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AUTOMATIC CONTINUITY FOR LINEAR FUNCTIONS
INTERTWINING CONTINUOUS LINEAR OPERATORS
ON FRECHET SPACES

MARC P. THOMAS

Introduction. Many results concerning the automatic continuity of lincar
functions intertwining continuous linear operators on Banach spaces have been
obtained, chiefly by B. E. Johnson and A. \l. Sinclair [1; 2; 3;5]. The purposc
of this paper is essentially to extend this automatic continuity theory to the
situation of Fréchet spaces. Our motive is partly to be able to handle the more
general situation, since for example, questions about Fréchet spaces and L[
spaces arise in connection with the functional calculus. But also equivalences
hetween (7°,) and (7, R,) theorems easily follow in this more general setting.
The first section is mainly devoted to extending the (7,), (7', R), and (7, R,)
theorems to deal with Fréchet spaces. In the second section we apply our
results to give necessary and sufficient conditions for a countable spectrum
operator on a Fréchet space to possess a discontinuous commuting operator.

1. In all the following X (or X,) will denote an /-space over G, and V a
Fréchet space over C. By an F-space we mean X is a linear topological space
with invariant metric d, which is complete. By a Fréchet spuce, we assume also
that the space is locally convex. Hence the topology on V is given by a count-
able separating family of seminorms {|| - ||}, and we assume without loss of
generality that ||« [y = || - [|5, all £.

Let T7 be any subset of V. We will observe the convention that ¥ denotes
the closure of 17in the Fréchet topology of ¥, whereas V" denotes the closure
of 17in the kth seminorm. It is clear that 7 € 7. Let B(X) denote the vector
space of all continuous linear operators on X. Let B(Y) be analogous and let
B(X, Y) denote the vector space of all continuous linear operators from X to
V. If S is any linear function from X to YV we define the separating subspace

F(S) as follows.

F(S) = {y € Y: thereisx, — 0in X and Sx, — y}.

As a consequence of the open mapping theorem for I*-spaces, we have the
following commonly known results concerning the separating subspace.

1) Sis continuous if and only if ¥ (S) = (0). (It is not necessary for ¥ to be
Fréchet here, only that it be an F-space.)
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2) If Q is a continuous linear operator from Y into some F-space, then
FQS) = Q7 (S).
3) Hence from 1) and 2) we obtain the result that (S is continuous if and

only if Q.Z(S) = (0).
Consider the following three lemmas:

Lemma 1.1a. (7, R,) Let X be un F-spuce und Y a Fréchet space. Let {T,}r-,
be a sequence of continuous lineur operators on X, i.e. {1,}oey © B(X), and let
{R vy © B(Y). Suppose S is « linear function from X to Y satisfying (ST, —
R,S) € B(X, Y) for all n. Then given k there exists n(k) such that

RiRs ... Ry (S = RiRs ... Run” (S),
Jorallm =z n(k).
Lemma 1.1b. (1, R) Let X be an F-space and Y a Fréchet space. Let T ¢ B(X)

and R € B(Y). Suppose S is a linear function from X to Y satisfying ST = RS.
Then given k there exists n(k) such that

BT = FFS
Jorallm = n(k).

Lemma 1.1c. (1,) Let Xy, Xy, Xo ... be F-spuces and Y be a Fréchet space.
Let T, € B(X,, X,_1),n=1,2,3,....Suppose S is « lincar function from X,
to Y. Then given k there exists n(k) such that

I

FSIT, .. 1) =L ST Ton)
forallm = n(k).

Some remarks arc in order. If X and V are Banach spaces Lemma 1.1a is

commonly known as the (7, R,) theorem and is proved by N. Jewell and A.

