action α : S → End(A) is by injective endomorphisms;

(iii) For each s in S, αs is extendible, i.e. it extends uniquely to a strictly continuous

homomorphism αs : M(A) → M(A), which takes the identity 1M(A) into a

proper projection.

(iv) αs(A) is a non-zero closed ideal of A, for every s ∈ S, and any two such ideals

have non-zero intersection.

The assumption (iii) guarantees that the pair (π̄,V ) is covariant for
(

M(A), S, ᾱ
)

whenever (π,V ) is covariant (cf. [1] or [18, Remark 1.2]). By [24, Theorem 4.5],

(i)—(iii) imply that there is a crossed product (Aoα S, iA, iS), such that iA is injective

and

(1.1) A oα S = span {iS(s)∗iA(a)iS(t) | s, t ∈ S, a ∈ A}.

If G is a discrete group, let iG denote its embedding as canonical unitaries in

C∗(G). Recall from [27, 25] that a coaction δ of G on a C∗-algebra B is an injective

non-degenerate homomorphism δ : B → M
(

B ⊗max C∗(G)
)

satisfying the coaction

identity

(δ ⊗ idC∗(G)) ◦ δ = (idB ⊗δG) ◦ δ,

where δG : C∗(G) → M
(

C∗(G) ⊗max C∗(G)
)

is induced by g → iG(g) ⊗ iG(g). The

existence of a canonical coaction on a crossed product A o S is proved in [15] when

A is unital, but holds in general (by a similar proof), as follows.
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Proposition 1.1 ([15, Proposition 6.1]) Given an arbitrary semigroup system

(A, S, α) such that the enveloping group G of S is discrete, there is an injective coaction

δ : A oα S → M
(

(A oα S) ⊗max C∗(G)
)

,

such that δ ◦ iA(a) = iA(a) ⊗ 1, and δ ◦ iS(s) = iS(s) ⊗ iG(s).

Let B := A oα S, and set like in [26] Bg = {b ∈ B | δ(b) = b ⊗ g} for g ∈ G (we

drop the iG from the notation); these are the spectral subspaces. Observe that

Be = {b ∈ B | δ(b) = b ⊗ e}.

is the fixed point algebra of the coaction.

We recall from [26, Definition 1.1] that a partial action of a discrete group G on

a C∗-algebra C consists of a pair ({Dg}g∈G, {βg}g∈G) of closed ideals of C and iso-

morphisms βg : Dg−1 → Dg , such that De = C and βgh extends βgβh on the domain

βh−1 (Dg−1 ) of the product, for all g, h ∈ G.

Definition 1.2 ([26, Definition 1.7 and Definition 1.10]) A partial representation

of G on a Hilbert space H is a map u : G → B(H) such that the ug are partial isome-

tries with commuting range projections, ueu
∗

e = I, u∗

g ug = ug−1 u∗

g−1 and uguh � ugh

for all g, h ∈ G, where two partial isometries u, v on H satisfy u � v precisely when

uu∗
= uv∗

A covariant representation of a partial dynamical system (C,G, β) is a pair (π, u)

consisting of a non-degenerate representation π of C and a partial representation u

of G on the same Hilbert space such that for all g in G and c in Dg−1 ,

ugu∗

g = π(pg) and(1.2)

π
(

βg(c)
)

= ugπ(c)u∗

g ,(1.3)

where pg denotes the projection in C∗∗ which is the identity of D∗∗

g .

Given a partial action β of a discrete group G on a C∗-algebra C , Quigg and Rae-

burn [26, Section 3] construct a full crossed product, denoted by C oβ G, as the

enveloping C∗-algebra of the ∗-algebra spanned by the functions F(c, g) ∈ l1(G,C)

defined by F(c, g)(h) = c if g = h and F(c, g)(h) = 0 when h 6= g. Consequently (but

non-trivially), C oβ G is generated by a universal covariant representation (ι,m) in

the double dual (C oβ G)∗∗, in the sense that C oβ G is the closure of span {ι(c)mg},

and for an arbitrary covariant representation (π, u), there is a representation π × u

of C oβ G satisfying

(π × u)
(

ι(c)mg

)

= π(c)ug , for all g in G and c in Dg .
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2 The Main Results

Our main theorem identifies the semigroup crossed product from (1.1) with a full

partial crossed product of the fixed-point algebra Be.

