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AUTOMATIC CONTINUITY FOR LINEAR FUNCTIONS 
INTERTWINING CONTINUOUS LINEAR OPERATORS 

ON FRECHET SPACES 

MARC P. THOMAS 

Introduction. Many results concerning the automatic continuity of linear 
functions intertwining continuous linear operators on Banach spaces have been 
obtained, chiefly by B. E. Johnson and A. M. Sinclair [1 ; 2; 3; 5]. The purpose 
of this paper is essentially to extend this automatic continuity theory to the 
situation of Fréchet spaces. Our motive is partly to be able to handle the more 
general situation, since for example, questions about Fréchet spaces and LF 
spaces arise in connection with the functional calculus. But also equivalences 
between (Tn) and (Fn,Rn) theorems easily follow in this more general setting. 
The first section is mainly devoted to extending the (Tn), (7\ R), and (Fn, Rn) 
theorems to deal with Fréchet spaces. In the second section we apply our 
results to give necessary and sufficient conditions for a countable spectrum 
operator on a Fréchet space to possess a discontinuous commuting operator. 

1. In all the following X (or Xn) will denote an F-space over C, and Y a 
Fréchet space over C. By an F-space we mean X is a linear topological space 
with invariant metric d, which is complete. By a Fréchet space, we assume also 
that the space is locally convex. Hence the topology on Y is given by a count­
able separating family of seminorms {|| • ||A-}, and we assume without loss of 
generality that || • \\k+1 ^ || • ||„ all k. 

Let F be any subset of Y. We will observe the convention that V denotes 
the closure of V in the Fréchet topology of Y, whereas V denotes the closure 
of F in the &th seminorm. It is clear that V Ç V . Let B(X) denote the vector 
space of all continuous linear operators on X. Let B(Y) be analogous and let 
B(X, Y) denote the vector space of all continuous linear operators from X to 
F. If S is any linear function from X to Y we define the separating sub space 

y(S) as follows. 

y(S) = {y £ Y: there is xn —> 0 in X and Sxn —> y). 

As a consequence of the open mapping theorem for F-spaces, we have the 
following commonly known results concerning the separating subspace. 

1) S is continuous if and only if 5^ (S) = (0). (It is not necessary for Y to be 
Fréchet here, only that it be an F-space.) 
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LINEAR FUNCTIONS 519 

2) If Q is a continuous linear operator from Y into some /''-space, then 

y{QS) = Wis)-
3) Hence from 1) and 2) we obtain the result t ha t QS is continuous if and 

only if Qy(S) = (0). 

Consider the following three lemmas: 

LEMMA 1.1a. (T„, Rn) Let X be an F-space and Y a Frêchet space. Let {7"„}^=i 
be a sequence of continuous linear operators on X, i.e. {Tn}™=\ C B(X), and let 
{Rn}7=i C B{Y). Suppose S is a linear function from X to Y satisfying (STn — 
RnS) G B(X, Y) for all n. Then given k there exists n{k) such that 

for all m ^ n(k). 

LEMMA 1.1b. (7 \ R) Let X be an F-space and Y a Frêchet space. Let T Ç B (X) 
and R £ B(Y). Suppose S is a linear function from X to Y satisfying ST = RS. 
Then given k there exists n(k) such that 

IryJsT = ~Rn~aW(s)}\ 
for all m g; n(k). 

LEMMA 1.1C. (7^) Let X{), Xu X2 . . . be F-spaces and Y be a Frêchet space. 
Let Tn (z B{Xn, X„-i), n = l , 2, 3, . . . . Suppose S is a linear function from X{) 

to Y. Then given k there exists n (k) such that 

yWJ\~'rr~f = yl^fj\777f^)k , 
for all m ^ n(k). 