Sinclair in [6, Lemma 1]. Of course there is only one seminorm, namely the
norm, so their conclusion reads: There exists # such that

RiR: ... Ry, F(S) = RiRs . .. R,Z(S),
for all m = n. Lemma 1.1 is obviously a special case of Lemma 1.1a where
cach 7, = 7T, each R, = R, and (§7" — RS) = 0, which is certainly a con-
tinuous linear operator from X to Y. If all the X;'s and 1V are Banach spaces
Lemma 1.1c is commonly known as the (7,) theorem. It is proved by K.
Laursen in [4, Proposition 2.1], who also notes that the (7, R,) theorem follows
from the (7,) theorem because

LT L. .. 1) = F(RiKs ... R,S)

as a consequence of (ST, — R,S) ¢ B(X, V). Furthermore by principle 2)
above

SRRy . .. RpS) = RiRs . .. RuF(S).
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It is easily seen that the above argument in the context of [™-spaces and
Fréchet spaces is still valid and shows that Lemma 1.1a follows from Lemma
1.1c. However, in the context of F-spaces and Fréchet spaces, it is rather sur-
prising that all these lemmas are equivalent, as follows. It suffices to show that
Lemma 1.1b implies Lemma 1.1c. So, given the hypotheses of Lemma 1.1c
form new spaces

X = H Xi= {(xo, %1, Xg, .. .):x; € Xy}

i=0

and

Z V= {(0oynys...):y:€ Y}

-

I
s

It is trivial that the countable direct product of F-spaces is an [™-space with
coordinate-wise convergence. Likewise the countable direct product of Fréchet
spaces is a Fréchet space. In the latter case we may take as seminorms:

k
H(y()yylry?r"')”kE ;} Hysz k= 1v2y3y-"-

Hence X is an F-space and Z is a Fréchet space. Let 7, be the canonical projec-
tion of Z onto the nth coordinate, so m, ¢ B(Z, Y). Define

T (xo, %1, %9, . . .) = (Tixy, Toxe, Tyxs, ...
S(xo, X1, X2, . . .) = (Sxo, STix1, ST T 9%, . . )
R(yo, y1, V2, «-) = (y1, 92, ¥3, . . .).
It is then easily verified that T € B(X), R ¢ B(Z), and ST = RS. Also
LS = {(vo, y1, ¥, . . )1 (x40, %11, %42, .. .) = 0 in X, and
Sxi0, X1, K12y - ) = o, V1, Yo, - . ).

Then Sx i — yo, ST1x01 — 1, ST119x 2 — v, . . . etc. So m, 7 (S) C L (ST,71,
... 1), Butify € (ST Ts ... T,) then (0,0,0,...,0,%,0,...) ¢ %)
where v is in the nth coordinate. Thus 7,7 (S) = . ¥ (ST,7,...T,). It also
casily follows that =,R2¥ (S) = m,%(S). Hence

FLSTTy. .. T,) = mRrF(S).

An application of Lemma 1.1b implies the result, in view of the coordinate-
wise convergence on Z.

Note that this technique applies only if we use the more general concept of
F-spaces and Fréchet spaces, since the countable direct product of Banach
spaces is a Fréchet space but not a Banach space. We will now obtain all three
lemmas by proving only Lemma 1.1c. In the proof it will become clear from
the role the seminorms play, why we require Y to be a Fréchet space, and not
just an F-space.
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Proof. (of Lemma 1.1c) It is trivial that ¥ (ST,75 ... T) 2. (ST 1. ..
Ti1), all m. Suppose the result fails for some fixed k. Then there exists a
sequence of increasing positive integers {m (¢)} such that m(0) = 0 and

FL(SThT. .. Tm<i+1>)k G F(SThTy. .. Tm(i))ky

for all 7. But we may let ’111/ = 1‘1712 e Tm(l), ]‘2/ = '1‘,,1(1)4_1 e ]‘m(g), ceey
Y‘i/ = Y‘m(i»—lH—l . e ]‘m(i)y .... Also lCttil’lg X(), = X(), Xll = Xm(l), ce ey
X! =X, ..., we have 1/ € B(X/, X,.\), 1 =1, 2, 3, .... Hence
without loss of generality we may ‘“‘drop the primes’” and suppose

P(STTs. . T S A (ST .. Ty,
for all 7. If T7is a subset of V, then (VVT)k = 7" thus
y(STsz v i) g <§ﬂ(ST1’1‘2 T,

for all 4. Let Q, be the canonical quotient map of ¥ onto Y/ (ST T,... 1),

which is also a Fréchet space. Then Q1. (ST 7. .. Ty1) = (0) whereas
Q1L (ST Ty...T;) £ (0). From our previous rematks, this implies that
QST Ty . .. T's1is continuous whereas Q115717 . . . T;isnot. Let ||| - [|] 141

be the quotient seminorm: in{ || - + . (ST 1T ... T'iy1)|lyon Y.L (ST T.. ..
T i41). Let d, be an invariant metric for X ,. We claim that given 7, § > 0 and
N a positive integer, there exists x € X, satisfying d;(x, 0) < & but

NQuy1ST T2 ... Tix||liz1 = N.