Theorem 2.1 If B is the crossed product of a system (A, S, α) which satisfies (i)—(iv),

then there exists a partial action β of G on Be such that

(2.1) Be oβ G ∼= B.

Remark 2.2 Note that when Be
∼= A, we obtain an isomorphism A oα S ∼= A oβ G.

The proof of the theorem will proceed in several steps: first, we construct a partial

representation m of G in B∗∗ with the properties described in [26, Theorem 4.1(ii)].

Second, we produce out of m a partial action β on Be, by following the idea of the

proof of the implication (ii) ⇒ (i) from [26, Theorem 4.1]. Finally, we derive (2.1)

via an application of [26, Proposition 3.1].

Recall from [26] that Dg = BgB∗

g = span {bc∗ | b, c ∈ Bg} are ideals of Be

such that, if pg denotes the identity of D∗∗

g regarded as a projection in B∗∗, then the

multiplier bimodule of Bg is

(2.2) M(Bg) = {b ∈ pgB∗∗pg−1 | Dgb ∪ bDg−1 ⊂ Bg}, for g in G.

The assumptions (i)—(iv) on (A, S, α) imply the following result, which will be

used repeatedly in the sequel.

Lemma 2.3 The unit of αs(A)∗∗ is the projection αs(1M(A)) in M(A), and belongs to

the centre of A∗∗. In particular,

(2.3) αs(1M(A))αt (1M(A)) = αt (1M(A))αs(1M(A)) for s, t in S.

Proof Let (uλ) be an approximate unit for A. Then an easy calculation shows that
(

αs(uλ)
)

is an approximate unit forαs(A). Since αs is extendible, the net αs(uλ) con-

verges in the strict topology, thus in the strong∗-topology, to the projection αs(1M(A))

in M(A). Hence this projection is the weak∗-limit of an approximate unit for αs(A),

which means that it is the unit of αs(A)∗∗ regarded in A∗∗. It is central in A∗∗ because

αs(A) is an ideal. The equality (2.3) follows then immediately.

Lemma 2.4 For g in G we have:

(i) Bg = span {iS(s)∗iA(a)iS(t) | s−1t = g, s, t ∈ S, a ∈ A};

(ii) Dg = span
{

iS(w)∗iA

(

αz(1)a
)

iS(w) | w−1z = g,w, z ∈ S, a ∈ A
}

;

(iii) If g = w−1z, the projection pg has the form

iS(w)∗iA

(

αz(1)
)

iS(w).
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Proof The assertion (i) is immediate from (1.1) and the defining properties of δ.

Take elements iS(s)∗iA(a)iS(t) in Bg and iS(p)∗iA(b)iS(r) in B∗

g . Thus g = s−1t =

r−1 p, and we can find u, v ∈ S such that ut = vp =: z ∈ S. Then us = vr =: w ∈ S,

and hence by Lemma 2.3

iS(s)∗iA(a)iS(t)iS(p)∗iA(b)iS(r)

= iS(s)∗iA(a)iS(u)∗iS(ut)iS(vp)∗iS(v)iA(b)iS(r)

= iS(w)∗iA

(

αz(1)αu(a)αv(b)
)

iS(w).

The assertion (ii) follows.

Towards proving (iii), we show first that two writings of g, as for example g =

s−1t = w−1z, give rise to the same element of M(B). Indeed, let e, f ∈ S such that

ew = f s. Then ez = f t , and we have by covariance of (iA, iS) that

iS(s)∗iA

(

αt (1)
)

iS(s) = iS(s)∗iS( f )∗iS( f )iS(t)iS(t)∗iS( f )∗iS( f )iS(s)

= iS( f s)∗iS( f t)iS( f t)∗iS( f s)

= iS(ew)∗iS(ez)iS(ez)∗iS(ew)

= iS(w)∗iA

(

αz(1)
)

iS(w),

as claimed. Let now d = iS(w)∗iA(αz(1)a)iS(w) be a typical element of the spanning

set of Dg . Then (2.3) and covariance of (iA, iS) imply that

pgd = iS(w)∗iA

(

αz(1)αw(1)αz(1)a
)

iS(w)

= iS(w)∗iA

(

αz(1)a
)

iS(w) = d.(2.4)

A similar computation works when d is a finite combination of elements from the

spanning set of Dg , because we can change the expression of pg accordingly, by the

first part of the proof of (iii). Hence pg acts as a unit on Dg , and we conclude that

pg = 1M(Dg ).