Some remarks are in order. If X and Y are Banach spaces Lemma 1.1a is 
commonly known as the {Tn, Rn) theorem and is proved by N. Jewell and A. 
Sinclair in [6, Lemma 1]. Of course there is only one seminorm, namely the 
norm, so their conclusion reads: There exists n such tha t 

R7R7777R7yJs) = 7ï7R7777R77yJs), 
for all m ^ n. Lemma L i b is obviously a special case of Lemma 1.1a where 
each Tn = T, each R„ = R, and (ST — RS) = 0, which is certainly a con­
t inuous linear operator from X to Y. Jf all the Xt's and Y are Banach spaces 
Lemma 1.1c is commonly known as the (Tv) theorem. I t is proved by K. 
Laursen in [4, Proposition 2.1], wrho also notes tha t the (T„, Rn) theorem follows 
from the (7'w) theorem because 

y(si\T2... TVI) = yuiju... Rms) 
as a consequence of (STn — RnS) Ç B(X, Y). Fur thermore by principle 2) 
above 

y(RiR2... Rms) = RÏR7777R7yTs). 
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I t is easily seen t ha t the above argument in the context of F-spaces and 

Fréchet spaces is still valid and shows tha t Lemma 1.1a follows from L e m m a 

1.1c. However, in the context of F-spaces and Fréchet spaces, it is ra ther sur­

prising tha t all these lemmas are equivalent, as follows. I t suffices to show tha t 

Lemma 1.1b implies Lemma 1.1c. So, given the hypotheses of L e m m a 1.1c 

form new spaces 

X = I I x i = I (*o, xh x2, . . . ) : * * € %i\ 

and 

CO 

Z ^ U Y= {(y0,yi,y2,...):yie Y}. 

I t is trivial t ha t the countable direct product of /^-spaces is an F-space with 

coordinate-wise convergence. Likewise the countable direct product of Fréchet 

spaces is a Fréchet space. In the lat ter case we may take as seminorms: 

A; 

11(yo, yi, 3>2, • • •) | I/o = X ) I \yt\ U £ = 1 , 2 , 3 , 
2=0 

Hence X is an 7^-space and Z is a Fréchet space. Let Trn be the canonical projec­
tion of Z onto the nth coordinate, so irn G B(Z, Y). Define 

T(x0, Xi, x2j . . .) = (7 \* i , ^2X2, r 3 x 3 , . . .) 

S(x0 , xi, x2} . . .) = (Sx0l ST1X1, ST1T2X2, . . .) 

R(yo, yu yi, • • •) = (yu y*, y*, • • .)• 

I t is then easily verified t ha t T G B(X), R G B(Z), and ST = RS. Also 

y(S) = {(yQ, yu 3>2, . • •)• (Xio, xn, xi2, . . .) —» 0 in X, and 

S(xi0, xiUxn, . . . ) - * (y$,yi, y2, . . . ) ! • 

Then Sxi0 —> y0, ST\Xa -—> yu Sl\T2xl2 —> y2 • . . etc. So irn£f (S) Q £f (ST\T2 

. . . 7 ; ) . But if y e y(SJ\T2 . . . Tn) then (0, 0, 0, . . . , 0, y, 0, . . .) (E 2*(5) 
where y is in the nth coordinate. T h u s wnS^(S) = SfiSTiT* . . . Tn). I t also 
easily follows tha t *Jiny(S) = irny(S). Hence 

y(ST!T2... Tn) = T0R
ny(S). 

An application of Lemma 1.1b implies the result, in view of the coordinate-
wise convergence on Z. 

No te tha t this technique applies only if we use the more general concept of 
/'"-spaces and Fréchet spaces, since the countable direct product of Banach 
spaces is a Fréchet space bu t not a Banach space. We will now obtain all three 
lemmas by proving only Lemma 1.1c. In the proof it will become clear from 
the role the seminorms play, why we require F to be a Fréchet space, and not 
jus t an F-space. 
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Proof, (of Lemma 1.1c) I t is trivial tha t y(S7\T2 . . . Tm) D y{STJ\ . . . 

