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Abstract. An important question in dynamical systems is the classification problem, that
is, the ability to distinguish between two isomorphic systems. In this work, we study the
topological factors between a family of multidimensional substitutive subshifts generated
by morphisms with uniform support. We prove that it is decidable to check whether two
minimal aperiodic substitutive subshifts are isomorphic. The strategy followed in this work
consists of giving a complete description of the factor maps between these subshifts.
Then, we deduce some interesting consequences on coalescence, automorphism groups,
and the number of aperiodic symbolic factors of substitutive subshifts. We also prove
other combinatorial results on these substitutions, such as the decidability of defining a
subshift, the computability of the constant of recognizability, and the conjugacy between
substitutions with different supports.
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1. Introduction
Isomorphic systems are indistinguishable in terms of their dynamical properties, making
classification an important problem in dynamical systems. Nevertheless, finding an
isomorphism (or conjugation) between two dynamical systems has proven to be highly
challenging. We recall that an isomorphism between two symbolic systems (X, S, Zd)
and (Y , S, Zd) is a continuous and bijective map φ : (X, S, Zd) → (Y , S, Zd) commuting
with the action, that is, for any n ∈ Z

d , φ ◦ Sn = Sn ◦ φ. If the map φ is only surjective, it
is called a factor map.

One classic approach to address the classification problem involves identifying invari-
ants, which are properties shared by isomorphic systems and are easily determinable.
However, in some cases, the existing invariants may not suffice for this purpose. Addition-
ally, the topological factors of a topological dynamical system are rarely used explicitly to
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unravel the structure of a particular dynamical system. Nonetheless, they contain valuable
information for certain aspects and can be employed for concrete computations or the study
of specific structures, such as in spectral theory.

We are also concerned with the decidability of certain properties. A property is said to
be decidable if an algorithm exists that allows one to verify whether the property is satisfied
or not. In this article, our focus lies on the decidability of the classification problem within
the family of multidimensional substitutive subshifts.

One-dimensional substitutive subshifts have been extensively studied for several
decades, ever since they were introduced by Gottschalk in [27]. They represent the simplest
non-trivial zero-entropy symbolic systems and are generated in a highly deterministic
manner. This simplicity has led to their presence in various fields of mathematics,
computer science, and physics, such as combinatorics of words, number theory, dynamics
of aperiodic tilings, quasi-crystals, and more (see, for example, [1, 2, 35, 36]). However,
their deep understanding took several decades, with significant contributions made by
Cobham [10] (who identified them as so-called automatic sequences from a computational
perspective), Queffélec and others [14, 39, 42] (in terms of their spectral properties),
Mossé [34] (focused on recognizability, which is a sort of invertibility of substitutions),
Durand, Host, and Skau [18] (who classified their topological factor systems), and Host and
Parreau among several others [12, 13, 15, 30, 33, 41] (classification of their automorphism
groups). We refer to [23, 39] for extensive bibliographies on the (earlier developments
of the) subject. Many of the aspects mentioned above remain largely unexplored in the
context of multidimensional substitutive systems.

In the multidimensional setting, substitutive subshifts find their motivation in physical
phenomena, particularly through the discovery of the aperiodic structure of quasi-crystals,
modeled by the Penrose tiling [37]. In these models, symmetries play a fundamental role
and are described using finite data. Numerous articles have been dedicated to the study
of these tilings (see [3] for an extensive bibliography on aperiodic order). Substitutive
systems have then emerged as valuable mathematical models within this research direction.
Our focus in this article is on substitutions with uniform support, where the shape of any
pattern defined by the substitution remains the same (see [8] for basic properties on this
topic, where we follow the same notation). Within this class of substitutive subshifts, we
prove that assuming they have the same combinatorial structure, it is decidable whether a
factor map exists between two aperiodic substitutive subshifts.

THEOREM A. Let ζ1, ζ2 be two aperiodic primitive constant-shape substitutions with the
same expansion matrix L. It is decidable to know whether there exists a factor map φ :
(Xζ1 , S, Zd) → (Xζ2 , S, Zd).

The strategy followed in this article involves providing a complete description of the
factor maps between substitutive subshifts. This approach draws inspiration from a series
of works on automorphism groups of symbolic systems, which we proceed to describe.
The study of factors and conjugacies between dynamical systems is a classical problem,
primarily concerning their algebraic and dynamical properties in relation to those of the
system (X, T , Zd). Automorphisms, which are self-conjugacies of a particular system, can
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be algebraically defined as elements of the centralizer of the action group 〈T 〉, considered
as a subgroup of all homeomorphisms Homeo(X) from X to itself. Symbolic systems
already exhibit significant rigidity properties regarding factor maps and automorphisms.
For instance, the famous Curtis–Hedlund–Lyndon theorem [29] establishes that any factor
map between subshifts is a sliding block code, implying that the automorphism group is
countable and discrete. Initially studied for subshifts of finite type [29], these automorphism
groups were shown to be infinitely generated and containing various groups, including all
finite groups, the free group on two generators, the direct sum of a countable number of
copies of Z, and any countable collection of finite groups. The existence of a conjugacy
between two subshifts of finite type is known to be equivalent to the notion of strong shift
equivalence for matrices over Z+ [47], which is not known to be decidable [31].

However, within the rich family of substitutive subshifts, factor maps exhibit strong
rigidity properties, as proven by Host and Parreau in [30]. They provided a complete
description of factor maps between subshifts arising from certain constant-length substitu-
tions, proving that any measurable factor map induces a continuous one. As a consequence,
the automorphism group is virtually generated by the shift action, meaning that there
exists a finite set of automorphisms such that any automorphism can be expressed as the
composition of an element from this finite set and a power of the shift. Moreover, any
finite group can be realized as a quotient group Aut(X, S, Z)/〈S〉 for these subshifts, as
proven by Lemańczyk and Mentzen in [33]. The proof by Host and Parreau is based on the
following fact: there exists a bound (in this case, r = 2) such that any factor map between
these substitutive subshifts is the composition of a sliding block code with a radius less
than r and a power of the shift map. Using the self-induced properties of substitutive
subshifts, Salo and Törmä provided in [41] a renormalization process for factor maps
between two minimal substitutive subshifts of constant length and for Pisot substitutions,
extending the description obtained in [30] within a topological framework. More recently,
Durand and Leroy [20] showed the decidability of the factorization problem between
two minimal substitutive subshifts, extending the results of Salo and Törmä, giving a
computable upper bound R such that every factor map between minimal substitutive
subshifts is the composition of a power of the shift map with a factor map having a
radius less than R. The decidability of the factorization problem in the constant-length
case had previously been proved by Fagnot in [22] using the first-order logic framework of
Presburger arithmetic, without assuming minimality. In [8], an analogous result to that of
Host and Parreau for the multidimensional framework was established. In this article, we
further extend the findings in [8] to the whole class of aperiodic minimal multidimensional
constant-shape substitutive subshifts.

THEOREM B. Let ζ1, ζ2 be two aperiodic primitive constant-shape substitutions with the
same expansion matrix. Then, there exists a computable constant R such that every factor
map between (Xζ1 , S, Zd) and (Xζ2 , S, Zd) is the composition of a shift map with a factor
map of radius less than R.

The constant R of the previous theorem depends on the constant of recognizability
of the image substitution ζ2. In [8], it was already established that aperiodic primitive
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constant-shape substitutions are recognizable. In this article, we prove that this constant is
computable.

THEOREM C. Let ζ be an aperiodic primitive constant-shape substitution with expansion
matrix L and support F. There is a computable upper bound for the constant of
recognizability of ζ . This bound can be expressed only by the cardinality of the alphabet
|A|, the expansion matrix L, the support F, and the dimension d.

This result is an analog of the one proved by Durand and Leroy in [19] for the
one-dimensional case.

This article is organized as follows. The basic definitions and background are introduced
in §2. Section 3 is devoted to the study of the supports of a constant-shape substitution.
We prove the decidability of whether this sequence is Følner (Theorem 3.2), useful to
define the substitutive subshift. Then, we use this proof to get a bound on their complexity
function (Proposition 3.6). In §4, we deal with the conjugacy problem between two ape-
riodic primitive constant-shape substitutions with the same expansion matrix but different
support. We prove that for any pair of different supports F1, G1 of an expansion matrix and
any constant-shape substitution with support F1, there exists a constant-shape substitution
with support G1 such that the two substitutive subshifts are topologically conjugate
(Theorem 4.1). This answers a question raised in [24], where a similar result was shown
for the one-dimensional case. Section 5 is devoted to the computability of the constant
of recognizability of constant-shape substitutions. To do this, we study the computability
of the repetitivity function for substitutive subshifts (Lemma 5.4). Finally, in §6, we
characterize the factor maps between aperiodic primitive substitutive subshifts sharing
the expansion matrix (Theorem 6.2). Then, we deduce the coalescence of substitutive
subshifts (Proposition 6.4), meaning any endomorphism between the substitutive subshift
and itself is invertible. We also prove that the automorphism group of substitutive subshifts
is virtually generated by the shift action (Proposition 6.5). Additionally, we use Theorem
6.2 to conclude the decidability of the factorization problem between substitutive subshifts
having the same expansion matrix (Theorem 6.6). Thanks to the coalescence of substitutive
subshifts, we also deduce the decidability of the isomorphism problem (Corollary 6.9). We
finish this section proving that substitutive subshifts have finitely many aperiodic symbolic
factors, up to conjugacy (Lemma 6.12). Thanks to Theorem 6.2, we can provide a list
containing these factors.

2. Definitions and basic properties
2.1. Basic definitions and notation.
2.1.1. Notation. Throughout this article, we will denote by n = (n1, . . . , nd) the ele-
ments of Z

d and by x = (x1, . . . , xd) the elements of R
d . If F ⊆ Z

d is a finite set, it
will be denoted by F � Z

d , and we use the notation ‖F‖ = maxn∈F ‖n‖, where ‖ · ‖
is the standard Euclidean norm of R

d . If L ∈ M(d, R) is a d × d-matrix, we denote
‖L‖ = maxx∈R\{0} ‖L(x)‖/‖x‖ as the matrix norm of L.

A sequence of finite sets (Fn)n>0 ⊆ Z
d is said to be Følner if for any n ∈ Z

d

lim
n→∞

|Fn�(n + Fn)|
|Fn| = 0,
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where |X| stands for the cardinality of the set X. (In the literature, especially in group
theory, it is common to also ask that the union of the sequence of sets (Fn)n>0 is equal to
Z
d for a sequence to be Følner, but we will not use it in this article.) For any pair of subsets
E, F ⊆ Z

d , we denote F ◦E as the set of all elements f ∈ F such that f + E ⊆ F , that is,

F ◦E = {f ∈ F : f + E ⊆ F }.
In the case where E is a discrete ball centered at the origin, meaning E= [B(0, r)∩Z

d ]
for some r > 0, we will denote F ◦[B(0,r)∩Zd ] simply by F ◦r . Note that the Følner
assumption implies that for any E � Z

d ,

lim
n→∞

|F ◦E
n �Fn|
|Fn| = 1. (1)

2.2. Symbolic dynamics. Let A be a finite alphabet and let d ≥ 1 be an integer. We
define a topology on AZ

d
by endowing A with the discrete topology and considering on

AZ
d

the product topology, generated by cylinders. Since A is finite, AZ
d

is a metrizable
compact space. The additive group Z

d acts on this space by translations (or shifts), defined
for every n ∈ Z

d by

Sn(x)k = xn+k , x ∈ AZ
d

, k ∈ Z
d .

The Z
d -action (AZ

d
, S, Zd) is called the full-shift.

Let P ⊆ Z
d be a finite set. A pattern is an element p ∈ AP . We say that P is the support

of p, denoted P = supp(p). We say that a pattern p occurs in x ∈ AZ
d

if there exists
n ∈ Z

d such that p = x|n+P (identifying P with n + P by translation). In this case, we
denote it as p � x, and we call such n an occurrence in x of p.

A subshift (X, S, Zd) is given by a closed subset X ⊆ AZ
d

that is invariant under the
Z
d -action. In this article, even if the alphabet changes, S will always denote the shift map,

and we usually say that X itself is a subshift. A subshift can also be defined by its language.
For P � Z

d , we denote

LP (X) = {p ∈ AP : there exists x ∈ X, p � x}.
We define the language of a subshift X by

L(X) =
⋃
P�Zd

LP (X).

We say that the subshift (X, S, Zd) is minimal if it does not contain proper non-empty
subshifts. The subshift is aperiodic if there are no non-trivial periods; that is, if Spx = x

for some p ∈ Z
d and x ∈ X, then p = 0.