Proposition 2.5 The formula

(2.5) ms−1t = iS(s)∗iS(t) for s, t ∈ S,

defines a partial representation m : G → B∗∗, such that

mg ∈ M(Bg) and mgm∗

g = pg for all g in G.

Proof We begin by proving that (2.5) defines a partial representation. First, to see

that it is independent of the expression for g ∈ S−1S, suppose that g = s−1t = r−1 p,

and take u, v in S such that ur = vs. Then vt = up, and

iS(s)∗iS(t) = iS(vs)∗iS(vt) = iS(ur)∗iS(up) = iS(r)∗iS(p),
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showing that mg is independent of the decomposition of g in S−1S. Covariance of

(iA, iS) and (2.3) show that m∗

g mg is a projection, so mg is a partial isometry. To show

that the ranges of two such partial isometries commute, suppose g = s−1t , h = r−1 p,

and take u, v in S such that ur = vs := w ∈ S. Then

mgm∗

g mhm∗

h = iS(s)∗iS(t)iS(t)∗iS(s)iS(r)∗iS(p)iS(p)∗iS(r)

= iS(vs)∗iA

(

αvt (1)αw(1)αup(1)
)

iS(ur)

= iS(w)∗iA

(

αup(1)αw(1)αvt (1)
)

iS(w)

= mhm∗

h mgm∗

g .

That mem
∗

e = 1 is immediate, and so is mg−1 mg−1 = m∗

g mg . It remains to prove that

(2.6) mgmhm∗

h m∗

g = mgmhmgh for g, h in G.

Again with g = s−1t , h = r−1 p, take y, z in S such that yt = zr =: w ∈ S. By

covariance of (iA, iS), the left hand side of (2.6) becomes

iS(ys)∗iA

(

αw(1)αzp(1)αw(1)
)

iS(ys),

which is the same as the right hand side iS(ys)∗iA

(

αw(1)αzp(1)
)

iS(ys), by

Lemma 2.3.

To establish the second half of the proposition, note that

mgm∗

g = iS(s)∗iS(t)iS(t)∗iS(s) = pg ,

for any g = s−1t in G. By (2.2), it remains to prove that

mg ∈ pgB∗∗pg−1 and Dgmg ∪ mgDg−1 ⊂ Bg ,

for every g in G. For g = s−1t , the first inclusion follows from

mg = iS(s)∗iS(t) = iA(1M(A))iS(s)∗iS(t)iA(1M(A))

= iS(s)∗iA

(

αs(1)αt (1)
)

iS(t)

= pg iS(s)∗iS(t)pg−1 ∈ pgM(B)pg−1 .

Let d = iS(w)∗iA(αz(1)a)iS(w) ∈ Dg , where w−1z = g, a ∈ A. Then (2.3) shows that

dmg = iS(w)∗iA

(

αz(1)a
)

iS(w)iS(w)∗iS(z)

= iS(w)∗iA

(

αz(1)aαw(1)
)

iS(z)

= iS(w)∗iA(a)iS(z) ∈ Bg .

The same line of argument applies when d is a finite combination of elements from

the spanning set of Dg , thus yielding the inclusion Dgmg ⊂ Bg . The other inclusion

is proved in a similar manner.
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Proposition 2.6 There is a partial action β on Be, such that βg : Dg−1 → Dg is an

isomorphism, for each g in G.

Proof Since the partial representation m satisfies the conditions of [26, The-

orem 4.1(ii)], we know from the proof of that theorem that Ad mg : Dg−1 → Dg

is a partial action of G on Be.

Proposition 2.7 If (π,V ) is a covariant representation of (A, S, α), then (π × V, u),

where us−1t := V ∗

s Vt , is a covariant representation of (Be,G, β).

Conversely, the restriction (ρ ◦ iA, v|S) of a covariant representation (ρ, v) of

(Be,G, β) is a covariant representation of (A, S, α).