Tmii), all m. Suppose the result fails for some fixed k. Then there exists a 

sequence of increasing positive integers \m{i)) such tha t m(0) = 0 and 

y{ST{I\ . . . Tm(i+1)) ^y{SJ\J\ • • • Tmit)) , 

for all i. But we may let 7Y = 7 \ 7 \ . . . Tma)l 7Y = 7 m a ) + i . . . 7m ( 2 ) , 
7Y = 7"Wj(j_-i)+i . . . 7 m ( i ) , . . . . Also letting XQ = X0, Xx = X W ( D , . . . , 
X/ = Xmiih . . . , we have T( £ B(Xt', X^), i = 1, 2, 3, Hence 
without loss of generality we may "drop the pr imes" and suppose 

y(STJ\ . . . Tt+i) c ,9'{ST{T-l. . . Tt) , 

for all i. If V is a subset of F, then (V) — V , thus 

y(srj\... r/+1) £ y(STj\... T\), 

for all ?'. Let Q, be the canonical quotient map of F onto Y/y {SJ\T2 . . . Ti)1 

which is also a Fréchet space. Then Qi^y (STil\ . . . Ti+i) = (0) whereas 
Qi+iy(S7\T2 . . . Ti) ^ (0). From our previous remaiks, this implies tha t 
Qi^STil\ . . . 7\+i is continuous whereas Qi+iSTi 1\ . . . 7\-is not. Let ||| • | | |/+i 
be the quotient seminorm: inf || • + y{ST\T<>_ . . . Ti+i)\\k on Y /y (ST1T2 . . . 
7 \ + i ) . Let <7r be an invariant metric for Xx. We claim tha t given i, 8 > 0 and 
iV a positive integer, there exists x Ç X z satisfying rii(x, 0) < <5 but 

| | | ( 3 , + 1 5 7 \ 7 1
2 . . . 7 > | | | H . 1 = 7V. 

To see this, choose y G y(Sl\T2 . . . 7\) with |||Çi+i;y||| t+i = iV + 1 using 
the fact tha t y(S7\T2 . . . 7\)'c $ y{STlT2 . . . 7\-+1). There is xn -> 0 in Xt 

with ST1T2 . . . 7\x„ —» y. Hence dt{xn, 0) —> 0 and ||j(2z+i6Ti7^ . . . 7\.r„| | | i+i 
—> N + 1, thus an xw with ?z sufficiently large will suffice. We may also choose 
a sequence of positive reals {e(i)\ such tha t dr(x, 0) ^ e(i) implies 

| | | Q , S 7 ^ 2 . . . TiX\\\i è F i = 1 , 2 , 3 . . . . 

Wre may assume e(i) < 2~l and tha t e(i) decreases to 0 as i —•» GO . Hence we 
may inductively form a sequence of elements xf Ç X7; satisfying: 

i) dj-1(TjTj+1 . . . 7><, 0) < e ( ; )2 _ i for all 1 = 7 = i. . 

ii)d<(x<,0) < c(i)2-'. 

iii) | | | G ^ i 5 7 \ 7 \ . . . 7 > i | | | < + i > i + (?*+iS 2] ^ I ? ^ . . . Tnxn 

Let x = 2S=i 7"] 7'2 . . . 7,„x„ Ç X 0 which converges absolutely in X0 since 
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doiTJ^ • • • Ï A , 0) < e(n)2-n £ 2 ~ \ I t follows tha t 

\\Sx\\k ^ HlQiv+i'S^IIU+i 

I J V - l 

\QN+IS X) 1\T2 . • . Tnxn + Q„+iSTiT2 • • • TNxN 
I n = l 

00 

+ QN+iS ^ TiT2 . • . Tnxn 
n=N+l IHiV+1 

= N — \\\QN+iSTiT2 . . . r^+i^UlAT+i, 

where yN = ^ L . v + i ÏV+2 • • • JT?^™ which converges absolutely by i) above. 

But 

00 

m=N+l 

Se(N+ 1) £ 2~m 

m=N+l 

û e(N+ 1). 

T h u s WlQx+iSTJ^ . . . TN+1yN\\\N+1 ^ 1 which implies \\Sx\\k ^ iV - 1 for ail 
N, a contradict ion and the result follows. 