Let B be a finite alphabet and consider a subshift Y ⊆ BZ
d
. A map φ : (X, S, Zd) →

(Y , S, Zd) is a factor map if it is continuous, surjective, and commutes with the actions,
that is, φ ◦ Sn = Sn ◦ φ for all n ∈ Z

d . In this case, we say that (Y , S, Zd) is a factor
of (X, S, Zd). If φ is also injective, we say it is a conjugacy (or an isomorphism). When
φ : (X, S, Zd) → (Y , S, Zd) is a factor map, there exists a finite subset P � Z

d and a
P-block map � : LP (X) → B such that for any n ∈ Z

d and x ∈ X, φ(x)n = �(x|n+P ).
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This is known as the Curtis–Hedlund–Lyndon theorem [29]. We call such P the support
of � and a support of φ. Observe that if φ is induced by �, we can define another block
map�′ also inducing φ and whose support is a discrete ball of the form [B(0, r) ∩ Z

d ] for
r ∈ N. We define the radius of φ (and denote it by r(φ)) as the infimum of r ∈ N such that
φ is induced by a block map with support [B(0, r) ∩ Z

d ].

2.3. Multidimensional constant-shape substitutions. We recall some basic definitions
and results about multidimensional substitutive subshifts of constant shape that will be
used throughout this article. We refer to [8] for basic properties on this topic, where we
follow the same notation (see also [25] for spectral properties of these subshifts). Let
L ∈ M(d, Z) be an expansion integer matrix, that is, there exists λ > 1 such that for every
x ∈ R

d \ {0}, we have that ‖L(x)‖ > λ‖x‖. Let F be a fundamental domain of L(Zd)
in Z

d , meaning a set of representative classes of Zd/L(Zd) (with 0 ∈ F ), and let A be
a finite alphabet. A multidimensional constant-shape substitution is a map ζ : A → AF .
The set F is called the support of the substitution. The following shows an example of a
constant-shape substitution.

Example 2.1. (Triangular Thue–Morse substitution) The triangular Thue–Morse substitu-
tion is defined with L = 2idR2 , F = {(0, 0), (1, 0), (0, 1), (−1, −1)}, and A = {a, b} as

b a

σ�TM : a �→ a b, b �→ b a.
a b

In the literature, constant-shape substitutions with a positive diagonal expansion matrix
L = diag(li)i=1,...,d and support equal to the standard d-dimensional parallelepiped F1 =∏d
i=1�0, li − 1� are called block substitutions. These substitutions have a characteristic

block structure defined by the shape of F1. Moreover, when L = pidR2 is equal to some
positive multiple of the identity and the support is equal to F = �0, p − 1�2, we use the
term square substitution to describe such cases.

Given a substitution ζ , we let Lζ denote its expansion matrix and Fζ1 its support. For

any n > 0, we define the nth iteration of the substitution ζ n : A → AF
ζ
n by induction:

ζ n+1 = ζ ◦ ζ n, where the supports of these substitutions satisfy the recurrence

F
ζ
n+1 = Lζ (F

ζ
n )+ F

ζ
1 for all n ≥ 1. (2)

Observe that we trivially have Lζn = Lnζ .
The language of a substitution is the set of all patterns that appear in ζ n(a) for some

n > 0, a ∈ A, that is,

Lζ = {p : p � ζ n(a) for some n > 0, a ∈ A}.
For such a language to define a subshift, we need that the sets Fζn contain arbitrarily

large balls for n large enough, that is, for any r > 0, there exists n > 0 such that (F ζn )◦r �=
∅. This condition is ensured by the Følner property. Moreover, the Følner assumption on
the sequence of fundamental domains (Fn)n>0 is necessary to ensure that the subshift
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is uniquely ergodic, following the proof given in [32] for substitutive Delone sets. We
prove in the next section that the Følner property is actually equivalent to the existence of
arbitrarily large balls in the sequence of supports. We also show that whether a sequence
(Fn)n>0 satisfies this property is decidable (see Theorem 3.2).

Example 2.2. (Iterations of a constant-shape substitution) The first three iterations of the
substitution σ�TM illustrated in Example 2.1.

a

b a

b b b a

a �→ a b �→ a b b a

a b a b

a b

a

b

a b

a a b

b a a b

a b a a b

b a b a a b

b b b a a a b

�→ a b b a b a a b

a b a b a b a

b a a b b a

b b a a b

a b b a

b a b

a b

a

We define the subshift Xζ associated with the substitution ζ as the set of all sequences
x ∈ AZ

d
such that every pattern occurring in x is in Lζ . We call this subshift a substitutive

subshift.
A substitution ζ is called primitive if there exists a positive integer n > 0, such that,

for every a, b ∈ A, b occurs in ζ n(a). Each substitution ζ can be naturally associated
with an incidence matrix denoted as Mζ . For any a, b ∈ A, as (Mζ )a,b is defined as
|{f ∈ Fζ1 : ζ(a)f = b}|, that is, it is equal to the number of occurrences of b in the pattern
ζ(a), the substitution ζ is primitive if and only if its incidence matrix is primitive. A matrix
is primitive when it has a power with strictly positive coefficients.

If ζ is a primitive constant-shape substitution, the existence of periodic points is well
known, that is, there exists at least one point x0 ∈ Xζ such that ζp(x0) = x0 for some
p > 0. In the primitive case, the subshift is preserved by replacing the substitution with
a power of it, meaning Xζn is equal to Xζ for any n > 0. Thus, we may assume that the
substitution possesses at least one fixed point. To avoid some problems, we only keep in
the alphabet the letters that appear in the fixed points. We recall that in this case, the
substitutive subshift is minimal if and only if the substitution is primitive (see [39]).

As in the one-dimensional case, the supports do not need to cover all the space.
Nevertheless, up to adding a finite set and taking its images under powers of the expansion
map L, they cover the space. This property is explained in the following proposition. It is
similar to the notion of remainder in numeration theory and will be technically useful.
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PROPOSITION 2.3. [8, Proposition 2.10] Let L ∈ M(d, Z) be an expansion matrix and
F1 be a fundamental domain of L(Zd) in Z

d (containing 0). Then, the set KL,F1 =⋃
m>0((id − Lm)−1(Fm) ∩ Z

d) is finite and satisfies⋃
n≥0

Ln(KL,F1)+ Fn = Z
d ,

where Fζ0 = {0}.
It is straightforward to check that for any block substitution, the set KL,F1 is equal

to �−1, 0�d . If ζ is a constant-shape substitution, we denote Kζ = K
Lζ ,Fζ1

. The set Kζ
controls, in some way, the number of periodic points that a constant-shape substitution
has. More specifically, it can be proved that a primitive constant-shape substitution has at
most |LKζ (Kζ )|ζ -periodic points.

Remark 2.4. Observing that the sets
⋃n
m=1((id − Lm)−1(Fm) ∩ Z

d), n ≥ 1, are nested,
Proposition 2.3 implies that KL,F1 is equal to

⋃j

m=1((id − Lm)−1(Fm) ∩ Z
d) for some

j > 0. Therefore, whenever ζ is primitive, up to replacing ζ by a power of itself, we may
assume that Kζ is equal to (id − Lζ )

−1(F1) ∩ Z
d . In the latter case, it is straightforward

to prove that ‖KL,F1‖ ≤ ‖L−1(F1)‖/(1 − ‖L−1‖).
For the triangular Thue–Morse substitution, the set K�TM is equal to {(−1, 0), (0, 0),

(0, −1), (1, 1)}.
The proof of Proposition 2.3 is inspired by the Euclidean division algorithm, which was

used to obtain finite sets satisfying particular properties as shown in the following result
that we will use in the rest of this article.

PROPOSITION 2.5. [8, Proposition 2.12] Set A � Z
d containing 0 ∈ Z

d and let F � Z
d

containing a fundamental domain F1 of an integer expansion matrix L. Then, there exists
a (computable) finite subset C ⊆ Z

d containing 0 and such that we have the following.
(1) A+ F ⊆ C + A+ F ⊆ L(C)+ F1.
(2) More generally, for any n ≥ 0:

• Ln(C + A+ F)+ Fn ⊆ Ln+1(C)+ Fn+1;
• C + ∑n

i=0 L
i(A+ F) ⊆ Ln+1(C)+ Fn+1.

(3) The sequence of sets (Ln(C)+ Fn)n≥0 is nested.
(4) ‖C‖ ≤ (‖L−1(A+ F)‖ + ‖L−1(F1)‖)/(1 − ‖L−1‖).
Proof. We define the sequence (Cn)n≥0 of finite sets by C0 = {0} and, for every n ≥ 0,

Cn+1 = [L−1(Cn + A+ F − F1) ∩ Z
d ].

One easily checks by induction that Cn ⊆ Cn+1 for all n ≥ 0 and a quick computation
shows that

‖Cn‖ ≤ ‖L−1(A+ F)‖ + ‖L−1(F1)‖
1 − ‖L−1‖ .

As a consequence, the sequence (Cn)n≥0 stabilizes and we set C = CN , where N is such
that Cn = CN for every n ≥ N . This set C is obviously computable.
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Let us now check that the set C satisfies all items. The set C contains 0 by construction,
which directly implies that A+ F ⊆ C + A+ F . If n ∈ C + A+ F , then n belongs
to Cn + A+ F for some n ∈ N. We can thus write n = n′ = a + f as well as n =
L(m)+ f ′, for some n′ ∈ Bn, a ∈ A, f ∈ F , and f ′ ∈ F1. We deduce that L(m) ∈
Cn + A+ F − F1, and hence m ∈ C. Item (2) follows by induction and implies item (3),
as 0 ∈ A ∩ F .

Remark 2.6. Note that if we change the pair (L, F1) by (Ln, Fn) for any n ≥ 1, then the
set C given by Proposition 2.5 is the same for fixed A and F. Using the notion of digit
tile defined in [8, §2.7], we note that ‖L−n(Fn)‖ −−−→

n→∞ ‖T(L,F1)‖. Hence, the sequence

(‖L−n(Fn)‖/(1 − ‖L−n‖))n≥1 is uniformly bounded. Note that, in the block case, these
quantities are bounded by

√
d , where d is the dimension of the substitution.

From now on, we denote CL,F1 to the set given by Remark 2.6 using A = {0} and
F = F1 + F1. By [8, Remark 2.13(2)], we have that for any n ∈ N, CL,F1 + Fn + Fn ⊆
Ln(CL,F1)+ Fn. Note that, in the block case, the set CL,F1 is equal to �0, 1�d .

Every element of Zd can be expressed in a unique way as p = L(j)+ f , with j ∈ Z
d

and f ∈ F1, so we can consider the substitution ζ as a map from Xζ to itself given by

ζ(x)L(j)+f = ζ(x(j))f .

This map is continuous. Moreover, when the substitution is aperiodic and primitive,
Proposition 5.7 below ensures that this map is actually a homeomorphism. This property
is satisfied, even in the case where the substitution is not injective on letters, that is, when
there exist distinct letters a, b ∈ A such that ζ(a) = ζ(b). This comes from the notion of
recognizability of a substitution (see §5).

Definition 2.7. Let ζ be a substitution and x ∈ Xζ be a fixed point. We say that ζ is
recognizable on x if there exists some constant R > 0 such that for all i, j ∈ Z

d ,

x|[B(Lζ (i),R)∩Zd ] = x|[B(j ,R)∩Zd ] �⇒ (there exists k ∈ Z
d)((j = Lζ (k)) ∧ (xi = xk)).

The recognizability of a substitution ζ implies that for every x ∈ Xζ , there exist a
unique x′ ∈ Xζ and a unique j ∈ Fζ1 such that x = Sj ζ(x′). This implies that the set
ζ(Xζ ) is a clopen subset of Xζ , and {Sj ζ(Xζ ) : j ∈ Fζ1 } forms a clopen partition
of Xζ (the proof is classical and similar to the one-dimensional case [39, §5.6]). Any
power of a recognizable substitution is also recognizable, so these properties extend to
ζ n for all n > 0. The recognizability property was first proved for any aperiodic primitive
substitution by B. Mossé in the one-dimensional case [34], and in the multidimensional
case by Solomyak [43] for aperiodic self-affine tilings with an R

d -action. Later, in [8], it
was established that the aperiodic symbolic factors of primitive substitutive subshifts also
satisfy a recognizability property.
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10 C. Cabezas and J. Leroy

3. Decidability of the Følner property for fundamental domains of an expansion matrix
and computability of the language of constant-shape substitutions
Let L ∈ M(d, Z) be an expansion matrix and F1 � Z

d be a fundamental domain of
L(Zd) in Z

d containing 0. Define the sequence of fundamental domains of Ln(Zd) as
in equation (2):

Fn+1 = L(Fn)+ F1 for all n ≥ 1.