Proof Suppose that (π,V ) is a covariant representation of (A, S, α). Then π×V is a

representation of B such that (π×V ) ◦ iA = π and π ×V ◦ iS = V . The same proof

as that of (2.5) yields that u is a partial representation of G on Be. That (π × V, u) is

covariant requires (π×V )(pg) = ugu∗

g and (π×V )
(

βg(b)
)

= ug(π×V )(b)u∗

g . The

first identity is immediate from covariance of (π,V ) and Lemma 2.4. The second

identity is straightforward for elements b of the form iS(w)∗iA(a)iS(w), where a ∈ A,

w ∈ S, and can be easily extended to finite linear combinations.

Suppose now that a covariant representation (ρ, v) of (Be,G, β) is given. To see

that v|S is an isometric representation of S, note that when g ∈ S, Dg−1 = Be. Thus

for s in S, we have

v∗s vs = ρ̄(pg−1 ) = ρ̄(1M(Be)) = 1B(Hρ),

which shows that vs is an isometry. Since vsvt � vst for any s, t in S, vsvt = vst on

(vsvt )
∗vsvt (Hρ), which equals Hρ because vs and vt are isometries. Thus v|S is an

isometric representation of S on Hρ. Covariance follows since

(ρ ◦ iA)
(

αs(a)
)

= ρ
(

iS(s)iA(a)iS(s)∗
)

= ρ
(

βs

(

iA(a)
)

)

= vsρ
(

iA(a)
)

v∗s .

Letting ι denote the embedding Be ↪→ B, we notice that (ι,m) is a covariant repre-

sentation of (Be,G, β). We have C∗(ι,m) = B because, as pointed out in the proof of

(ii) ⇒ (i) of [26, Theorem 4.1], B =
∑

g

Bg . Thus there is a surjective homomorphism

(2.7) ι× m : Be oβ G → B.

Proof of Theorem 2.1 We aim to prove that ι× m from (2.7) is faithful.

Towards this end, we wish to apply [26, Proposition 3.1], which says that ι × m

is faithful if for any covariant representation (ρ, v) of (Be,G, β) there is a homomor-

phism Ψ : C∗(ι,m) → C∗(ρ, v), such that

(2.8) Ψ
(

ι(b)mg

)

= ρ(b)vg , for b ∈ Dg .
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Pick such (ρ, v). Thus we know from Proposition 2.7 that (ρ ◦ iA, v|S) is covariant

for (A, S, α). Then the representation Ψ := (ρ ◦ iA) × v|S of B restricted to A and S

equals ρ ◦ iA and v, and maps B = C∗(ι,m) into C∗(ρ, v).

To prove (2.8), suppose to begin with that b = iS(w)∗iA(αz(1)a)iS(w), where

g = w−1z. Then the left hand side becomes

Ψ
(

ι(b)mg

)

= (ρ ◦ iA) × v|S

(

iS(w)∗iA

(

αz(1)a
)

iS(w)iS(w)∗iS(z)
)

= v∗wρ ◦ iA

(

αw(1)aαz(1)
)

vz

= v∗wρ
(

iA(a)
)

vz.

Since v is a partial representation of G and an isometric representation of S, we have

for w, z ∈ S that

vw−1z = v∗wvwvw−1z = vw−1 vwvw−1z

= vw−1 vz = v∗wvz.

Therefore the right hand side of (2.8) becomes

ρ(b)vg = ρ

(

βw−1

(

iA

(

αz(1)a
)

)

)

vg

= v∗wρ
(

iA

(

αz(1)a
)

)

vwvg

= v∗wρ
(

iA

(

αz(1)a
)

)

vwvw−1z

= v∗wρ
(

iA

(

αz(1)a
)

)

vwv∗wvz

= v∗wρ
(

iA

(

αw(1)aαz(1)
)

)

vz

= v∗wρ
(

iA(a)
)

vz,

which is the same as the left hand side. A similar manipulation works for an arbitrary

element b of span
{

iS(w)∗iA

(

αz(1)a
)

iS(w) | w−1z = g, a ∈ A
}

.

We conclude that ι × m induces an isomorphism of Be oβ G onto B = A oα S.