We now concentrate on the si tuation in Lemma 1.1a. 
We remark t ha t if S 6 B (X, F ) , and V is an open convex set in F, then 

5 _ 1 (T r ) is an open convex set in X. Hence if X is an F-space with no open con­
vex sets other than 0 and X (e.g. Lp, 0 < p < 1), then 5 is the zero map . This 
is well known, bu t serves to il lustrate the difference in si tuat ions when 5 is 
not assumed to be continuous. There do exist discontinuous intertwining maps 
from such F-spaces into Fréchet and Banach spaces. 

We further specialize to the case where TnTm = TmTn and RrRm = RmRn, all 
n and ra, and we say [Tn\ and {Rn\ are committing sequences of continuous 
linear operators on X and Y, respectively. We have a preliminary lemma on 
projective limits which generalizes the Mittag-Leffler theorem: 

L E M M A L i d . Let {Xn\ be algebraic vector subspaces of a Fréchet space X. Let 
{Tn) be any sequence of commuting operators in B(X) such that TnXn+i C Xn 

for all n. Let {t(n)} be any increasing sequence of natural numbers with t (n) —> co . 
Let P be the following projective limit 

*> R\ -çr T2 ^ Tz ^ TA 
A 1 < A 2 < A 3 < - A 4 < . . . . 

Letting {\\ • ||ji || • \\i rg || • ||j+i} be a family of seminorms which determines the 
Fréchet topology of X, suppose \l(n)} has been chosen to satisfy the following: 

i) l(n) è tin) 
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ii) there is Mn such that 

\\1 n-ll n-2 • • • rJ-mA\t{n) = Mn\\x\\ i(n) 

form = 1,2, . . . ,71 — I for all x Ç X. Then if 

TnXn+i n 3 ^ n for all n, 

we also have that 

TnP 3 Xn for all n, 

where wn : P —> Xn is the canonical projection into Xn. 

Proof. We note that such a sequence {l(n)\ can always be chosen, since any 
finite set of operators in B(X) is equi-continuous. Fix n and let e. > 0. Let 
xn (z Xn. Choose x„+i G X„+i so tha t \\Tnx/1+i — xn\\,(n) < e/2nMn. Continue 
inductively choosing xn+p+i G Xn+p+i so tha t 

\\Tn+pXn+p+i — Xn+pW^+p) < e/2n+pMn+pi p = 1, 2, 3, . . . . 

Given any non-negative integer j , observe tha t 

oo 

L^i I I •*• n+p • • • -L n+jXn+p+l ~ 7 n+p—1 • • • 7 n+jXn+p\ \ t{n+p) 
P=j+l 

~ 2-J \\\Tn+p-l • • • 1 n+j) (1 n+pXn+p+1 ~ Xn+P) \ \ t(n 

77=7+1 
+p) 

= 2-J -"1n+p I I J- n+pXn+p+1 ~~ xn+p \ \ l(n+p) 
P=j+i 

77=7+1 

+P 

which converges. Since {|| • ||/(„+/,)} also determine the Fréchet topology of X 
we have tha t } Tn+pTn+p-i . . . 7Vf>Vf/7+il?=vfi is Cauchy in X and hence there 
is sn+j G Xn+j such tha t 

Tn+P . . . Tn+jXn+F+i —> sn+j as p —> oo, j = 0, 1, 2, . . . . 

But if we define s„_i = Tn-\sin s„_? = Tn-osn-i . . . s\ = 7Ys+, then it is clear 
tha t (sf) (z P and 7T„(.s\) = s/r We also have tha t 

117 n+m . . . 7 nxw_|_?„4-i — x„ 11 ?f„) 
m 

S 117rax??+i — #n11/(«) + Z-/ IK «+p • • • 7nxw+p+i — 7w+p_i. . . Tnxn+V\\t(n 
P=I 

= I M n # « + l ~~ #w I I tin) + 2-> I I U n+p-1 • • • ^ n) U w+p^w+p+1 ~~ ^"w+p) | | f(n+p) 
7 7 = 1 

= Z^ Mn-fp||7w+pxw+p_(.i — xn+p\\i(n+p) ^ Z-/ e/2 ^ e. 
p = 0 p=0 
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Since Tn+mTn+m-i . . . 2>w+w,+i -> sn as m -> oo this implies that \\s„ - A:W||/(W) 

^ e. Thus we have shown that 7r„P " 2 ^ since e was arbitrary. 