To see this, choose y € L (ST 7. .. 1) with [[|Qu1y]l|is1 = N 4 1 using
the fact that . (ST11s. .. 1) 2. (ST 1. .. Ti11). There is x, — 0 in X,
with ST 7% ... T, — y. llence d;(x,, 0) = 0 and [[|Qi1 ST Ts . .. T[] i1
— N 4 1, thus an x, with # suthciently large will sufice. We may also choose
a sequence of positive reals {e(7)} such that d,(x, 0) £ (i) implies

QST Lo Tlli =1, i=1,2,3....

We may assume €(7) < 2=/ and that (i) decreases to 0 as i — o0. Ilence we
may inductively form a sequence of elements x; ¢ X; satisfying:

D) d; (L1541 T, 0) < e(d)27" foralll £ <4

i) di(xs, 0) < e()27%

i—1
i) 111QuaSTiTs . . Tl ||pn > i + “ Q1S ; Tv7s ... T,

i+1

Let x = > ou1 Ih7s ... T, € Xo which converges absolutely in X, since
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do(T1Ts ... 1%, 0) < e(n)27" < 27" It follows that

|1Sxl e 2 11 Qns1Sx][[ 341
N1
= \ Oni1S D 1hTs ... Toky + Oy 1ST1T: . .. Tyxy
n=1
+ Ovi1S D, ThTs... T,
n=N-+1 N+1
=2 N — [[|Qv1STi T o« Tyyxlllvis
where vy = Ym_vi1 Ly ... Twx, which converges absolutely by 1) above.
But
dyi1(yy, 0) £ D e(m)2™
m=N+1
SeN+1) Y 2
m=N+1
< e(V+ 1).
Thus [||Qx 18T 75 . .. Txvpvnlllver = 1 which implies ||Sx||, =2 N — 1 for all

N, a contradiction and the result follows.

We now concentrate on the situation in Lemma 1.1a.

We remark that if S ¢ B(X, V), and 17 is an open convex set in Y, then
S=1(17) is an open convex set in X. Hence if X is an F-space with no open con-
vex sets other than # and X (e.g. 1.7, 0 < p < 1), then S is the zero map. This
is well known, but serves to illustrate the difference in situations when S is
not assumed to be continuous. There do exist discontinuous intertwining maps
from such [-spaces into Fréchet and Banach spaces.

We further specialize to the case where 7,7, = 1,1, and R, R, = R, R,, all
n and m, and we say {1} and {R,} arc commuting sequences of continuous
linear operators on X and 'V, respectively. We have a preliminary lemma on
projective limits which generalizes the Mittag-Leffler theorem:

Lemma 1.1d. Let { X} be algebraic vector subspaces of a Iréchet space X. Let
{1} be any sequence of commuting operators in B(X) such that T,X 1 C X,
for all n. Let {t(n)} be any increusing sequence of natural numbers with t(n) — o0,
Let P be the following projective limit
1 Ty o T,

ol lx g,

Letting {|| - | || - 10 £ || - |31} be « family of seminorms which determines the
Fréchet topology of X, suppose {1(n)} has been chosen to satisfy the following:
i) 1(n) z t(n)
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ii) there is M, such that

HTn—lTn—ﬂ e me"l(n) = ﬂ[onHl(M

form =1,2,...,n — 1forallx ¢ X. Thenif

P (60

12Xw1 22X, foralln,
we also have that

—==(n)

P DX, fordln,
where 7, : P — X, 1s the cunonical projection into X,,.