We recall that the sequence (Fn)n∈N is said to be Følner if for any n ∈ Z
d ,

lim
n→∞

|Fn�(n + Fn)|
|Fn| = 0.

As mentioned in the previous section, the Følner property ensures that the sets Fn
eventually contain balls of arbitrarily large radius, which then allows us to define a subshift.
However, the converse is not true in general, that is, having balls of arbitrarily large radius
is not enough to guarantee that the sequence is Følner, since the sets can be sparse at the
same time, as the following example shows.

Example 3.1. Consider the sequence of finite sets given by An = �0, n� ∪ {−k(k + 3)/2 :
0 ≤ k ≤ n} for any n ∈ N. Set r > 2. Let n ∈ N be large enough. We note that

(An + r) ∩ An = �r , n� ∪
{
r − k(k + 3)

2
: 0 ≤ k ≤

√
8r + 9 − 3

2

}
∪

{
− (r − 2)(r + 1)

2

}
,

which lets us conclude that |(An + r)�An|/|An| → 1/2 as n → ∞. Hence, the sequence
(An)n∈N is not Følner.

In this section, we prove Theorem 3.2, stating that, when the sets Fn are built as in
equation (2), the Følner property is equivalent to the existence of arbitrarily large balls in
the sets Fn for large enough n. Moreover, we show that we have some control over the
index of the sequence to check an equivalent property, which implies that being Følner is
decidable.

THEOREM 3.2. Let L ∈ M(d, Z) be an expansion matrix and F1 � Z
d be a fundamental

domain of L(Zd) in Z
d containing 0. Set r̄ = ‖L−1(F1)‖/(1 − ‖L−1‖). The sequence

(Fn)n∈N defined as equation (2) is Følner if and only if there exists n ≤ ((6r̄)3d − (6r̄)d )/6
such that Fn contains a translation of CL,F1 + [B(0, r̄) ∩ Z

d ]. In particular, it is decidable
to check whether (Fn)n∈N is a Følner sequence.

In the block case, that is, L = diag(�i)di=1 and F1 = ∏d
i=1�0, li − 1�, we note that

CL,F1 + [B(0, r̄) ∩ Z
d ] ⊆ [B(0, 2

√
d) ∩ Z

d ], and hence for any n ∈ N such that n ≥
log(4

√
d)/ log(min �i) contains a translation of CL,F1 + [B(0, r̄) ∩ Z

d ].
Roughly speaking, the idea of the proof of Theorem 3.2 is twofold. First, we show

that if some FN contains a large enough ball B, then the ‘extended image’ Lm(B)+ Fm

inside FN+m will contain a ball larger than B and this will enforce the Følner property.
The statement of Proposition 3.3 below is actually more precise about the ball B, which
allows us get a characterization of the Følner property. Figure 1 illustrates this idea. In
the second step (Proposition 3.4), we define a finite graph and translate the condition of
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FIGURE 1. A visual representation of Claim 1 with the triangular Thue–Morse substitution (Example 2.1). The
black points on the left represent the points in F4, and F5 on the right. The blue points (triangles) represent the
points (−2, 5) in F4 (left) and (−4, 10) = 2 · (−2, 5)+ (0, 0) in F5 (right). Finally, the red points (squares) on

the left represent the set (−2, 5)+ CL,F1 +K and (−4, 10)+ CL,F1 + L(K)+ F1 on the right.

Proposition 3.3 into the existence of a path in this graph. This leads to the decidability of
the Følner property and to a bound on the index N. Figure 3 is an example of the graphs
for the triangular Thue–Morse substitution.

Consider the set K � Z
d given by Proposition 2.3, and the set CL,F1 � Z

d given by
Proposition 2.5 with A = {0} and F = F1 + F1. We recall that, by item (2), for any
n ≥ 1, CL,F1 + Fn + Fn ⊆ Ln(CL,F1)+ Fn. We also deduce from item (4) that

‖CL,F1‖ ≤ 2r̄ . (3)

Assume, up to replacing L by an appropriate power of it, that K = (id − L)−1(F1) ∩ Z
d .

The following result shows a characterization for the sequence of fundamental domains
(Fn)n∈N to be Følner.

PROPOSITION 3.3. Let L ∈ M(d, Z) be an expansion matrix, F1 � Z
d a fundamental

domain ofL(Zd) in Z
d containing 0, and (Fn)n∈N be the sequence of fundamental domains

defined as equation (2). The following conditions are equivalent:
(1) the sequence (Fn)n∈N is Følner;
(2) there exists n ∈ N and f ∈ Fn such that

f + CL,F1 +K ⊆ Fn;

(3) for every finite set B ⊇ K , there exists m ∈ N, f ∈ Fm such that

f + CL,F1 + B ⊆ Fm.

Note that item (3) implies that it is equivalent for a substitution ζ to define that the
substitutive subshift Xζ to the sequence (Fn)n>0 is Følner.

Proof. The implications (1) ⇒ (2), (1) ⇒ (3), and (3) ⇒ (2) are direct. Let us thus
assume item (2). We recall that, by Proposition 2.3,

⋃
p∈N Lp(K)+ Fp = Z

d and the
sequence of finite sets (Lp(K)+ Fp)p∈N is nested. To check that (Fn)n∈N is Følner, it is

https://doi.org/10.1017/etds.2024.87 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.87


12 C. Cabezas and J. Leroy

enough to prove that

(for all p ∈ N) lim
n→∞

|Fn�(Fn + CL,F1 + Lp(K)+ Fp)|
|Fn| = 0,

or, equivalently, that

(for all p ∈ N) lim
n→∞

|{f ∈ Fn : f + CL,F1 + Lp(K)+ Fp ⊆ Fn}|
|Fn| = 1. (4)

For any n ∈ N and p ∈ N, we set

Jn,p = {f ∈ Fn : f + CL,F1 + Lp(K)+ Fp ⊆ Fn},
an,p = |Jn,p|, and bn,p = an,p/|Fn|. By assumption, there exists N ∈ N and f ∈ FN such
that f + CL,F1 +K ⊆ FN . In other words, we have aN ,0 ≥ 1. Claim 1 below shows a
form of stability of elements of Jn,p under the application of L. In particular, it implies
that aN+p,p ≥ 1 for all p ∈ N. Since

⋃
p∈N Lp(K)+ Fp = Z

d and the sequence of finite
sets (Lp(K)+ Fp)p∈N is nested, it also implies item (3).

CLAIM 1. For all n, p ∈ N and all f ∈ Fn, if f + CL,F1 + Lp(K)+ Fp ⊆ Fn, then all
elements g ∈ L(f )+ F1 ⊆ Fn+1 are such that g + CL,F1 + Lp+1(K)+ Fp+1 ⊆ Fn+1.
In particular, we have

an+1,p ≥ an+1,p+1 ≥ an,p|det(L)|.
Proof of Claim 1. Indeed, since CL,F1 + F1 + F1 ⊆ L(CL,F1)+ F1, we have

f + CL,F1 + Lp(K)+ Fp ⊆ Fn �⇒ L(f )+ (L(CL,F1)+ F1)+ Lp+1(K)+ L(Fp) ⊆ Fn+1

�⇒ (L(f )+ F1)+ CL,F1 + Lp+1(K)+ Fp+1 ⊆ Fn+1.

This implies that an+1,p+1 ≥ an,p|det(L)|. The other inequality follows from the fact that
Lp(K)+ Fp ⊆ Lp+1(K)+ Fp+1.

Figure 1 illustrates Claim 1. Note that Claim 1 proves that item (2) implies item (3).
Since |Fn+1| = |Fn||det(L)|, we deduce from Claim 1 that the sequence (bn,p)n is

non-decreasing for all p. Furthermore, it is also bounded from above by 1, and the limit in
equation (4) exists.

For every p ∈ N, we setm(p) = inf{n | an,p > 0}. By hypothesis and Claim 1, we note
that m(p) ≤ N + p. Recall that for any k ≥ 1, any element in Fk·m(p) can be written as∑k−1
i=0 L

i·m(p)(f i ), with f i ∈ Fm(p).

CLAIM 2. If there exists 0 ≤ i ≤ k − 1 such that f i ∈ Jm(p),p, then (
∑k−1
i=0 L

i·m(p)(f i )) ∈
Jk·m(p),p.

Using the notion of invariance introduced by Weiss in [45], Claim 2 proves that if
Fn is (C + Lp(K)+ Fp, ε)-invariant, then for any k > 0, the set Fkn is (C + Lp(K)+
Fp, εk)-invariant, which will let us conclude that the sequence (Fn)n>0 is Følner.
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Proof of Claim 2. First, we note that m(p) ≥ p. For any c ∈ CL,F1 and n ∈ Lp(K)+ Fp,
we need to find (gi )

k−1
i=0 ⊆ Fm(p) such that

( k−1∑
i=0

Li·m(p)(f i )
)

+ c + n =
( k−1∑
i=0

Li·m(p)(gi )
)

.

Let 0 ≤ j ≤ k − 1 be the minimal such that f j ∈ Jm(p),p. If j = 0, then the result
follows from Claim 2. Assume that j > 0. Since Lp(K)+ Fp ⊆ Lj ·m(p)(K)+ Fj ·m(p),
there exist k ∈ K and (hi )

j−1
i=0 ⊆ Fm(p) such that

n = Lj ·m(p)(k)+
( j−1∑
i=0

Li·m(p)(hi )
)

.

Then, using items (2) and (3) of Proposition 2.5, there exists c1 ∈ CL,F1 and (gi )
j−1
i=0 ⊆

Fm(p) such that

c +
( j−1∑
i=0

Li·m(p)(f i )
)

+
( j−1∑
i=0

Li·m(p)(hi )
)

= Lj ·m(p)(c1)+
j−1∑
i=0

Li·m(p)(gi ).

Hence,
( k−1∑
i=0

Li·m(p)(f i )
)

+ c + n =
( j−1∑
i=0

Li·m(p)(gi )
)

+
( k−1∑
i=j+1

Li·m(p)(f i )
)

+ Lj ·m(p)(f j + c1 + k).

We conclude by noting that f j + c1 + k ∈ Fm(p).
Now, Claim 2 implies that

|Fk·m(p)�(Fk·m(p) + C + Lp(K)+ Fp)|

⊆
{ k−1∑
i=0

Li·m(p)(f i ) ∈ Fk·m(p) : (for all i) f i /∈ Jm(p),p
}

.

Hence, for any p ∈ N,

lim
k→∞ bk,p ≥ lim

k→∞ bk·m(p),p

≥ 1 − lim
k→∞

∣∣∣∣
{
k−1∑
i=0

Li(f i ) ∈ Fk·m(p) : (for all 0 ≤ i ≤ k − 1)f i /∈ Jm(p),p
}∣∣∣∣

|Fk·m(p)|
= 1 − lim

k→∞
(|det(L)|m(p) − |Jm(p),p|)k

|det(L)|k·m(p)

= 1 − lim
k→∞

(
1 − |Jm(p),p|

|det(L)|m(p)
)k

= 1.

We conclude that the sequence (Fn)n>0 is Følner.
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FIGURE 2. The graph G(�, �0, �− 1�, {−1, 0}) for the classical one-dimensional case.

We now aim to show that satisfying item (2) of Proposition 3.3 is decidable. The next
result shows that this condition is equivalent to the existence of a synchronizing word in
some particular finite graph, a condition which is known to be decidable [44].

Assume that B � Z
d satisfies K ⊆ B ⊆ L(B)+ F1. Let us consider a labeled directed

graph G(L, F1, B), where the vertex set is CL,F1 + B and there is an edge from a ∈
CL,F1 + B to b ∈ CL,F1 + B labeled with f ∈ F1 if and only if there exists g ∈ F1

such that f + a = L(b)+ g. Figure 2 shows the graph G(L, F1, B) in the classical
one-dimensional case, where L = � ≥ 2 and F1 = �0, �− 1�.

Figure 3 represents the graph G(L, F1, K) for the triangular Thue–Morse
(Example 2.1).

Note that 0 ∈ CL,F1 + B has out-degree |F1| = |det(L)| and any edge from 0 is a
self-loop. Furthermore, if a ∈ CL,F1 + B is an in-neighbor of 0 with an edge labeled

by f ∈ F1, then f + a ∈ F1. Let P = a0
f 0−→ a1

f 1−→ a2 be a path in G(L, F1, B). By
definition, we have that f 0 + a0 = L(a1)+ g0 and f 1 + a1 = L(a2)+ g1 for some
g0, g1 ∈ F1. This implies that L(f 1)+ f 0 + a0 = L2(a2)+ L(g1)+ g0.