For technical reasons we will now add the hypothesis that each Rn appears 
an infinite number of times in the sequence. If a subspace Z is invariant under 
each Rtl1 there is thus a largest algebraic subspace D of Z such that RnD = D, 
all n. We shall generally denote this D by D({Rn\Z: « = 1, 2, 3 . . .}). Note 
S^(S) is closed and invariant under each i£w. We have the following lemma. 

LEMMA 1.2. Under the same hypotheses as Lemma 1.1a, further suppose that 
I Tn) and \Rn) are committing sequences of continuous linear operators on X and 
Y respectively. If each Rn appears an infinite number of times in {Rn\, then for 
each k there isn(k) satisfying 

R'R^T^KyW = K^^TR^y{s)k 

= ~D([^[y{SY:^^^^V77}f, m ̂  n(k). 
Proof. Let k be given. Let n(k) be as in Lemma 1.1a. Since the Rn's commute 

wre have that 

K~R~7~.T<Z^(sf =^^77RJ^PZS)\ 

for all m ^ n(k). We construct two sequences as follows. Let 1(1) = t(l) = k. 
It is clear that \\x\\t0) S IWIKD for all x G Y. Let t(p + 1) = k + p, p = 
1, 2, 3 . . . . Choose l(p + 1), p = 1, 2, 3, . . . , to satisfy the following: 

i) l(p + 1) > l(p), for all p. 
ii) l(p + 1) ^ tip + 1), for all p. 

iii) there is Mp+1 such that | \RPRP^ . . .Rmx\\t{p+l) ^ Mp+i| |x|| K P + D , 

for all x d Y and m = 1, 2, 3 . . . p. 
The lip + l ) 's are chosen inductively and iii) is if course possible since 

{Rn} QB(Y)' Again by Lemma 1.1a we may choose n(l(p + 1)) strictly 
increasing in p so that 

for all m ^ n(l(p + 1)). Let Xx = Rn(l(l)) . . . R2Riy(S), and let Xp+l = 
Rn{i{p+D) . . . R2Riy?(S)1 p = 1, 2, 3 . . . . Since n(l(p + 1)) are increasing and 
Rpy(S) Qy(S), it is clear that RPXP+1 C Xp, for all p. Given a fixed p, 
there is some m > n(l(p + 1)) such that Rv = 7?m. Hence 

RpXp+l — RmRn(l(p+l)) • • • 

3 RmRm-1 • • • Rn(l(p+1)) • • • Rn(l(p)) • • • RîR\£f (S) 
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for all p. Let P be the following projective limit: 

A l A 2 A 3 A 4 . . . . 

Let TTV : P —> Xp be canonical for each n. By Lemma Lid, it follows that 
^ F ( P ) 2 Xp, for all p. In particular TTTF 2 #n(,) . . . R2Riy(S) since /( l) = 
k and n(l(l)) = w(&). Note 7ri(P) is divisible by all the J?n's and 7ri(P) Q 
XI Qy(S), asy(S) is closed. Thus 

TTI(P) Ç D ( | / g y M : n = 1 , 2 , 3 . . . ) ) . 

Hence 

£ ( { / ^ ( S ) : » = 1, 2, 3 . . .}) 2 Km • • • RiR^iS) . 

Since the reverse containment is trivial, the lemma follows. 

We remark that in the proof we actually showed the somewhat stronger 
result that if 

KmRm^ . . . Rty(S) = RnRn-i • . • Riy(S) , 

for all m è n, then 

RnR^^.R^iS) = D({Rn\y(S) :n = 1 ,2 ,3 . . .} ) . 

The above is useful most often in the form of the following corollary, in which 
D({Rn: n = 1, 2, 3, . . .}) is of course the largest subspace D in Y such that 
RnD = D, all n. 