Given a partial system (C,G, β), Quigg and Raeburn [26, Section 3] give an alter-

native description of a regular representation (πr, ur) of C oβ G on H ⊗ l2(G) con-

structed in [21], and subsequently prove that C∗(πr, ur) is independent of the choice

of faithful representation of C , for which reason they define the reduced crossed

product C oβ,r G as C∗(πr, ur). A coaction δ on a C∗-algebra B is normal, [25, 26],

if (idB ⊗λ) ◦ δ is faithful, where λ is the left regular representation of C∗(G). Using

this notion, we are able to tell when our Theorem 2.1 can be obtained in terms of

reduced partial crossed products.

https://doi.org/10.4153/CMB-2003-010-2 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2003-010-2


Crossed Products by Semigroups 107

Corollary 2.8 In the setting of Theorem 2.1, if δ is moreover normal, then

Be oβ G ∼= Be oβ,r G.

Proof It is part of [26, Theorem 4.1] that the partial action βg = Ad mg coming

from the partial representation m with the properties described in Proposition 2.5

gives rise to an isomorphism B ∼= Be oβ,r G. Applying Theorem 2.1 gives the claim.

3 Applications

In this section we assume that the semigroup system (A, S, α) with the properties

(i)—(iv) moreover satisfies that A has an identity 1, and there is an action α ′ : S →
End(A), such that α ′

s ◦ αs = id and αs ◦ α
′

s is multiplication by the projection αs(1).

In this situation we show that Be
∼= A, and we compare the invariant ideals of

(A, S, α) and (A,G, β). In the final section we will present a class of semigroup

crossed products for which the present considerations apply.

Proposition 3.1

1) Suppose that (A, S, α) is a system as described in the beginning of this section. Then

iA induces an isomorphism

A ∼= Be.

2) For g = s−1t, denote by D̃g the (unique) ideal of A such that αs(D̃g) = αs(A) ∩
αt (A). Then

Dg
∼= iA(D̃g), for g in G,

and the partial action β of Theorem 2.1 satisfies the identity

(3.1) βg ◦ iA = iA ◦ α−1
s ◦ αt on D̃g , when g = s−1t.

Proof Take a typical element iS(s)∗iA(a)iS(s) of the spanning set of Be, where s ∈ S

and a ∈ A. Then

iS(s)∗iA(a)iS(s) = iS(s)∗iS(s)iS(s)∗iA(a)iS(s)

= iS(s)∗iA(αs(1)a)iS(s)

= iS(s)∗iA

(

αs ◦ α
′

s (a)
)

iS(s)

= iA

(

α ′

s (a)
)

,

which is a typical element of iA(A), because α ′

s is surjective, for each s. Since iA is

faithful (as noted just before (1.1)), it induces an isomorphism Be
∼= A, as claimed.

A straightforward computation shows that a spanning element of Dg of the form

iS(s)∗iA(αt (1)a)iS(s), with a ∈ A, s−1t = g, becomes iA(b), where b is in D̃g such that
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αs(b) = αt (1)aαs(1). Hence Dg
∼= iA(D̃g). Pick thus an element iA(a) of Dg−1 , where

a ∈ D̃g−1 . With g = s−1t , it follows that αt (a) ∈ αs(A) ∩ αt (A) = αs(D̃g), so there is

a b in D̃g such that αt (a) = αs(b). Hence

βg

(

iA(a)
)

= mg iA(a)m∗

g = iS(s)∗iS(t)iA(a)iS(t)∗iS(s)

= iS(s)∗iA

(

αt (a)
)

iS(s)

= iA(b) = iA

(

α−1
s ◦ αt (a)

)

,

proving (3.1).

We showed in [18] that an ideal J of a system (A, S, α) where S is Ore and the

endomorphisms are extendible induces an ideal of A oα S if a special form of invari-

ance holds. This condition, called extendibly α-invariance of J (cf. [1, 18]), says that

for each s in S, αs( J) ⊂ J and αs(uλ) converges strictly in M( J) to ψ̄
(

ᾱs(1M(A))
)

,

where (uλ)λ is an approximate unit for J, and ψ : A → M( J) is the canonical ho-

momorphism. Recall also that an ideal I of a partial system (C,G, β) is invariant

under β if βg(I ∩ Dg−1 ) ⊂ I for all g in G (cf. [11]). For a system (A, S, α) like

in Proposition 3.1, we clarify the relation between the somewhat involved notion of

an extendibly α-invariant ideal and the rather more familiar looking condition of

β-invariance of iA( J).

Lemma 3.2 Given a system (A, S, α) like in Proposition 3.1, an ideal J of A is ex-

tendibly α-invariant if and only if αs( J) = αs(A) ∩ J, for all s in S.