Proof. We note that such a sequence {/(n)} can always be chosen, since any
finite set of operators in B(X) is equi-continuous. Fix n# and let ¢ > 0. Let
x, € X,. Choose x,41 € X,41 so that ||Tx,01 — xulli < €/273,. Continue
inductively choosing x,.,41 € X,4,41 so that

Toisninin = Yoppllion < /2P0y, p=1,2,3,....

Given any non-negative integer j, observe that

@

2

jn»#p e jn+1xn+p+1 - [n-hv—l L -[rz+j~\~1H17I f t(n+p)

p=i+1
o
= Z H(Tnm—l cee Tn—i—j) (]‘7z+—p‘\'rz+p+1 - xn+77) ||l(n+p)
p=j+1
o
= pZ. . Myl l’j‘n-mxw-ﬁ-l — Xntol | tntm
i
=

At
2 /2"
p=j+1

which converges. Since {{] - || /,1p! also determine the I'réchet topology of X
we have that {7, Twipe1 - o« Lopuypiiloe;r1 is Cauchy in X and hence there
is $,4; € X,y such that

-[n+l/ s 171+./xn-+ 1 T Sy AS /) — 0,7 = 01 iv 2v e

But if we define s,_1 = 1,218y, Sy—o = 1 _0Sp—1...8 = 1154, then it is clear
that (s;) ¢ Pand m,(s;) = s,. We also have that

|

. 7 O
ln+m e jnxn+m+1 - ~\’71||NH)

m

é H’[‘nxn-kl - an/(n) + 2:1 y ‘n+p e J‘nxn-wﬂ-l - 1‘714,7—1 e ]‘nxn+vH((n
p=
m
é HTner-I - an[(n) + Zl H(Tn—ep-l LR ]‘n)(,j‘71+ﬂxﬂ+l7+l - xn-}p)”!(n-*—ﬂ)
p=
m m )
= Zo *’1[n+pHTn+pxn+n-&-l - xn+pl|l(n+r> = Z E/ZHP Se
= p=0
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Since Lyim L yime1 - o o LnXyime1 — 8, as m — oo this implies that |[s, — x,|{)
P t(n) . .
< ¢. Thus we have shown that =,P"" D X, since e was arbitrary.

FFor technical reasons we will now add the hypothesis that each R, appears
an infinite number of times in the sequence. If a subspace Z is invariant under
cach R,, there is thus a largest algebraic subspace D of Z such that R,D = D,
all 7. We shall generally denote this D by D({R,|Z: n = 1, 2, 3...}). Note
F(S) is closed and invariant under each R,. We have the following lemma.

Lunya 1.2, Under the sume hypotheses as Lemma 1.1a, further suppose that
VT,V and { R} are commuting sequences of continuous linear operators on X and
Y respectively. If euch R, appears an infinite number of times in {R,}, then for
cach k there s n(k) satisfying

RoRo 1 R (S) = Ru . .. ReRuF(S)

=D(RJF(S) n=123.."1D" m=nk).

Proof. Let k be given. Let n(k) be as in Lemma 1.1a. Since the R,'s commute
we have that

for all m = n(k). We construct two sequences as follows. Let /(1) = ¢(1) = k.
It is clear that ||x||.qy = ||x]|iqy for all x € V. Let t(p +1) =k + p, p =
1,2,3....Choose [(p + 1), p = 1,2,3,..., to satisfy the following:

1) I(p + 1) > 1(p), forall p.

W) I(p+1) 2tlp + 1), forallp.

iii) thereis M,i1such that [|R,Ry—1. . . Rpx|| iy £ Mo|xl] i,
forallx ¢ YVandm =1,2,3...p.

The /(p 4+ 1)'s are chosen inductively and iii) is if course possible since
{R,} € B(Y). Again by Lemma 1.la we may choose #(I(p + 1)) strictly
increasing in p so that

RoRot . R ()" = Reciorny - - - R (S)' 7T

for all m = n(l(p + 1)). Let X1 = R, - . - Re2RF(S), and let X,,, =
Ry - - - RaR1.F(S), p =1,2,3....Since n(l(p + 1)) are increasing and
R, (S) C.7(S), it is clear that R, X, C X, for all p. Given a fixed p,
there is some m > n(I(p + 1)) such that R, = R,,. Hence

- i

RpXpi1 | = RuRuipsr) - - - ReR1F(S)