COROLLARY 1.3. Under the same hypotheses as Lemma I.la, further suppose 
that {Tn} and {Rn\ are commuting sequences of continuous linear operators on X 
and Y respectively. Suppose each Rn appears an infinite number of times in {Rn\ 
and that D({Rn: n = 1, 2, 3 . . .} ) = (0). Let Qk be the canonical quotient map of 
Y with null space {y (z Y: \\y\\/c = 0}. Then for each k there is n(k) such that 
QkRn(i) . . . R2R1S is continuous. 

Proof. Observe that 

D({Rn\y(S): n = 1, 2, 3, . . .}) C D({Rn: n = 1, 2, 3 . . .}) = (0). 

Hence Lemma 1.2 implies there is n(k) such that 

QkRn{k)...Rdiiy(S) = (0), 

and thus QkRn(k) • • • R2R1S is continuous. 

In the next section we apply the above results to questions of automatic 
continuity. 
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2. We next develop some sufficient conditions for au tomat ic cont inui ty of 
a linear function 5 from X to F. We could continue to proceed in the generali ty 
of the previous section, considering commuting sequences {Tn} Q B(X) and 
\Rn\ Q B(Y) where X is an F-space, Y a Fréchet space and STn — RnS (.. 
B(X, Y) all n. However, in this sett ing the hypotheses get ra ther technical 
and instead we choose to specialize to the following case. Let both X and Y 
be Fréchet spaces. Let T G B(X) and K G 73(F) with ST - RS G B(X, F ) . 
If a(R) is countable it may be reformed into a sequence {X„j such t ha t each 
element of a(R) appears an infinite number of times. I t is e lementary then tha t 
if we let Tn = T — \n and Rn = R — X„, we have STn — RnS G B(X, Y) for 
all n. Hence we can apply our previous results in Section 1. We need some 
definitions. 

Definition 2. F We say a complex number X is in the generalized point spectrum 

of R and we will wrrite X G <Tgv(R) provided the following hold: 

i) X G <r(R) = {/x: (R — /x) is not bijective}. 

ii) There is a non-zero vector y G F such tha t for fixed k, \\ (R — ^)ny\\k = 0 
for all bu t finitely many n. 

Some observations are in order. Note tha t ii) can occur wi thout i) occurring. 
For example, let F = II^=_œ C, the Fréchet direct product of C. Let R be 
the left shift. Then R~l is the right shift so 0 G <?(R), bu t y = (. . . 0, 0, 0, 
1, 0, 0, 0 . . .) satisfies ii) with X = 0. We also note t ha t 

ap(R) = {X: (R - \)y = 0 for some y ^ 0} C agp(R). 

If F is actually a Banach space, ap(R) = agp(R). Finally if X G crgP(R) and y 
is as above then ^ZJLi an(R — ^)ny converges in F for every sequence {a„\ of 
complex numbers . 

Definition 2.2. We say tha t F has no non-trivial R divisible sitbspaces if 
whenever D is an algebraic subspace with (7^ — \)D = D all X G C, then 
D = (0). Equivalent ly , 

D({R - X: X G C | ) = (0). 

However, if a(R) is countable, it is easily seen tha t a(R) = {\t} implies 

D({R - X,: n = 1, 2, 3 . . .}) = D({R - X: X G C}) . 

Definition 2.3. Let X G C. WTe say tha t (7' — \)X has finite codimension in X 
provided X/{T — \)X is a finite dimensional vector space over C. We shall 
use the following notat ion 

[X: (T - \)X] < + o o . 

This implies {T — \)X is closed in X since X ~ (T — \)X © F as vector 
spaces for some finite dimensional subspace F. T h e product topology of the 
range space topology on {T — \)X and the relative topology on F is also 
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Fréchet and stronger than the original topology on X. Hence, the open map­
ping theorem shows they are homeomorphic which forces (T — \)X to be 
closed. Also (T — X) is then an open map of X onto (7" — \)X. 

THEOREM 2.4. Let X and Y be Fréchet spaces. Let T £ B(X) and R £ B(Y) 
with a(R) countable. Suppose S is a linear function from X to Y satisfying 
(ST - KS) Ç B (X, Y). If 

i) Y has no non-trivial R divisible subspaces, and 
ii) X e a0V(R) implies [X: (T - \)X] < +oo, 

then S is continuous. 