PROPOSITION 3.4. Let n ≥ 1 and f = ∑n−1
i=0 L

i(f i ) ∈ Fn, with f i ∈ F1 for every i. We
have that f + CL,F1 + B ⊆ Fn if and only if f 0f 1 · · · f n−1 labels a path from every
vertex in G(L, F1, B) to 0.

Proof. Assume that f + CL,F1 + B ⊆ Fn. Set a ∈ CL,F1 + B. Then, there exists g(a) =∑n−1
i=0 L

i(gi (a)) ∈ Fn such that f + a = g(a). Note that there exists a1 ∈ CL,F1 + B

such that f 0 + a = L(a1)+ g0(a), and a straightforward induction shows that there exists
a sequence (ai )n−1

i=1 such that for any 1 ≤ i ≤ n− 1, f i + ai = L(ai+1)+ gi (a) and

f n−1 + an−1 = gn−1(a). This implies that there is a path Pa = a
f 0−→ a1

f 1−→ · · · f n−2−−−→
an−1

f n−1−−−→ 0. All of these paths have the same label. The other direction is direct.

The next result is a direct consequence of Propositions 3.3 and 3.4.

COROLLARY 3.5. Let L ∈ M(d, Z) be an expansion matrix, F1 � Z
d a fundamental

domain ofL(Zd) in Z
d containing 0, and (Fn)n∈N be the sequence of fundamental domains

defined as equation (2). Let also B � Z
d satisfying K ⊆ B ⊆ L(B)+ F1. The sequence

(Fn)n∈N is Følner if and only if there exists n ≥ 1 and a word f 0f 1 · · · f n−1 ∈ F ∗
1 that

labels a path from any vertex to 0 in G(L, F1, B).

Note that in Figure 2, if � ≥ 3, the letter 1 labels paths from every vertex in {−1, 0, 1}
to 0. If � = 2, the word 01 labels paths from every vertex in {−1, 0, 1} to 0. Observe that
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FIGURE 3. The graph G(L, F1, K) for the triangular Thue–Morse. Outgoing edges from vertex (0, 0) are not
represented as they are self-loops.

in Figure 3, the word (0, 1)(1, 0)(−1, −1)(0, 1) labels paths from every vertex to (0, 0),
which implies by Corollary 3.5 that the corresponding sequence (Fn)n>0 of fundamental
domains is Følner. In particular, we have

(−2
5

)
=

(
0
1

)
+ L

(
1
0

)
+ L2

(−1
−1

)
+ L3

(
0
1

)
,

so Proposition 3.4 implies that (−2, 5) ∈ F4 satisfies (−2, 5)+ CL,F1 +K ⊆ F4. This
inclusion is illustrated on the left part of Figure 1.

Proof of Theorem 3.2. Set B = [B(0, r̄) ∩ Z
d ]. Since ‖K‖ ≤ r̄ (see Remark 2.4), we have

that K ⊆ B. Assuming that some Fn contains a translation of CL,F1 + B, we directly
deduce from Proposition 3.3 that the sequence (Fn)n>0 is Følner.

Let us now assume that the sequence (Fn)n>0 is Følner. We first prove that we also have
that B ⊆ L(B)+ F1. Indeed, if n, n1 ∈ Z

d and f 1 ∈ F1 are such that n = L(n1)+ f 1,
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then

‖n1‖ ≤ ‖L−1‖ · ‖n‖ + ‖L−1(f 1)‖.

In particular, we have that

B ⊆ L([B(0, ‖L−1‖ · r̄ + ‖L−1(F1)‖) ∩ Z
d ])+ F1 = L(B)+ F1. (5)

By Corollary 3.5, there exists n ≥ 1 and a word f 0f 1 · · · f n−1 labeling a path
G(L, F1, B) from every vertex to 0. When such a word exists, it is known that the length of
the shortest one is at most (N3 −N)/6, where N is the number of vertices of G(L, F1, B)
[26, 38]. It thus suffices to observe, using equation (3), that N ≤ (6r)d .

Thanks to Proposition 3.3, from now on, we always assume that the sequence of
supports of a substitution is Følner.

The techniques used in the proof of Theorem 3.2 are also useful to understand the
pattern complexity of a multidimensional substitutive subshift. The pattern complexity
function (or just the complexity function), denoted by pζ (r), is the number of patterns in
L[B(0,r)∩Zd ](Xζ ). The next result shows that the pattern complexity of a multidimensional
substitutive subshift is polynomial. This result was already known in the case of aperiodic
tillings [40, Theorem 7.17], which follows the proof in the dissertation of Hansen [28].

PROPOSITION 3.6. Let ζ be an aperiodic and primitive constant-shape substitution with
expansion matrix Lζ and support Fζ1 . Then, there exists a constant c > 0 such that

pζ (r) ≤ c · r− log(|det(Lζ )|)/ log(‖L−1
ζ ‖).

Proof. To alleviate notation in the proof, we omit the indices and exponents ζ to denote
the fundamental domains Fn and the expansion matrix L. Set B = [B(0, r̄) ∩ Z

d ], where
r̄ = ‖L−1(F1)‖/(1 − ‖L−1‖). The idea of the proof is to show that, for all r > 0, every
pattern in L[B(0,r)∩Zd ](Xζ ) will appear in the image under some power of ζ of a pattern
in LCL,F1+B(Xζ ) and that we can control the needed power. The polynomial bound then
appears using some counting argument.

First, observe that the inclusion given in equation (5) holds if we replace r̄ by any
positive radius r, that is,

[B(0, r) ∩ Z
d ] ⊆ L([B(0, ‖L−1‖ · r + ‖L−1(F1)‖) ∩ Z

d ])+ F1.

This implies that for all r > 0,

[B(0, r) ∩ Z
d ] ⊆ Ln(r)(B)+ Fn(r), (6)

where n(r) = �log(r − ‖L−1(F1))‖/ log(‖L−1‖)�. Recall that the set CL,F1 satisfies
CL,F1 + Fn + Fn ⊆ Ln(CL,F1)+ Fn for all n ≥ 0. Thus, using equation (6), we get that

Fn(r) + [B(0, r) ∩ Z
d ] ⊆ Ln(r)(CL,F1 + B)+ Fn(r).

Let x ∈ Xζ be a fixed point of ζ . Since x = ζ(x), for every pattern u ∈
L[B(0,r)∩Zd ](Xζ ), there exists v ∈ LCL,F1+B(Xζ ) and f ∈ Fn(r) such that u = ζ n(r)
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(v)f +[B(0,r)∩Zd ]. Indeed, if n ∈ Z
d is such that u = xn+[B(0,r)∩Zd ], write n =

Ln(r)(n1)+ f for some n1 ∈ Z
d and f ∈ Fn(r). Consider v = x|n1+CL,F1+B . Since

x is a fixed point of ζ , we have that ζ n(r)(v) = x|n+Ln(r)(CL,F1+B)+Fn(r) . In particular,

u = ζ n(r)(v)f +[B(0,r)∩Zd ]. Now, since |LCL,F1+B(Xζ )| is at most |A||CL,F1+B|, we have
that

pζ (r) ≤ |A||CL,F1+B||det(L)|n(r)
≤ |A||CL,F1+B| · r− log(|det(L)|)/ log(‖L−1‖),

which ends the proof.

4. Conjugacy between constant-shape substitutions sharing the expansion matrix
Constant-shape substitutions in dimension 1 were defined in [24] under the name of
pattern substitutions. This notion slightly differs from the one-dimensional constant-shape
substitutions by allowing the support associated with each letter to vary. The author
proved that every biinfinite sequence which is a fixed point of a pattern substitution is, in
fact, substitutive. As a consequence, pattern substitutions do not generate new aperiodic
sequences beyond those produced by regular substitutions. This raised the question of
whether this fact holds in higher dimensions. In this section, we prove an analog of this
result (Theorem 4.1). For a fixed expansion matrix, the conjugacy class of substitutive
subshifts is invariant by changing the supports of the substitution.

Let us start with an example. The triangular Thue–Morse substitution has exactly eight
σ�TM -periodic points of order 2 (or σ 2

�TM has exactly eight fixed points), which are
generated by the eight patterns in LK�TM (Xσ�TM ) shown in Figure 4.

Now, consider the substitution σ1 shown in Figure 5, with L = 2 · idR2 and F1 =
�0, 1�2, over the alphabet A = {0, 1, . . . , 15} defined as follows.

This square substitution is conjugated to the triangular Thue–Morse substitution via the
following coding:

� : 0 �→ a 1 �→ b 2 �→ b 3 �→ a

4 �→ a 5 �→ a 6 �→ a 7 �→ b

8 �→ b 9 �→ b 10 �→ b 11 �→ b

12 �→ a 13 �→ a 14 �→ a 15 �→ b.

To see this, we note that σ1 also has exactly eight σ1-periodic points of order 2 generated
by the patterns in L�0,1�2(Xσ ) shown in Figure 6.

A standard computation shows that if we define φ : Xσ�TM → φ(Xσ1) by the coding
φ(x)n = �(xn) for any n ∈ Z

2, then any fixed point of σ 2
1 is mapped, via φ, to a fixed

point of σ 2
�TM . The minimality of (Xσ�TM , S, Z2) lets us conclude that φ(Xσ�TM ) = Xσ1 .
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FIGURE 4. The eight patterns in LK�TM (Xσ�TM ).

FIGURE 5. A square substitution conjugate to the triangular Thue–Morse substitution.

FIGURE 6. The patterns that generate the eight fixed points of σ 2
1 .

It can be shown that the map ψ : Xσ�TM → Xσ1 induced by the local map

� : b a a a b a a a

a b �→ 0 b b �→ 1 b a �→ 2 a a �→ 3

a a a b b a a a

a b �→ 4 a a �→ 5 a a �→ 6 b a �→ 7

a b b b a b b b

b a �→ 8 b a �→ 9 b b �→ 10 b b �→ 11

b b b b a b b a

a b �→ 12 a a �→ 13 a b �→ 14 b b �→ 15,

satisfies ψ ◦ φ = idXσ1
, so (Xσ1 , S, Z2), (XσTM , S, Z2) are topologically conjugate. The

example above generalizes as follows.
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THEOREM 4.1. Let ζ be an aperiodic primitive constant-shape substitution with an
expansion matrix L and support F1. Now, consider another fundamental domainG1 � Z

d

of Zd/L(Zd), with 0 ∈ G1, and such that the associated sequences (Fn)n>0, (Gn)n>0 are
Følner. There exists an aperiodic computable primitive constant-shape substitution ζ̃ with
support G1 such that (Xζ , S, Zd) and (Xζ̃ , S, Zd) are topologically conjugate.

The proof of Theorem 4.1 is an adaptation of the construction of substitution of length
n from the one-dimensional case that we now recall. We refer to [39] for more details.
Assume that ζ : A∗ → A∗ is a primitive one-dimensional substitution. For every n ≥ 1,
we consider the set Ln(Xζ ) as an alphabet Bn and define the substitution ζn : B∗

n → B∗
n

as follows. If w = w1 · · · wn ∈ Bn and ζ(w) = v = v1 · · · v�, where all wi and vj are
letters, then � ≥ |ζ(w1)| + n− 1 and we set

ζn(w) = (v1 · · · vn)(v2 · · · vn+1) · · · (v|ζ(w1)| · · · v|ζ(w1)|+n−1).

It turns out that ζn is a primitive substitution and that the subshifts Xζ and Xζn are
conjugate, an isomorphism being given by the sliding block

� : Ln(Xζ ) → Bn, w �→ (w).

In the proof of Theorem 4.1, we find a set B whose F1-image L(B)+ F1 can be cut into
blocks with support B alongG1. This allows us define the substitution ζ̃ and we prove that
the associated subshifts are conjugate. Note that, the local map ψ in the above example
that defines a conjugacy between the triangular Thue–Morse substitution and a square
substitution is a coding of the patterns in L�0,1�2(Xζ ).

Proof. Using Remark 2.4, we may assume that ζ has a fixed point x̄ ∈ Xζ . Assume K1 =
(id − L)−1(F1) ∩ Z

d and K2 = (id − L)−1(G1) ∩ Z
d are the sets given by Proposition

2.3 for F1 and G1, respectively.
First, we adapt the proof of Proposition 2.5 to obtain a finite set A � Z

d such that for
any n ≥ 0, K2 + A+Gn ⊆ Ln(K2 + A)+ Fn. Consider the sequence (An)n≥0 of finite
sets in Z

d as follows: set A0 = {0}, and for n ≥ 0,

An+1 = {p ∈ Z
d | there exists f ∈ F1, g1, g2 ∈ G1, q ∈ An : L(p)+ f = q + g1 + g2}

= L−1(An +G1 +G1 − F1) ∩ Z
d .