1(p)

D RuRot - - Rucipry - - - Rty - - - ReR1# (S)' ™

= Ruipy) - - - RthS’(S)[(p)
2 X,,
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for all p. Let P be the following projective limit:

o, B, Lo g R g

Let m, : P — X, be canonical for each #. By Lemma 1.1d, it follows that
P ? D X,, for all p. In particular 1P D R,q) . . . RaR.F (S) since £(1) =
k and n((1)) = n(k). Note = (P) is divisible by all the R,’s and = (P) C
X, € .7(S), as ¥ (S) is closed. Thus

mn(P) CDUR|L(S):n=1,23...1).

Hence

DURSZ(S) :n=1,23.. D 2 Rip ... ReRLF(S)".
Since the reverse containment is trivial, the lemma follows.

We remark that in the proof we actually showed the somewhat stronger
result that if

]em,Rm—l LR IQI'SP(S)L = ]enlen—l . 77615/(5)}‘ y

for all m = n, then

RR o RZ(S) = DURIZS) =125 1)
The above is useful most often in the form of the following corollary, in which

DR, n=1,2,3,...1) s of course the largest subspace D in ¥ such that
R,D = D, all n.

COROLLARY 1.3. Under the sume hypotheses as Lemma 1.1a, further suppose
that {1} and {R,} are commuting sequences of continitous linear operators on X
and Y respectively. Suppose cach R, uppeurs an infintte number of times in { R,
and that D({R,: n = 1,2,3...}) = (0). Let Q,. be the canonical quotient map of
Y with null space {y € V: ||y|l. = O}. Then for cuch k there is n(k) such that
QiR - .« RoR\S is continions.

Proof. Observe that

DUR|L(S):im =1,2,3,...}) CD(UR,;:n=1,23...})

il

0).
llence Lemma 1.2 implies there is n (k) such that

OrRuiy - -« RaR F(S) = (0),
and thus Q;R,q) . . . ReR1S is continuous.

In the next section we apply the above results to questions of automatic
continuity.
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2. We next develop some sufficient conditions for automatic continuity of
a linear function S from X to ¥. We could continue to proceed in the generality
of the previous section, considering commuting sequences {7,} € B(X) and
IR,} € B(Y) where X is an I-space, Y a Fréchet space and ST, — R,S «
B(X, Y) all n. However, in this setting the hypotheses get rather technical
and instead we choose to specialize to the following case. Let both X and V
be Fréchet spaces. Let 7' € B(X) and R € B(Y) with ST°— RS € B(X, V).
If ¢(R) is countable it may be reformed into a sequence {\,} such that ecach
clement of ¢(R) appears an infinite number of times. It is elementary then that
ifwelet 7, =17 — N, and R, = R — \,, we have ST, — R,S ¢ B(X, V) for
all n. Hence we can apply our previous results in Section 1. We need some
definitions.

Definition 2.1. We say a complex number X is in the gencralized point spectrim
of R and we will write X € ¢,,(R) provided the following hold:

i) N € o(R) = {u: (R — p) is not bijective}.

ii) There is a non-zero vector y ¢ ¥ such that for fixed k, [|(R — N)"y[|, =0
for all but finitely many #.

Some observations are in order. Note that 1i) can occur without 1) occurring.

o)

For example, let V = II7_ G, the Fréchet direct product of C. Let R be
the left shift. Then K=!is the right shift so 0 ¢ ¢(R), but y = (... 0,0, 0,
1,0,0,0...) satisfies ii) with A = 0. We also note that

o,(R) = {\: (R — \)y = 0 for some y # 0} C ¢,,(R).
If ¥ is actually a Banach space, ¢,(R) = ¢,,(R). Finally if A € ¢,,(R) and y

is as above then Xy a, (R — \)"y converges in V for every sequence {a,} of
complex numbers.

Definition 2.2. We say that V has no non-trivial R divisible subspaces if
whenever D is an algebraic subspace with (R — N\)D = D all x € C, then
D = (0). Equivalently,

DR — X: N € G}) = (0).
[owever, if ¢(R) is countable, it is easily seen that ¢ (R) = {\;} implies
DUR —Nin=1,2,3...1) = DR — x: x € C]).