Proof. Let ff (S) be the separating subspace of S. Let X £ v(R). Reform 
<r(R) ~ {X} into a sequence {nn} such that each element appears an infinite 
number of times. We have two cases 

Case l ) D({(R - nn)\y' (S): n = 1 ,2 . . . } ) = (0). 
Case 2) D({ (R - v„)\y(S): n = 1 ,2 . . .} ) & (0). 

Suppose the first case occurs. Lemma 1.2 implies that for each k there exists 
n(k) such that m §; n(k) implies 

11(7^-Mm)... (R- ^)s\\k = 0, 

for all s e y(S). Let pn(x) = (x - Mw) . . . (x - Ml) £ C[x]. If \an\ is any 
sequence in C and y ç y ( 5 ) we see that X̂ T=i a„pn(R)y always converges in Y. 
L e t a 0 = — (iii — X ) - 1 , a i = - (jut2 — X)~]a:o, . • • , <*n = — (n„+\ — X) _ 1 a„_i . . . 

for all n. Let y £ S/'(S). Then 

oo 

(R- \)[a„y+ Z <*nPn(R)y] 
n=l 

= [(R- m)+ (Ml - \)}af,y 
oo 

+ E t(i? - M»+I) + (M»+I - x)W»(i?)y 
w = l 

oo 

= -y + a0(R - fja)y + Yl anpn+i(R)y ~ an-ipn(R)y 

= - 3 ; -

Thus (R — \)y (S) = ff'(S) in Case 1). Suppose now that Case 2) occurs. 
Let y be any non-zero element of D({(R — iin)\y(S): n = 1, 2, 3 . . .}). Now 
Y has no non-trivial divisible subspaces and hence D({R — fx: /x Ç a-(/£)}) — 
(0). Thus 

7) ( { (7^- M J |^ (S) :« - 1,2,3. . .} U {(tf - X)|^(S)}) = (0). 

Let k be fixed. Applying lemma 1.2 we see that there is a polynomial p with 
all roots from jjun} and a positive integer m such that \\(R — \)mp(R)s\\k = 0 
for all s £ y(S). Since (R - \)S? (S) ç y ( 5 ) this implies that 
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\\(R - \)'p(R)s\\k = 0 for ail s G y (S) and / ^ m. But y = p(R)z for some 
z g y ( 5 ) and hence | | (# - \)lp{R)z\\k = \\(R - \)'y\\k = 0 for ail / ^ w. 
Since £ was arbitrary at the start and y ^ 0 in D({(R — n„)\y(S): W = 
1, 2, 3 . . .}), this implies that X £ <rgv(R). Hence if Case 2) occurs we have that 
[X: (T- \)X] < +oo. So for each X £ o-(ft) we either have that (7* - \)y(S) 
= y(S) or [X: (T — \)X] < + co. Form a(R) into a sequence {\n} in which 
each element occurs an infinite number of times. Let Qk: Y —> F/{;y Ç F: Ĥ H,,. 
- 0} be canonical. Since D(\R - X„: n = 1, 2, 3 . . . } ) = (0), Corollary 1.3 
implies that for each k there is n(k) such that Qk(R — K(k)) • • • C# — X2)-
(R - \x)y(S) = (0). If [X: (T - \t)X] = +oo then (# - \t)y'(S) = 

5^(5) and this term may be deleted. Hence there is a polynomial gk such that 
QkQk(K)y(S) = (0) and X a root of qk implies [X: (71 - \)X] < + oo. Hence 
[X: g/-(70^] < +°o also. Now Qkqk(R)S is continuous and equals QkSqk(T) 
plus some continuous operator. Hence QkSq,.(T) is also continuous. 

But qk(T)X is closed, hence ftS is continuous on qk(T)X by the open map­
ping theorem. But qk(T)X has finite codimension, and so QkS is continuous 
on all of X. Thus 

y(S) Q{yt Y:\\y\\t = 0}, 

for all k. Hence y (S) = (0) and S is continuous. 