We will prove that this sequence is eventually stationary, that is, there existsN > 0 such
that for all m ≥ N , Am = AN .

CLAIM 1. For every n ≥ 0 and every k > 0, we have the following inclusions:An ⊆ An+1

and K2 + An +Gk ⊆ Lk(K2 + An+k)+ Fk .

This claim shows that if we choose N > 0 such that for all m ≥ N , Am = AN , then
for all k > 0, we have that K2 + AN +Gk ⊆ Lk(K2 + AN)+ Fk . Now, if we consider
a pattern w ∈ LK2+AN (Xζ ), the support of ζ k(w) is large enough to be split into (K2 +
AN)-blocks along Gk . This will allow us to consider LK2+AN (Xζ ) as an alphabet and to
define the substitution ζ̃ with support G1.
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Proof of Claim 1. We first prove that An ⊆ An+1 for every n ≥ 0. Since 0 ∈ G1 ∩ F1, we
trivially have that A0 ⊆ A1. It is then a direct consequence of the definition of the sets An
that if An ⊆ An+1, then An+1 ⊆ An+2.

Now, let us prove the other sequence of inclusions. The inclusion K2 + An +G1 ⊆
L(K2 + An+1)+ F1 is direct for any n ≥ 0. Suppose that K2 + An +Gk ⊆ Lk(K2 +
An+k)+ Fk for some n ≥ 0 and some k > 0. Since Gk+1 = Gk + Lk(G1), we get that

K2 + An +Gk+1 = K2 + An +Gk + Lk(G1) ⊆ Lk(K2 + An+k +G1)+ Fk .

By the initial case, we have that K2 + An+k +G1 ⊆ L(K2 + An+k+1)+ F1. Using the
equality Fk+1 = Fk + Lk(F1),

Lk(K2 + An+k +G1)+ Fk ⊆ Lk+1(K2 + An+k+1)+ Lk(F1)+ Fk

= Lk+1(K2 + An+k+1)+ Fk+1.

This completes the proof of the claim.

Now, we prove that the sequence of finite sets (An)n>0 is eventually stationary. Define
the sequence an = ‖An‖. This sequence satisfies

an+1 ≤ ‖L−1‖an + ‖L−1(G1 +G1 − F1)‖,

which implies that

an ≤ a0 · ‖L−1‖n + ‖L−1(G1 +G1 − F1)‖1 − ‖L−1‖n
1 − ‖L−1‖ .

Since ‖L−1‖ < 1, the sequence (an)n≥0 is bounded. Therefore, the nested sequence
(An)n≥0 is eventually constant. Let n ≥ 0 such that An = Am for all m ≥ n and set A =
An. By Claim 1, we have

for all k > 0, K2 + A+Gk ⊆ Lk(K2 + A)+ Fk . (7)

To define a substitution ζ̃ with support G1, we consider the set B = LK2+A(Xζ ) as
a new alphabet and we define the substitution ζ̃ with support G1 on the alphabet B as
follows:

for all g ∈ G1, (ζ̃ (w))g = ζ(w)g+K2+A.

Note that by equation (7), the substitution ζ̃ is well defined. Using Claim 1 and the
primitivity of ζ , it is straightforward to check that ζ̃ is primitive. Let us now prove that
(Xζ , S, Zd) and (Xζ̃ , S, Zd) are topologically conjugate. Indeed, consider the factor map

φ : Xζ → BZ
d

induced by

� : LK2+A(Xζ )→ B
w �→ w.

Thus, for all x ∈ Xζ and n ∈ Z
d , we have that φ(x)n = �(x|n+K2+A). We prove that

φ(x̄) is a fixed point of ζ̃ . Set n ∈ Z
d . There exists a unique n1 ∈ Z

d and g ∈ G1 such that
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n = L(n1)+ g. Note that

(ζ̃ (φ(x̄)))n = (ζ̃ (φ(x̄)))L(n1)+g

= (ζ̃ (φ(x̄))n1)g

= (ζ̃ (�(x̄|n1+K2+A)))g
= (ζ(x̄|n1+K2+A))g+K2+A
= (ζ(x̄))L(n1)+g+K2+A
= (ζ(x̄))n+K2+A
= x̄n+K2+A
= �(x̄|n+K2+A)
= (φ(x̄))n,

so φ(x̄) ∈ Xζ̃ is a fixed point of ζ̃ . By the minimality of φ(Xζ ) and Xζ̃ , we conclude that
φ(Xζ ) = Xζ̃ . Therefore, φ is a factor map from Xζ to Xζ̃ . To prove that it is a conjugacy,

we check that the factor map ψ : Xζ̃ → AZ
d

induced by

� : LK2+A(Xζ )→ A
w �→ w0

is its inverse map. Indeed, for any n ∈ Z
d , we get that ψ(φ(x̄))n = �(φ(x̄)n) =

�(x̄n+K2+A) = x̄n, that is, ψ(φ(x̄)) = x̄. The minimality of (Xζ , S, Zd) implies that
ψ ◦ φ = idXζ . Hence, φ, ψ are invertible and φ−1 = ψ . We conclude that (Xζ , S, Zd)
and (Xζ̃ , S, Zd) are topologically conjugate.

Observe that, by construction, the set B = K2 + A only depends on L, F1, and G1,
not on the combinatorial properties of ζ . For example, the set B = �−1, 2�2 is enough
to obtain a square substitution conjugate to a substitution defined with L = 2 · idR2 and
F1 = {(0, 0), (1, 0), (0, 1), (−1, −1)}.

5. Computability of the constant of recognizability
The recognizability property of substitutions is a combinatorial one that offers a form of
invertibility, allowing the unique decomposition of points within the substitutive subshift.
Recall that if ζ is a substitution with a fixed point x ∈ Xζ , then ζ is recognizable on x if
there exists some constant R > 0 such that for all i, j ∈ Z

d ,

x|[B(Lζ (i),R)∩Zd ] = x|[B(j ,R)∩Zd ] �⇒ (there exists k ∈ Z
d)((j = Lζ (k)) ∧ (xi = xk)).

(8)

This property was initially established for aperiodic primitive substitutions by Mossé in
[34]. This proof implies the existence of a natural sequence of refining (Kakutani–Rokhlin)
partitions, which is a key tool when studying substitutive systems and more general
S-adic systems. Subsequently, in [5], it was extended to cover non-primitive substitu-
tions. Later, Durand and Leroy proved the computability of the recognizability length
for one-dimensional primitive substitutions [19], which was then generalized by Beal,
Perrin, and Restivo in [4] for the most general class of morphisms, including ones with
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erasable letters. In the multidimensional setting, Solomyak showed in [43] that aperiodic
translationally finite self-affine tilings of Rd satisfy a recognizability property, referred to
as the unique composition property. Furthermore, in [8], it was demonstrated that aperiodic
symbolic factors of constant-shape substitutive subshifts also exhibit a recognizability
property. In this section, we provide a computable upper bound for the constant of
recognizability of aperiodic primitive constant-shape substitutions (Theorem 5.1). This
upper bound can be expressed solely in terms of |A|, Lζ , ‖Fζ1 ‖ and d. This result will
be instrumental in the subsequent section, where we establish the decidability of the
factorization problem between minimal substitutive subshifts. To achieve this, we will
adapt some of the proofs presented in [8] to obtain computable bounds. We prove the
following.

THEOREM 5.1. Let ζ be an aperiodic primitive constant-shape substitution on an alphabet
A, with expansion matrix Lζ and support Fζ1 admitting a fixed point x ∈ Xζ . Define:

• t = − log(‖Lζ‖)/ log(‖L−1
ζ ‖);

• r̄ = ‖L−1
ζ (F

ζ
1 )‖/(1 − ‖L−1

ζ ‖);
• a = �(2‖Fζ1 ‖ + d)(2‖F1‖ + ‖Lζ‖|A|2+(|A|+1)(6r̄)

d

)�;
• R̄ = �‖L−1

ζ ‖|A|−1 · a · 9t‖Lζ‖|t (|A|−1)r̄ t )+ 4r̄�;

• n̄ = �|A|(2R̄+6r̄)d �.
Then, ζ is recognizable on x and the constant of recognizability is at most

2‖Lζ‖|A|[2‖Fζ1 ‖ + ‖Lζ‖n̄+|A|(2‖Fζ1 ‖ + 7r̄ + ‖L−1
ζ ‖|A|−1 · a · 9t‖Lζ‖t (|A|−1))r̄ t ].

In B. Mossé’s original proof, a key argument for the proof of the recognizability
property is the existence of an integer p > 0 with the following property: for all a, b ∈ A,
if ζ n(a) = ζ n(b) for some n ≥ 0, then ζp(a) = ζp(b). This result was proved in [21].
Notably, this property holds true for p = 1 when the substitution is injective on letters.
The original proof concerns only one-dimensional morphisms. Nevertheless, it is possible
to adapt the proof to the multidimensional context. The proof is left to the reader.

THEOREM 5.2. [21, Theorem 3] Let ζ be a constant-shape substitution. Then for any
patterns u, v ∈ AP , for some P � Z

d , we have that

ζ |A|−1(u) �= ζ |A|−1(v) �⇒ for all n, ζ n(u) �= ζ n(v).

We recall that ζ is primitive if and only if its incidence matrix Mζ defined for all a, b ∈
A as (Mζ )a,b = |{f ∈ Fζ1 : ζ(a)f = b}| is primitive, that is, there exists k > 0 such that
Mk
ζ only contains positive integer entries. The following is a well-known bound for this k.

LEMMA 5.3. [46] A non-negative d × d matrix M is primitive if, and only if, there is an
integer k ≤ d2 − 2d + 2 such that Mk only contains positive entries.

Following the proof of the recognizability property of multidimensional substitutive
subshifts in [8], we first study the computability of the growth of the repetitivity function.
We recall that the repetitivity function of a minimal subshift is the map RX : R+ → R+
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defined for r > 0 as the smallest radius such that every discrete ball [B(n, RX(r)) ∩ Z
d ]

contains an occurrence of every pattern whose support has a diameter less than r.
Like in several proofs of §3, we will consider the set K of Proposition 2.3, the set C

Lζ ,Fζ1
given by Proposition 2.5 withA = {0} and F = F

ζ
1 + F

ζ
1 , and the set B = [B(0, r̄) ∩ Z

d ],
where r̄ = ‖L−1

ζ (F
ζ
1 )‖/(1 − ‖L−1

ζ ‖). Recall that B ⊆ Lζ (B)+ F
ζ
1 (see equation (5)) and

that K satisfies ‖K‖ ≤ r̄ (see Remark 2.6), and so is included in B.

LEMMA 5.4. Let ζ be an aperiodic primitive constant-shape substitution. Define
t = − log(‖Lζ‖)/ log(‖L−1

ζ ‖). Then,

RXζ (r) ≤ (2‖Fζ1 ‖ + ‖Lζ‖|A|2+(|A|+1)(6r̄)
d

(2‖Fζ1 ‖ + d))rt .

Proof. Set r > 0. We will show that every pattern u ∈ L[B(0,r)∩Zd ](Xζ ) occurs in every
image ζm(r)(a), a ∈ A, for some m(r) ∈ N and then we give an upper bound on m(r),
from which we deduce a bound on the repetitivity function.

Following the proof of Proposition 3.6, we know that for every pattern u ∈
L[B(0,r)∩Zd ](Xζ ), there exists v ∈ LC

Lζ ,Fζ1
+B(Xζ ) and f ∈ Fζn(r) such that u =

ζ n(r)(v)f +[B(0,r)∩Zd ], where n(r) = �log(r − ‖L−1
ζ (F

ζ
1 ))‖/ log(‖L−1

ζ ‖)�. Thus, consider
v ∈ LC

Lζ ,Fζ1
+B(Xζ ) and let n ∈ N denote the smallest positive integer such that v � ζ n(a)

for some a ∈ A (such an n exists by primitivity of the substitution).