Proof Suppose to begin with that J is extendibly α-invariant. Thus αs( J) ⊂ J and

1M(αs( J)) = ψ
(

αs(1)
)

for each s, and therefore

αs( J) ⊂ ψ
(

αs(A)
)

· J = αs(A) ∩ J.

To prove the reverse inclusion, we represent A on Hilbert space, and show that any

state ω on A annihilating αs( J) also annihilates ψ
(

αs(A)
)

J. Pick such ω. We may

assume that there is ξ in H such that ω(a) = (aξ|ξ), for all a in A. Let (uλ)λ∈Λ be an

approximate unit for J. Then
(

αs(uλ)
)

λ∈Λ
is an approximate unit for αs( J) and the

assumption on ω implies that ω
(

αs(uλ)
)

= 0, from which by passing to weak∗-limit

we obtain that 1M(αs( J))ξ = 0. Hence ψ
(

αs(1)
)

ξ = 0, and for a ∈ A, j ∈ J, we have

ω
(

ψ
(

αs(a)
)

j
)

=

(

ψ
(

αs(a)
)

jξ|ξ
)

=
(

αs(a) jξ|ξ
)

=
(

αs(1)αs(a) jξ|ξ
)

=

(

ψ
(

αs(1)
)(

αs(a) j
)

ξ|ξ
)

=

(

αs(a) jξ|ψ
(

αs(1)
)

ξ
)

= 0.

Thus ω
(

ψ
(

αa(A)
)

J
)

= 0, as claimed.
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Conversely, the hypothesis immediately implies that αs( J) ⊂ J, which means that

J is α-invariant, and αs( J) = αs(A) J. We deduce from this last identity that the

unit of M
(

αs( J)
)

coincides with the unit of M
(

ψ
(

αs(A)
)

J
)

, which an easy com-

putation proves to be ψ
(

αs(1)
)

. Since the unit of M
(

αs( J)
)

is the strict limit of

any approximate unit for αs( J), both conditions required of J in order for it to be

extendibly invariant are fulfilled. The proof of the lemma is complete.

Proposition 3.3

1) An ideal J of A is extendibly α-invariant if and only if iA( J) is β-invariant.

2) Moreover, if any of these forms for invariance holds, then

(3.2) J oα S ∼= iA( J) oβ G.

Proof Towards proving 1), assume first that iA( J) is β-invariant. Thus for any g in G,

βg(iA( J) ∩ Dg−1 ) ⊂ iA( J).

By Proposition 3.1 and injectivity of iA, this is the same as

(3.3) α−1
s ◦ αt ( J ∩ D̃t−1s) ⊂ J, for arbitrary s, t in S.

Notice that D̃t−1 = A and D̃s = αs(A) when s, t ∈ S. Hence inserting s = e and

t = e in (3.3) will imply that αt ( J) ⊂ J and α−1
s

(

J ∩ αs(A)
)

⊂ A, for any s, t ∈ S.

Therefore

(3.4) αs( J) = J ∩ αs(A) for any s in S,

which by Lemma 3.2 shows precisely that J is extendibly α-invariant.

Conversely, assume that J is extendibly α-invariant. We must show that (3.3)

holds for any g = s−1t ∈ G. It suffices to show that

α−1
s

(

αt ( J) ∩ αs(A) ∩ αt (A)
)

⊂ J,

or, equivalently, that

αt ( J) ∩ αs(A) ∩ αt (A) ⊂ αs( J)

for arbitrary s, t in S. But this follows from the identity αr( J) = αr(A) ∩ J for r ∈ S,

which comes from Lemma 3.2.

To prove 2), recall from the proof of Theorem 2.1 that

ι× m : iA( J) oβ G → B

is an injective homomorphism. Hence it will induce an isomorphism onto its image.

It suffices to prove that this image is J oα S. Since iA( J) is β-invariant, iA( J) oβ G is

the ideal

span {ι(b)mg | g ∈ G, b ∈ Dg ∩ iA( J)}
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of Be oβ G (see [11, Proposition 3.1]). Recalling the definition (2.5) of m and the

isomorphism Be
∼= iA(A) provided by Proposition 3.1, we deduce that ι×m

(

iA( J)oβ

G
)

equals

span {iA(a)iS(s)∗iS(t) | s, t ∈ S, a ∈ J ∩ D̃s−1t}

= span
{

iS(s)∗iA

(

αs(a)
)

iS(t) | s, t ∈ S, a ∈ J ∩ D̃s−1t

}

= span {iS(s)∗iA( f )iS(t) | s, t ∈ S, f ∈ αs( J ∩ D̃s−1t )}.