We next have some remarks on the necessity of these conditions which have 
arisen. We first note that A. Sinclair showed [5, Theorem F2] that if T is not 
algebraic and R has a non-trivial divisible subspace then there is a discon­
tinuous 5 such that ST = RS. His proof was stated for Banach spaces but the 
generalization to Fréchet spaces is immediate. If there is X £ vv(R) and 
[X: (T — \)X] — +GO , B. Johnson and A. Sinclair showed that again there is 
a discontinuous S such that ST = RS [3, Lemma 2.1]. We generalize this to 
Fréchet spaces in the following. 

LEMMA 2.5. Let X and Y be Fréchet spaces. Let T £ B(X) and R Ç B{Y). 
Suppose X G (Tffp(R) ~ <rP(T) and [X: (T — \)X] = +oo. Then there exists a 
discontinuous linear function S from X to Y satisfying ST = RS. 

Proof. Let y be a non-zero element of Y such that 11(7? — X)w ŷ||fc = 0 for 
all but finitely many n when k is fixed. Since y j* 0 there is a first semi-norm 
such that \\y\\k ^ 0. Without loss of generality we may assume \\y\\i ^ 0. 
Then there is an N such that \\(R - X ) ^ ^ ^ 0 but \\(R - \)ny\\i = 0 for 
n > N. Pick a discontinuous linear functional / 0 from X to C satisfying 
fo(T - \)X = 0. Def ine/ i ( r - X)x = f0x on (T — \)X and extend fx to all 
of X in any way so long as it remains linear. In general after fn has been chosen, 
define fn+i(T — X)x = fnx on (T — \)X and extend to a linear functional on 
X. Since X (I <rp(T) it is elementary that the fn are well defined (discontinuous) 

https://doi.org/10.4153/CJM-1978-047-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1978-047-x


LINEAR FUNCTIONS 529 

linear functionals on X. Define 

oo 

sx= T, fn(x)(R- \)ny, xex, 
n=0 

which converges by our previous remarks. I t is easily verified tha t S(T — \)x 
= (R - \)Sx and hence ST = RS. Pick xn -> 0 in X with | / 0 f c ) | > 1. Then 

\\{R - \)NSxn\U = ||(tf - X)"/0(*„)y||i > \\(R - \)Ny\U ?* 0. 

Hence (R — \)NS is discontinuous so S must be also. Observe tha t this pro­
cedure is valid when X is more generally an /'"'-space. 

We now specialize to the case where X = Y and T = R. Hence we are 
interested in the case where S commutes with T. If X is a Banach space and 
a(T) is countable then A. Sinclair's results show tha t every commuting 5 is 
continuous if and only if 

i) X has no non-trivial / '-divisible subspace, and 
ii) X G <rr(T) implies [X: (T - \)X] < + ° o . 

This follows from Sinclair's more general theorem [5, Theorem 2.2] when 
T = R, since if T is algebraic, there cannot be any non-trivial T divisible 
subspace. We generalize the above to Fréchet spaces and to the case when 
ST - TS e B(X). 

T H E O R E M 2.G. Let X be a Fréchet space and let T Ç B(X) with a(T) countable. 
Thejt every linear function S on X, such that ST — TS G B(X), is continuous 
if and only if 

i) X has no non-trivial T-divisible subspace, and 
ii) X G agp(T) implies [X: (T - \)X] < + o o . 

Proof. If i) and ii) hold, Theorem 2.4 implies tha t such an S must be con­
t inuous. If i) fails then T cannot be algebraic and a generalization of [5, 
Theorem 1.2] as noted above implies a discontinuous commuting 5 exists. 
If ii) fails we have two cases. If X (/ ap(T), Lemma 2.5 implies there is a dis­
continuous commuting S. If X G (rp(T) and [X: (T — \)X] = + o o , exactly 
as in [3, Lemma 2.1] there is a discontinuous commuting 5. I Ience in any case, 
if ii) fails there exist discontinuous commuting functions S, so certainly S'T — 
TS G B(X). This proves the theorem. 
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