Definition 2.3. Let A ¢ C. We say that (1" — N)X has finite codimension in X
provided X /(7" — \)X is a finite dimensional vector space over C. We shall
use the following notation

(X: (T — NX] < +oo.

This implies (7" — N)X is closed in X since X = (I" — \)X ® I as vector
spaces for some finite dimensional subspace F. The product topology of the
range space topology on (7" — A\)X and the relative topology on F is also
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FFréchet and stronger than the original topology on X. Hence, the open map-
ping theorem shows they are homeomorphic which forces (7" — \)X to be
closed. Also (7" — \) is then an open map of X onto (1" — N)X.

THEOREM 2.4. Let X and Y be Fréchet spaces. Let T € B(X) and R € B(Y)
with o(R) countable. Suppose S is « linear function from X to Y satisfying
(ST — RS) € B(X, V). If

1) Y has no non-trivial R divisible subspaces, and

i) N € a,,(R) tmplies [X: (T’ — N)X] < 400,
then S is continuous.

Proof. Let ¥ (S) be the separating subspace of S. Let N € a(R). Reform
o (R) ~ {\} into a sequence {u,} such that each element appears an infinite
number of times. We have two cases

Case 1) D{(R — p )L (S):n=1,2...1) = (0).
Case 2) D{(R — u)|L(S):n=1,2...}) = (0).

Suppose the first case occurs. Lemma 1.2 implies that for cach k there exists
n(k) such that m = n(k) implies

1R = ) . (R = w)slle = 0,

for all s € Z(S). Let p,(x) = (x — w,) ... (x — ) € Clx]. If {e,} is any
sequence in Candy € % (S) we see that > g1 a,p,(R)y always converges in V.
Letag = —(u1 — M) oy = — (o — N 7lag, . ooy = — (g1 — N7 lagor .
for all n. Let v € .%(S). Then

(R—MMw+2m@WM
= [(R - ,UI) + (,Ul — )\)]auy

+ i [(R - ,Unfl) + (ﬂ71+1 - >\)]C"npn(R)y

n=1

-y + 010(R - ,U1>y + Z a'npn+1(R)y - all—l/)"(R>y

n=1

I

= —9.
Thus (R — N).Z(S) =.%(S) in Case 1). Suppose now that Case 2) occurs.
Let y be any non-zero element of D({ (R — u,)|.%7(S): n = 1,2,3...}). Now
Y has no non-trivial divisible subspaces and hence D({R — u: u € o(R)}) =
(0). Thus
DR —u)|ZLS)n=1,2,3..1 UK —=NFLO)}) = (0).

Let & be fixed. Applying lemma 1.2 we see that there is a polynomial p with
all roots from {u,} and a positive integer m such that [[(R — N)"p(R)s]l, = 0
for all s € .%(S). Since (R — NF(S) C.¥(S) this implies that
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(R = N)'p(R)s||, = 0 forall s € £(S)and Il = m. But y = p(R)s for some
2 € F(S) and hence |[(R — N)'p(R)z||, = [[(R — N)'y||x = 0 for all I = m.
Since k was arbitrary at the start and y # 0 in D({(R — p,)|.Z(S): n =
1,2,3...}), this implies that N € ¢,,(R). Hence if Case 2) occurs we have that
[X: ("= N)X] < +0.Sofor each N € ¢(R) we either have that (R — \).#(S)
=) or[X: (I' = NX] < 4+00. Form ¢(R) into a sequence {\,} in which
each element occurs an infinite number of times. Let Q,: V— V/{y € Yt ||y||,
= 0} be canonical. Since D({R — \,: n =1, 2,3 ...}) = (0), Corollary 1.3
implies that for each & there is #(k) such that Q,(R — Nyy) - .. (R — \o)-
(R = M\)Z(S) = (0). If [X: (I’ = X\)X] =+ then (R — \)ZL(S) =
F(S) and this term may be deleted. Hence there is a polynomial ¢, such that
0:q: (R).F(S) = (0) and X a root of ¢ implies [ X: (7" — \)X] < 4 0. Hence
[X: ¢(T)X] < +0 also. Now Q,q;(R)S is continuous and equals Q;.S¢,(1')
plus some continuous operator. Hence Q,Sg, (7’) is also continuous.