Note that extendibly invariance yields

αs( J ∩ D̃s−1t ) = J ∩ αs(D̃s−1t ) = αs(A) ∩ αt (A) ∩ J,

for arbitrary s, t ∈ S. On the other hand, extendibly invariance of J implies that JoαS

is the ideal span {iS(s)∗iA(a)iS(t) | s, t ∈ S, a ∈ J} of A oα S (cf. [18, Theorem 1.7]).

A small rearranging shows that

J oα S = span
{

iS(s)∗iA

(

αs(1)aαt (1)
)

iS(t) | s, t ∈ S, a ∈ J
}

= span {iS(s)∗iA(e)iS(t) | s, t ∈ S, e ∈ αs(A) ∩ αt (A) ∩ J}.

Comparing the generating sets for J oα S and ι×m
(

iA( J) oβ G
)

shows that the two

ideals are the same, as required.

4 Examples

Example 4.1 Assume that X is a compact Hausdorff space and θ is a homomor-

phism of an Ore semigroup S into the set

{ f : X → X | f is continuous, injective, and f (X) is open},

such that θs(e) = idX , and θs(X) ∩ θt (X) 6= ∅, for any s, t ∈ S. By [18, Proposi-

tion 4.1], θ induces an action α : S → End
(

C(X)
)

, which is defined by

(4.1) αs( f )(x) =

{

f ◦ θ−1
s (x) if x ∈ θs(X),

0 if x ∈ X \ θs(X).

Then αs

(

C(X)
)

is the ideal C0

(

θs(X)
)

, for s ∈ S. The endomorphisms αs are unital,

and therefore trivially extendible. It follows that the system
(

C(X), S, α
)

is of the

form studied in Section 1, and Theorem 2.1 says that C(X) oα S is a partial crossed

product.

Example 4.2 It was shown in [18, Section 4] that the dynamical systems studied

in [20] are of the form (4.1): the semigroup S is the direct sum N
k of copies of the

semigroup of non-negative integers, for k in N∪∞, and the space X is the Pontryagin

dual of a discrete abelian group Γ arising from a direct system over N
k. The injective
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map θm is β̂m : Γ̂ → Γ̂ defined by β̂m(γ) = γ ◦ βm, for every m in N
k, where

β : N
k → End(Γ) is an action by surjective endomorphisms naturally determined

in the course of building the direct limit. This β̂ satisfies β̂n(Γ̂) ⊂ β̂m(Γ̂), when

m ≤ n in N
k. Examples of crossed products that fit the framework of [20], and for

which accordingly we have a general characterisation of faithful representations, are

the Hecke C∗-algebra of Bost and Connes [4, 16], the generalisations of this in [12]

and two-prime analogue in [19], and certain Hecke C∗-algebras from topological

dynamical systems [6].

The action N
k → End(Γ) induces an action β of N

k by endomorphisms of C∗(Γ),

hence of C(Γ̂) via the Fourier transform, which satisfies

βm ◦ αm = id and αm ◦ βm( f ) = αm(1) f ,

for m ∈ N
k, f ∈ C(Γ̂) [20]. Hence the system (C(Γ̂),N

k, α) fits the framework of

Section 3. Notice that the coaction δ of Proposition 1.1 is simply the dual action of Ẑk

induced by α [27, Remark 3.5], because Z
k is abelian. Since the full and the reduced

partial crossed products coincide for amenable groups, cf. [21, Proposition 4.2] and

[26, Remark 3.7], we have by Proposition 3.1 the following corollary of Theorem 2.1.

Corollary 4.3 For the system
(

C(Γ̂),N
k, α

)

, there are isomorphisms

(4.2) C(Γ̂) oα N
k ∼= C(Γ̂) oβ Z

k ∼= C(Γ̂) oβ,r Z
k.

Moreover, the extendibly α-invariant ideals of
(

C(Γ̂),N
k, α

)

are determined by

the β-invariant ideals of
(

C(Γ̂),Z
k, β

)

, and viceversa.
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