Let us first prove that n ≤ (|A| + 1)
|C
Lζ ,Fζ1

+B|
. Indeed, as v1 := v occurs in ζ n(a),

there exists f n ∈ Fn such that ζ n(a)f n+CL,F1+B = v1. Writing f n = Lζ (f n−1)+ f 1,
there exists a pattern v2 with minimal support S2 such that ζ n−1(a)f n−1+S2 = v2 and
v1 = ζ(v2)f 1+CLζ ,Fζ1

+B . Note that we have

C
Lζ ,Fζ1

+ B + f 1 ⊆ C
Lζ ,Fζ1

+ Lζ (B)+ F
ζ
1 + F

ζ
1 ⊆ Lζ (B + C

Lζ ,Fζ1
)+ F

ζ
1 ,

so the support S2 of v2 satisfies S2 ⊆ B + CL,F1 . Observe that since v1 does not occur in
ζ n−1(a), we have that v2 �= v1. Using the same argument, we can find a pattern v3 with
minimal support S3 in ζ n−2(a) such that v3 occurs in ζ(v2), S3 ⊆ B + C

Lζ ,Fζ1
and v3 /∈

{v1, v2}. Continuing this way, we inductively construct a sequence of pairwise distinct
patterns v1, v2, . . . in

⋃
S⊆C

Lζ ,Fζ1
+B LS(Xζ ), such that for any j ≥ 1, vj � ζ(vj+1), and

vj occurs in ζ n−j+1(a) but does not occur in ζ n−j (a). Considering that there are at most

|A||S| patterns in LS(Xζ ), we conclude that n ≤ (|A| + 1)
|C
Lζ ,Fζ1

+B|
.

Now, by Lemma 5.3, for any pair of letters a, b ∈ A, we have that a � ζ |A|2(b). Hence,

for any letter a ∈ A, any pattern v ∈ LC
Lζ ,Fζ1

+B(Xζ ) occurs in ζ |A|2+(|A|+1)
|C
Lζ ,Fζ1

+B|
(a).

Since for any n > 0, Lnζ (Z
d) is d‖Lζ‖n-relatively dense, any ball of radius

d‖Lζ‖n + 2‖Fζ1 ‖ · ‖Lζ‖n contains a set of the form Lnζ (m)+ F
ζ
n for some m ∈ Z

d .
This implies that any pattern of the form ζ n(a), for some a ∈ A, occurs in any pattern

in L[B(0,‖Lζ ‖n(d+2‖Fζ1 ‖)∩Zd ](Xζ ). In particular, for N = |A|2 + (|A| + 1)
|C
Lζ ,Fζ1

+B|
,

https://doi.org/10.1017/etds.2024.87 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.87


24 C. Cabezas and J. Leroy

FIGURE 7. Illustration of a forbidden situation given by the repulsion property (Proposition 5.5).

we conclude that any ball of radius ‖Lζ‖N(2‖Fζ1 ‖ + d) contains an occurrence of
any pattern v ∈ LC

Lζ ,Fζ1
+B(Xζ ). Hence, by the first part of the proof, any ball of

radius ‖Lζ‖n(r)(2‖Fζ1 ‖ + ‖Lζ‖N(2‖Fζ1 ‖ + d)) contains an occurrence of any pattern
u ∈ L[B(0,r)∩Zd ](Xζ ).

To finish the proof, we deduce from equation (3) that ‖C
Lζ ,Fζ1

+ B‖ ≤ 3r̄ . Using

classical upper bounds for the cardinality of the discrete balls [B(0, r) ∩ Z
d ], we have

that |C
Lζ ,Fζ1

+ B| ≤ (6r̄)d . With this new bound, we get that for any r > 0,

RXζ (r) ≤ (2‖Fζ1 ‖ + ‖Lζ‖N(2‖Fζ1 ‖ + d))‖L‖log(r)/ log(‖L−1‖)

≤ (2‖Fζ1 ‖ + ‖Lζ‖|A|2+(|A|+1)(6r̄)
d

(2‖Fζ1 ‖ + d))rt .

As pointed out in [8], the growth of the repetitivity function has a direct consequence
on the distance between two occurrences of a pattern in a point x ∈ Xζ , called repulsion
property. This is an analog to the k-power-free property of one-dimensional primitive
substitutions. We add the proof for completeness.

PROPOSITION 5.5. (Repulsion property) Let ζ be an aperiodic primitive constant-shape
substitution, x ∈ Xζ , and set t = − log(‖Lζ‖)/ log(‖L−1

ζ ‖). Then, if a pattern p � x with
[B(s, r) ∩ Z

d ] ⊆ supp(p), for some s ∈ Z
d and r > 0, has two occurrences j1, j2 ∈ Z

d

in x such that r ≥ RXζ (‖j1 − j2‖), then j1 is equal to j2.

Proof. For any k ∈ Z
d , we consider the pattern wk = x|k∪(k+j2−j1). Note that

diam(supp(wk)) = ‖j2 − j1‖. Since r ≥ RXζ (‖j2 − j1‖), then the support of the
pattern p contains an occurrence in x of any pattern wk . Since j1 is an occurrence of
p in x, we get that for any k ∈ Z

d , there exists nk ∈ Z
d such that xj1+nk+k = xk and

xj1+nk+(j2−j1+k) = xj2−j1+k , which implies that xj2+nk+k = xj2−j1+k . The fact that
j2 is an occurrence of p in x lets us conclude that for any k ∈ Z

d , xj2−j1+k is equal to
xk , that is, j2 − j1 is a period of x. Since ζ is aperiodic, we conclude that j1 = j2 (see
Figure 7).

Now, we proceed to give a computable upper bound for the constant of recognizability
of constant-shape substitutions. As mentioned in [19], the proof of the recognizability
property has two steps. Using the notation of equation 8, the first step is to show that j
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belongs to Lζ (Zd) and the second one is to show that xi = xk . Here, we adapt the proofs
in [8].

PROPOSITION 5.6. (First step of recognizability: positions of ‘cutting bars’) Let ζ be an
aperiodic primitive constant-shape substitution from an alphabet A with expansion matrix
Lζ and support Fζ1 . Let x ∈ Xζ be a fixed point of ζ . Consider the constants:

• t = − log(‖Lζ‖)/ log(‖L−1
ζ ‖);

• r̄ = ‖L−1
ζ (F

ζ
1 )‖/(1 − ‖L−1

ζ ‖);
• R̄ = �‖L−1

ζ ‖|A|−1 · RXζ (9‖Lζ‖|A|−1r̄)+ 4r̄�;

• n̄ = �|A|(2R̄+6r̄)d �.
Then, R = ‖Lζ‖n̄+|A|(R̄ + 3r̄)+ 2‖Lζ‖n̄+|A| · ‖Fζ1 ‖ is such that for all i, j ∈ Z

d ,

x|Lζ (i)+[B(0,R)∩Zd ] = x|j+[B(0,R)∩Zd ] �⇒ j ∈ Lζ (Zd).
The proof of Proposition 5.6 is an adaptation of the proof of [8, Proposition 3.7],

using some ideas in [19]. This bound is far from being sharp, but does not depend on
the combinatorics of the substitution. The idea of the proof is to construct sequences of
patterns ζ n(wn), ζ n(un) and ζ n(vn) around two points in ∈ Lζ (Zd) and jn /∈ Lζ (Zd)
such that ζ n(wn) � ζ n(un) � ζ n(vn), where supp(wn), supp(un), and supp(vn) are fixed
for every n > 0 and big enough to ensure that if two occurrences of wn occur in un, they
must be the same. The constants given in Proposition 5.6 ensure that the arguments are
true.

Proof. Using Proposition 2.5 with A = {0} and F = F
ζ
1 − F

ζ
1 , there exists a finite set

D ⊆ Z
d such that for every n > 0, Fζn − F

ζ
n ⊆ Lnζ (D)+ F

ζ
n . Observe that, by item (4)

of Proposition 2.5, we have that ‖D‖ ≤ 3r̄ . We prove the statement by contradiction.
Assume the contrary. Then, for every |A| ≤ n ≤ n̄+ |A|, there exist in ∈ Lζ (Zd) and
jn /∈ Lζ (Zd) such that

x|
in+Lnζ (D+[B(0,R̄)∩Zd ])+Fζn ] = x|

jn+Lnζ (D+[B(0,R̄)∩Zd ])+Fζn .

For any |A| ≤ n ≤ |A| + n̄, we consider an ∈ Z
d and f n ∈ Fζn such that in =

Lnζ (an)+ f n (see Figure 8). Note that, by definition of the set D � Z
d , we have that

Lnζ (an)+ Lnζ ([B(0, R̄) ∩ Z
d ])+ Fζn ⊆ in + Lnζ (D + [B(0, R̄) ∩ Z

d ])+ Fζn .

Let un ∈ L[B(0,R̄)∩Zd ](Xζ ) be such that (see Figure 8)

x|
Lnζ (an)+Lnζ ([B(0,R̄)∩Zd ])+Fζn = ζ n(un) = x|

(jn−f n)+Lnζ ([B(0,R̄)∩Zd ])+Fζn .

Observe that jn − f n is not necessarily inLnζ (Z
d), so we set bn ∈ Z

d and gn ∈ Fζn such
that jn − f n = Lnζ (bn)+ gn. Now, for any n > 0 and E ⊆ Z

d , we define the following
sets:

Gn,E = {n ∈ Z
d : (Lnζ (n)+ Fζn ) ∩ (jn − f n)+ Lnζ (E)+ Fζn �= ∅};

Hn,E = {n ∈ Z
d : (Lnζ (n)+ Fζn ) ⊆ (jn − f n)+ Lnζ (E)+ Fζn }.
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FIGURE 8. Illustration of the pattern ζ n(un) around the coordinates Lnζ (an) (black, left) and jn − f n (blue,
right).

FIGURE 9. Illustration of the patterns ζ n(wn), ζ n(un), and ζ n(vn) around jn − f n.

By definition, we have for any n > 0 and any E ⊆ Z
d that Hn,E is included

in Gn,E . Since x = ζ(x), there exist patterns vn ∈ LG
n,[B(0,R̄)∩Zd ]−bn(Xζ ), wn ∈

LH
n,[B(0,R̄)∩Zd ]−bn(Xζ ), with Lnζ (bn) being an occurrence of ζ n(vn) and ζ n(wn) in x, such

that ζ n(wn) occurs in ζ n(un) and ζ n(un) occurs in ζ n(vn), as illustrated in Figure 9.

CLAIM 1. For any n > 0, bn belongs to Hn,[B(0,R̄)∩Zd ], and (Gn,[B(0,R̄)∩Zd ] − bn) is a
bounded set.

Proof of Claim 1. Note that bn ∈ Hn,[B(0,R̄)∩Zd ] if and only if

Fζn − gn ⊆ Lnζ ([B(0, R̄) ∩ Z
d ])+ Fζn ,

which is true since R̄ ≥ ‖D‖. Now, set m ∈ (Gn,[B(0,R̄)∩Zd ] − bn), that is, there exists

hn ∈ Fζn , rn ∈ [B(0, R̄) ∩ Z
d ], and ln ∈ Fζn such that

Lnζ (m)+ hn = Lnζ (bn)+ gn + Lnζ (rn)+ ln,

that is, m − bn = rn + L−n
ζ (gn + ln − hn), which implies that ‖m − bn‖ ≤ R̄ +

‖L−n
ζ (gn + ln − hn)‖. Since ‖L−n

ζ (gn + ln − hn)‖ ≤ 3r̄ , we conclude that ‖m − bn‖ ≤
R̄ + 3r̄ .

Since ‖Gn,[B(0,R̄)∩Zd ] − bn‖ ≤ R̄ + 3r̄ , as in the proof of Proposition 3.6, we have that

|LG
n,[B(0,R̄)∩Zd ]−bn

(Xζ )| ≤ |A|(2R̄+6r̄)d . Since n̄ ≥ |LG
n,[B(0,R̄)∩Zd ]−bn

(Xζ )|, there are two
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FIGURE 10. Illustration of the patterns ζ n(w) and an around (jn − f n).

indices |A| < n < m ≤ n̄+ |A|, some finite sets G, H � Z
d such that

G = (Gn,[B(0,r)∩Zd ] − bn) = (Gm,[B(0,r)∩Zd ] − bm),

H = (Hn,[B(0,r)∩Zd ] − bn) = (Hm,[B(0,r)∩Zd ] − bm),

and some patterns u ∈ L[B(0,R̄)∩Zd ](Xζ ), v ∈ LG(Xζ ) and w ∈ LH (Xζ ) such that
u = un = um, v = vn = vm, and w = wn = wm. Set

an = x|
(jn−f n)+Lnζ ([B(0,R̄)∩Zd ])+Fζn \(Lnζ (bn)+Lnζ (H)+Fζn ),

that is, an is the pattern whose support is equal to supp(ζ n(u)) \ supp(ζ n(w)), as illustrated
in Figure 10.

Applying ζm−n to ζ n(u), we obtain the patterns ζm(an) and ζm−n(ζ n(w)) = ζm(w).
Note that

supp(ζm(u)) = supp(am) ∪· supp(ζm(w)) = supp(ζm−n(an)) ∪· supp(ζm(w)).

If ζm−n(an) and am are different, then the pattern ζm(u) contains two occurrences of
ζm(w). We will use the repulsion property (Proposition 5.5) to get the contradiction, that
is, these two occurrences are the same. To do this, we need the following result.