But ¢,(7)X is closed, hence Q.S is continuous on ¢, (7')X by the open map-
ping theorem. But ¢,(7)X has finite codimension, and so Q.S is continuous
on all of X. Thus

Z(S) Sy € Vi lyll = 0},

for all k. Hence #(S) = (0) and S is continuous.

We next have some remarks on the necessity of these conditions which have
arisen. We first note that A. Sinclair showed [5, Theorem 1.2] that if 7" is not
algebraic and R has a non-trivial divisible subspace then there is a discon-
tinuous .S such that S7° = RS. His proof was stated for Banach spaces but the
generalization to Iréchet spaces is immediate. If there is N\ € o,(R) and
[X: (I" = N)X] = +o0, B. Johnson and A. Sinclair showed that again there is
a discontinuous S such that S7° = RS [3, Lemma 2.1]. We generalize this to
Fréchet spaces in the following.

LeMMA 2.5. Let X and Y be Iréchet spaces. Let T ¢ B(X) und R ¢ B(Y).
Suppose N € a,,(R) ~ a,(T") and (X: (I" — N)X] = +oo. Then there exists
discontinuous linear function S from X to Y satisfying ST = RS.

Proof. Let y be a non-zero element of ¥ such that [|[(R — N)"y||. = 0 for
all but finitely many »# when & is fixed. Since y # 0 there is a first semi-norm
such that [|y|| # 0. Without loss of generality we may assume [|y||; # 0.
Then there is an N such that [|(R — N)¥y[|, # 0 but ||[(R — N)*y||: = 0 for
n > N. Pick a discontinuous linear functional f, from X to C satisfying
fo(T'— N)X = 0. Define f1(T" — Nx = fox on (I" — N\)X and extend f; to all
of X in any way so long as it remains linear. In general after f, has been chosen,
define f,+1(I" — N)x = f,x on (I" — N\)X and extend to a linear functional on
X.Since N ¢ ¢,(T) it is elementary that the f, are well defined (discontinuous)
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linear functionals on X. Define

Sy = 3 )R-y, cEX,

which converges by our previous remarks. It is easily verified that S(7' — \)x
= (R — X\)Sx and hence ST = RS. Pick x, = 0 in X with [fo(x,)| > 1. Then

(R = N¥Sx /1y = [[(R = N¥ole)yll > [[(R — N5 5 0.

Hence (R — N\)*S is discontinuous so S must be also. Observe that this pro-
cedure is valid when X is more generally an F-space.

We now specialize to the case where X = ¥V and 17" = R. Hence we are
interested in the case where S commutes with 7" If X is a Banach space and
o(T") is countable then A. Sinclair’s results show that every commuting S is
continuous if and only if

i) X has no non-trivial 7-divisible subspace, and

ii) X € 0,(T) implies [X: (T — N X] < 0.

This follows from Sinclair's more general theorem [5, Theorem 2.2] when
T = R, since if 1" is algebraic, there cannot be any non-trivial 7" divisible
subspace. We generalize the above to Fréchet spaces and to the case when

ST — 1S ¢ B(X).

THEOREM 2.6. Let X be a Fréchet spuce and let T € B(X) with o(T") countable.
Then every linear function S on X, such that ST — 1'S ¢ B(X), is continuous
if and only if

1) X has no non-trivial T-divisible subspuce, and
i) N € a,, (1) implies [ X: (1" — N)X] < +0.

Proof. 1f 1) and ii) hold, Theorem 2.4 implies that such an S must be con-
tinuous. If 1) fails then 7" cannot be algebraic and a generalization of |5,
Theorem 1.2] as noted above implies a discontinuous commuting .S exists.
If ii) fails we have two cases. If N\ ¢ ¢,(7), Lemma 2.5 implies there is a dis-
continuous commuting S. If N ¢ ¢,(7) and |X: (I' — M) X] = 40, exactly
as in [3, Lemma 2.1] there is a discontinuous commuting S. I lence in any case,
if ii) fails there exist discontinuous commuting functions .S, so certainly S7' —
T'S ¢ B(X). This proves the theorem.
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