CLAIM 2. For any n > 0 and any E ⊆ Z
d , the set Gn,E is included in Hn,E + C

Lζ ,Fζ1
+

C
Lζ+Fζ1 +D.

Proof of Claim 2. First, we prove that for any n > 0 and E � Z
d , we have that

Gn,E ⊆ Hn,(E+C
Lζ ,Fζ1

+C
Lζ ,Fζ1

) +D. Indeed, set m ∈ Gn,E . Then, there exists hn ∈ Fζn ,

en ∈ E, ln ∈ Fζn such that Lnζ (m)+ hn = Lnζ (bn)+ gn + Lnζ (en)+ ln. Set dn ∈ D
such that ln − hn + gn = Lnζ (dn). Hence, m = bn + en + dn. We prove that m − dn ∈
Hn,E+C

Lζ ,Fζ1
+C

Lζ ,Fζ1
.

Now, set on ∈ Fζn . Then,

Lnζ (m − dn)+ on = Lnζ (m)+ hn − Lnζ (dn)− hn + on

= Lnζ (bn)+ gn + Lnζ (en)+ ln − Lnζ (dn)− hn + on

= Lnζ (bn)+ Lnζ (en)+ on.
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Let qn ∈ Fζn and cn ∈ C
Lζ ,Fζ1

be such that gn + qn = Lnζ (cn). We get that Lnζ (m − dn)+
on = Lnζ (bn)+ gn + Lnζ (en + cn)+ (on + qn). Since Fζn + qn ⊆ Lnζ (CLζ ,Fζ1

)+ F
ζ
n , we

conclude that m ∈ Hn,E+C
Lζ ,Fζ1

+C
Lζ ,Fζ1

+D.

To finish the proof, we note that a straightforward computation shows that for
any n > 0 and A, B � Z

d , we have that Hn,A+B ⊆ Hn,A + B. We then conclude that
Gn,E ⊆ Hn,E + C

Lζ ,Fζ1
+ C

Lζ ,Fζ1
+D.

By Theorem 5.2, these patterns come from two patterns w1, w2 ∈ LH (Xζ ) such that
ζ |A|−1(w1) = ζ |A|−1(w2) = ζ |A|−1(w), occurring in ζ |A|−1(v). Thanks to Claim 2 and
the fact that ‖C

Lζ ,Fζ1
+ C

Lζ ,Fζ1
+D‖ ≤ 9r̄ , the difference between these two occurrences

is included in L|A|−1
ζ ([B(0, 9r̄) ∩ Z

d ]), so the distance is smaller than 9‖Lζ‖|A|−1r̄ .

CLAIM 3. For any r > 0 and any n > 0, we have that [B(0, r − 3r̄) ∩ Z
d ] ⊆

Hn,[B(0,r)∩Zd ] and [Lnζ (B(0, r)) ∩ Z
d ] ⊆ Lnζ ([B(0, r + r̄) ∩ Z

d ])+ F
ζ
n .

Proof of Claim 3. Set n ∈ [B(0, r − 3r̄) ∩ Z
d ] and hn, ln ∈ Fζn . Then, we write

Lnζ (n)+ hn = (jn − f n)+ Lnζ (rn − bn)+ ln

= Lnζ (rn)+ gn + ln

for some rn ∈ Z
d . We note that there exists c ∈ C

Lζ ,Fζ1
such that Lnζ (c)+ hn = gn + ln

and we conclude that m = rn + c. Since ‖m‖ ≤ r − 3r̄ and ‖c‖ ≤ 3r̄ , we conclude that
rn ≤ r . Now we prove the second inclusion.

Set n ∈ Lnζ (B(0, r)) ∩ Z
d . Then, there exists m1 ∈ Z

d and f ∈ Fζn such that m =
Lnζ (m1)+ f , which implies that ‖m1 + L−n

ζ (f )‖ ≤ r . We then get that

‖m1‖ ≤ r + ‖L−n
ζ (f )‖ ≤ r + r̄ .

By Claim 3, we have that

[L|A|−1
ζ (B(0, R̄ − 4r̄)) ∩ Z

d ]

⊆ L
|A|−1
ζ ([B(0, R̄ − 3r̄) ∩ Z

d ])+ F
ζ

|A|−1 ⊆ supp(ζ |A|−1(w)),

so supp(ζ |A|−1(w)) contains a discrete ball of radius (R̄ − 4r̄)/‖L−1
ζ ‖|A|−1. By the

repulsion property (Proposition 5.5), this is a contradiction. Indeed, by the choice of
R̄, we note that

1
‖L−1‖|A|−1 (R̄ − 4r̄) ≥ 1

‖L−1‖|A|−1 9t (‖Lζ‖ · RXζ (9‖Lζ‖|A|−1r̄)),

so ζm−n(an) = am as illustrated in Figure 11.
To finish the proof, we note that since ζ n(u) � ζ n(v), there exists pm ∈ Lnζ (bm)+

Lnζ (G)+ F
ζ
n such that x|

pm+Lnζ ([B(0,R̄)∩Zd ])+Fζn = ζ n(u), which implies that

x|
Lm−n
ζ (pm)+Lmζ ([B(0,R̄)∩Zd ])+Fζm = ζm(u). Using the fact that ζm−n(an) = am, we get that

Lm−n
ζ (pm)+ Lmζ ([B(0, R̄) ∩ Z

d ])+ F
ζ
m = (jm − fm)+ Lmζ ([B(0, R̄) ∩ Z

d ])+ F
ζ
m,
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FIGURE 11. Illustration of the patterns ζm−n(an) in Lm−n
ζ (jn).

that is, jm − fm = Lm−n
ζ (pm) ∈ Lmζ (Zd). Since im, fm ∈ Lζ (Zd), we conclude that

jm ∈ Lζ (Zd).
In Proposition 5.6, we compute a constant such that we can recognize patterns of the

form ζ(a) for a ∈ A. However, it does not give information on the letter from which the
pattern ζ(a) arises. If the substitution is injective in letters, this result is enough to get a
complete recognizability property. To finish the proof of Theorem 5.1, we need to deal with
the case where the substitution is not injective. For this case, we prove the second step of
the recognizability property.

PROPOSITION 5.7. (Second step of recognizability: uniqueness of pre-images) Let ζ be
an aperiodic primitive substitution and x ∈ Xζ be a fixed point of ζ . Consider R|A| > 0
the constant of Proposition 5.6 associated with ζ |A|, that is,

x|
L

|A|
ζ (i)+[B(0,R|A|)∩Zd ] = x|j+[B(0,R|A|)∩Zd ] �⇒ j ∈ L|A|

ζ (Zd).

Consider also R = R|A| + 2‖Fζ1 ‖ · ‖Lζ‖|A|. Then, for any i, j ∈ Z
d ,

x|[B(Lζ (i),R)∩Zd ] = x|[B(Lζ (j),R)∩Zd ] �⇒ xi = xj .

Proof. Let k ∈ Z
d and f = ∑|A|−1

i=1 Liζ (f i ) ∈ Fζ|A| be such that L|A|
ζ (k)+ f = Lζ (i).

Hence, we have that L|A|−1
ζ (k)+ ∑|A|−1

i=1 Li−1
ζ (f i ) = i. By the definition of R|A| >

0, we have the existence of m ∈ Z
d such that L|A|

ζ (m)+ f = Lζ (j), which implies

that j = L
|A|−1
ζ (m)+ ∑|A|−1

i=1 Li−1
ζ (f i ). Note that, by the definition of R > 0, we

get that x|
L

|A|
ζ (k)+Fζ|A|

= x|
L

|A|
ζ (m)+Fζ|A|

. Hence, ζ |A|(xk) = ζ |A|(xm) and by Theorem

5.2, we also have that ζ |A|−1(xk) = ζ |A|−1(xm). This implies that x|
L

|A|−1
ζ (k)+Fζ|A|−1

=
x|
L

|A|−1
ζ (m)+Fζ|A|−1

, which lets us conclude that xi = xj .

Remark 5.8. We recall that if Rζ is a constant of recognizability for the first step for ζ ,
then 2‖Lζ‖Rζ is a constant of recognizability for the first step for ζ 2. Indeed, note that if

x|L2
ζ (i)+Lζ ([B(0),Rζ ]∩Zd )+[B(0),Rζ ]∩Zd = x|m+Lζ ([B(0),Rζ ]∩Zd )+[B(0),Rζ ]∩Zd ,
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then m ∈ L2
ζ (Z

d). A straightforward induction shows that for any n > 0, 2‖Lζ‖nRζ is a
constant of recognizability for the first step for ζ n.

Proof of Theorem 5.1. Finally, to get an upper bound, we just need to make the
computation. By Remark 5.8, we have that if Rζ is given by Proposition 5.6 for ζ , then
2‖Lζ‖|A|(Rζ + ‖Fζ1 ‖) is a constant of recognizability, for the second step, for ζ . By
Proposition 5.6, we then get that ζ is recognizable on x and the constant of recognizability
is at most

2‖Lζ‖|A|[2‖Fζ1 ‖ + ‖Lζ‖n̄+|A|(2‖Fζ1 ‖ + 7r̄ + ‖L−1
ζ ‖|A|−1 · a · 9t‖Lζ‖t (|A|−1))r̄ t ].

6. Rigidity properties of topological factors between aperiodic minimal substitutive
subshifts
In this section, we study factor maps between multidimensional substitutive subshifts.
The main theorem (Theorem 6.2) shows that if ζ1, ζ2 are two aperiodic substitutions with
the same expansion map L and there exists a factor map π : (Xζ1 , S, Zd) → (Xζ2 , S, Zd)
between two substitutive subshifts, then there exists another factor map φ : (Xζ1 , S, Zd) →
(Xζ2 , S, Zd) given by a local map of a computable bounded radius that only depends on
the support and the constant of recognizability. We recall that, by Theorem 4.1, if two
substitutions are defined with the same expansion matrix, we can assume, up to conjugacy,
that they also share the same support. We then deduce the following consequences:
every aperiodic minimal substitutive subshift is coalescent (Proposition 6.4) and the
quotient group Aut(Xζ , S, Zd)/〈S〉 is finite, extending the results in [8] for the whole
class of aperiodic minimal substitutive subshifts given by constant-shape substitutions.
Next, we prove the decidability of the factorization and the isomorphism problem between
aperiodic minimal substitutive subshifts (Theorem 6.6 and Corollary 6.9). We finish this
section proving that aperiodic minimal substitutive subshifts have finitely many aperiodic
symbolic factors, up to conjugacy (Lemma 6.12) and providing an algorithm to obtain a
list of the possible injective substitution factors of an aperiodic substitutive subshift.

6.1. Factor maps between substitutive subshifts. We prove a multidimensional analog
of [20, Theorem 8.1] as follows. There exists a computable upper bound R such that
any factor map between two aperiodic minimal substitutive subshifts is equal to a shift
map composed with a sliding block code of radius less than R. This was first done in
the measurable setting under some extra combinatorial assumptions for the substitutions
(in particular, for bijective substitutions) in the one-dimensional case in [30] and in the
multidimensional case in [8]. A similar result was also proved for factor maps between
two minimal substitutive subshifts of constant-length and Pisot substitutions in [41]. This
last result was extended in [20] for the whole class of aperiodic minimal substitutive
subshifts. They also gave a computable bound for the radius of a factor map between two
minimal substitutive subshifts. We prove a similar result of [20] for the multidimensional
constant-shape case, where the expansion matrices of the constant-shape substitutions are
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the same. We start with the following property about factor maps between substitutive
subshifts.

PROPOSITION 6.1. Let ζ1, ζ2 be two aperiodic primitive constant-shape substitutions
with the same expansion matrix L and the same support F1, and φ : (Xζ1 , S, Zd) →
(Xζ2 , S, Zd) be a factor map. Then, for any n > 0, there exists a unique f n ∈ Fn such
that if x ∈ ζ n1 (Xζ1), then φ(x) ∈ S−f nζ n2 (Xζ2).

Proof. Set x ∈ ζ n1 (Xζ1). Then, there exists f n(x) such that φ(x) ∈ S−f nζ n2 (Xζ2). We
prove that f n(x) is constant on ζ n1 (Xζ1). Note that Snx ∈ ζ n1 (Xζ1) if and only if n =
Lnζ (m) for some m ∈ Z

d . Hence, φ(SL
n
ζ (m)(x)) = S

Lnζ (m)φ(x) ∈ S−f nζ n2 (Xζ2). Now, if

y ∈ ζ n1 (Xζ1), we use the minimality of (Xζ , S, Zd) to obtain a sequence (SL
n
ζ (mp)(x))p>0

converging to y. By continuity of φ, we conclude that φ(y) ∈ S−f n(x)φ(x).

The following theorem states the rigidity properties that factor maps between substitu-
tive subshifts with the same expansion map satisfy. As in the previous sections, we define
r̄ = ‖L−1(F1)‖/(1 − ‖L−1‖). Observe that in the proofs of the next results, we sometimes
need to replace a substitution ζ by a power ζ n of itself. However, in the computations,
this modification does not impact the bound r̄ , that is, we do not have to replace r̄ by
‖L−n(Fn)‖/(1 − ‖L−n‖).
THEOREM 6.2. Let ζ1, ζ2 be two aperiodic primitive constant-shape substitutions with
the same expansion matrix L and support F1. Suppose there exists a factor map φ :
(Xζ1 , S, Zd) → (Xζ2 , S, Zd) with radius r. Then, there exists j ∈ Z

d and a factor map ψ :
(Xζ1 , S, Zd) → (Xζ2 , S, Zd) such that Sjφ = ψ , satisfying the following two properties.
(1) The factor map ψ is a sliding block code of radius at most 2r̄ + Rζ2 + 1, where Rζ2

is a constant of recognizability for ζ2.
(2) There exists an integer n > 0 and f ∈ Fn such that Sfψζn1 = ζ n2 ψ .

The proof is inspired by [41], but contains more details, as in the works in [8, 20],
allowing to express a bound on the radius of factor maps, that it is invariant under iteration
of the substitutions. While V. Salo and I. Törmä state explicit formulas on how the
invariants of the substitution behave under iteration, as well as the lemma that gives the
ultimate bound obtained in the case of a contracting affine map, they do not explicitly state
a bound on the radius of factor maps. The key contribution of Durand and Leroy in [20] was
to extend these results to the whole class of primitive substitutions. In particular, for the
constant-length case, the arguments remain similar. We then use Theorem 6.2 to deduce
some topological and combinatorial properties of aperiodic primitive constant-shape
substitutions.

Proof. For any n > 0, we denote f n(φ) as the element of Fn given by Proposition 6.1.
We recall that the recognizability property implies that the substitution maps ζ n1 , ζ n2 are
homeomorphisms from Xζ1 to ζ n1 (Xζ1) and from Xζ2 to ζ n2 (Xζ2), respectively. Hence, for
any x ∈ Xζ1 , there exists a unique point φn(x) ∈ Xζ2 such that

Sf n(φ)φζ n1 (x) = ζ n2 (φn(x)). (9)
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Let us show that φn is also a factor map and that, for large enough n, it has a ‘small’
radius. The map φn is obviously continuous, so let us prove that it commutes with the shift.
Take m ∈ Z

d . We note that

ζ n2 (φn(S
mx)) = Sf n(φ)φζ n1 (S

mx)

= Sf n(φ)φSL
n(m)ζ n1 (x)

= SL
n(m)+f n(φ)φζ n1 (x)

= SL
n(m)ζ n2 (φn(x))

= ζ n2 (S
mφn(x)).

The map ζ n2 : Xζ2 → ζ n2 (Xζ2), being injective, proves that φn(Smx) = Smφn(x), so the
map φn is a factor map between (Xζ1 , S, Zd) and (Xζ2 , S, Zd).

Let us now show that equation (9) allows to bound the radius of φn for large enough
n. Roughly, given x|[B(0,R)∩Zd ], we first apply ζ n1 to compute ζ n1 (x) on some big support.
Then we lose some information using φ and the shift Sf n . Our aim is thus to find R such
that, for large enough n, the remaining information is large enough to be ‘desubstituted’ by
ζ n2 .

Let Pn � Z
d be such that if x, y ∈ Xζ1 , then

x|Pn = y|Pn �⇒ φn(x)0 = φn(y)0. (10)

By definition, we have that ζ n1 (x)|Ln(Pn)+Fn is equal to ζ n1 (y)|Ln(Pn)+Fn . We then obtain
that

(Sf n(φ)φζ n1 (x))|(Ln(Pn)+Fn)◦r−f n(φ) = (Sf n(φ)φζ n1 (y))|(Ln(Pn)+Fn)◦r−f n(φ), (11)

which implies that

ζ n2 (φn(x))|(Ln(Pn)+Fn)◦r−f n(φ) = ζ n2 (φn(y))|(Ln(Pn)+Fn)◦r−f n(φ).

Let Rζ2 be a constant of recognizability for ζ2. By Proposition 5.7 and Remark 5.8, we get
that φn(x) and φn(y) coincide on the support

[L−n(((Ln(Pn)+ Fn)
◦r − f n(φ))

◦Rn)] ∩ Z
d ,

where Rn = ∑n−1
i=0 L

i([B(0, Rζ2) ∩ Z
d ]). By equation (10), for φn to be a sliding block

code induced by a Pn-block map, we need that

0 ∈ [L−n(((Ln(Pn)+ Fn)
◦r − f n(φ))

◦Rn)] ∩ Z
d .

We have that

0 ∈ [L−n(((Ln(Pn)+ Fn)
◦r − f n(φ))

◦Rn)] ∩ Z
d ⇔ 0 ∈ ((Ln(Pn)+ Fn)

◦r − f n(φ))
◦Rn

⇔ Rn ⊆ (Ln(Pn)+ Fn)
◦r − f n(φ)

⇔ f n(φ)+ Rn ⊆ (Ln(Pn)+ Fn)
◦r .

(12)

Consider R = 2r̄ + Rζ2 + 1 and let us prove that Pn = [B(0, R) ∩ Z
d ] satisfies equa-

tion (12) for large enough n. Indeed, for all rn ∈ Rn and all r ∈ [B(0, r) ∩ Z
d ], we can
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write f n(φ)+ rn + r = Ln(a)+ gn for some a ∈ Z
d and gn ∈ Fn. We then get

‖a‖ ≤ ‖L−n(f n(φ)− gn + rn + r)‖
≤ ‖L−n(f n(φ))‖ + ‖L−n(gn)‖ + ‖L−n(rn)‖ + ‖L−n(r)‖, (13)

and the fact that for n large enough, ‖L−1‖n+1r ≤ 1, we conclude that for any n large
enough, ‖Pn‖ ≤ 2r̄ + Rζ2 + 1.

As in [8, 30], we note that for any n ≥ 1, f n+1(φ) = f n(φ) (mod Ln(Zd)). Hence,
there exists g ∈ F1 such that f n+1(φ) = f n(φ)+ Ln(g) (mod Ln+1(Zd)). We note that
g = f 1(φn). Indeed,

Sf n+1(φ)φζ n+1
1 = ζ n+1

2 (φn+1),

Sf n+1(φ)−f nSf n(φ)φζ n1 ζ = ζ n+1
2 (φn+1),

SL
n(g)ζ n2 φnζ1 = ζ n+1

2 (φn+1),

Sgφnζ1 = ζ2(φn+1). (14)

By definition of g, f 1(φn), φn+1, and (φn)1, we conclude that g = f 1(φn) and (φn)1 =
φn+1. By recurrence, we conclude that for any n, k ≥ 0, (φn)k = φn+k .

To finish the proof, observe that for fixed alphabets A and B, there exists a finite number
of sliding block codes of radius 2r̄ + Rζ2 + 1. Thus, there exist two different integers
m, k ≥ 0 such that φm = φm+k .

Let n ≥ m be a multiple of k. Note that (φn)k = φn+k = (φm+k)n−m = (φm)n−m = φn.
This implies that for all r ∈ N, φn is equal to (φn)rk . Since φn is equal to φ2n, we denote
ψ = φn and f = f n(ψ). By definition of f , we have that Sfψζn1 = ζ n2 ψ .

Set j = f n(φ)− f , then

Sjφζn1 = Sf n(φ)−f φζn1 = S−f ζ n2 ψ = ψζn1 ,

which implies that Sjφ and ψ coincides on ζ n1 (Xζ1), and hence on the whole set Xζ1 by
minimality.

6.2. Consequences of Theorem 6.2. As a consequence of Theorem 6.2, we extend the
results on the coalescence and the automorphism group of substitutive subshifts proved in
[8]. Specifically, we get rid of the reducibility condition for constant-shape substitutions.
We recall that a system is coalescent if any factor map between X and itself is invertible.
This was first proved in [16] for one-dimensional linearly recurrent subshifts (in particular,
aperiodic primitive substitutive subshifts). Multidimensional linearly recurrent substitutive
subshifts (such as the self-similar ones) are also coalescent as a consequence of a result in
[11]. For an aperiodic primitive constant-shape substitution, we denote Rζ to be a constant
of recognizability for ζ .

Since the set of sliding block codes 2r̄ + Rζ + 1 is finite, we will assume here (up to
considering a power of ζ ) that if a factor map ψ satisfies property (2) in Theorem 6.2, then
it does so for n = 1, that is, there exists p ∈ Fζ1 such that Spψζ = ζψ .

6.2.1. Coalescence of substitutive subshifts. The coalescence of aperiodic substitutive
subshifts was proved in [8] for reduced aperiodic primitive constant-shape substitutions.
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Here, we proved it for the whole class of aperiodic primitive constant-shape substitutions.
As in [8], we use the notion of ζ -invariant orbits. An orbit O(x, Zd) is called ζ -invariant
if there exists j ∈ Z

d such that ζ(x) = Sjx, that is, the orbit is invariant under the action
of ζ in Xζ . Since for every n ∈ Z

d we have that ζ ◦ Sn = SLζn ◦ ζ , the definition is
independent of the choice of the point in the Z

d -orbit of x. As an example, the orbit of
a fixed point of the substitution map is an example of an invariant orbit. We recall that in
[8], it was proved that there exist finitely many invariant orbits.

PROPOSITION 6.3. [8, Proposition 3.9] Let ζ be an aperiodic primitive constant-shape
substitution. Then, there exist finitely many ζ -invariant orbits in the substitutive subshift
Xζ . The bound is explicit and depends only on d, |A|, ‖L−1

ζ ‖, ‖Fζ1 ‖, and det(Lζ − id).

We now prove that substitutive subshifts are coalescent.

PROPOSITION 6.4. Let ζ be an aperiodic primitive constant-shape substitution. Then, the
substitutive subshift (Xζ , S, Zd) is coalescent.

Proof. Set φ ∈ End(Xζ , S, Zd). Theorem 6.2 ensures that there exists j ∈ Z
d such that

Sjφ is equal to a sliding block code ψ of a fixed radius satisfying Spψζ = ζψ for some
p ∈ Fζ1 . Let x̄ ∈ Xζ be in a ζ -invariant orbit, that is, there exists j ∈ Z

d such that ζ(x̄) =
Sj x̄. Note that

ζψ(x̄) = Spψζ(x̄) = Sp+jψ(x̄),

so, if the orbit of x is in a ζ -invariant orbit, then ψ(x) is also in a ζ -invariant orbit. By
Proposition 6.3, there exist finitely many ζ -invariant orbits, and hence for n large enough,
we can find x ∈ Xζ with x and ψn(x) being in the same orbit, that is, there exists m ∈ Z

d

such that Smψn(x) = x. The minimality of (Xζ , S, Zd) allows us to conclude that ψn =
S−m. Hence, ψ is invertible, which implies that φ is invertible.

6.2.2. The automorphism group of substitutive subshifts. The rigidity properties of the
topological factors between substitutive subshifts also allow us to conclude that the group
Aut(Xζ , S, Zd)/〈S〉 is finite, since any element in Aut(Xζ , S, Zd) can be represented as
an automorphism with radius 2r̄ + Rζ + 1.

PROPOSITION 6.5. Let (Xζ , S, Zd) be a substitutive subshift from an aperiodic primitive
reduced constant-shape substitution ζ . Then, the quotient group Aut(Xζ , S, Zd)/〈S〉 is
finite. A bound for |Aut(Xζ , S, Zd)/〈S〉| is given by an explicit formula depending only on
d, |A|, ‖L−1

ζ ‖, ‖Fζ1 ‖.

We recall that this was proved in the one-dimensional case as a consequence of the
works [12, 13, 15], where they proved that the automorphism group of a minimal subshift
with non-superlinear complexity is virtually generated by the shift action.

6.2.3. Decidability of the factorization problem between aperiodic substitutive sub-
shifts. In this section, we prove that the factorization problem is decidable for ape-
riodic substitutive subshifts, given by substitutions sharing the same expansion matrix
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(Theorem 6.6). This extends the one proved by Fagnot [22] and Durand and Leroy [20]
in the one-dimensional constant-length case as follows.

THEOREM 6.6. Let ζ1, ζ2 be two aperiodic primitive constant-shape substitutions with the
same expansion matrix L. It is decidable to know whether there exists a factor map between
(Xζ1 , S, Zd) and (Xζ2 , S, Zd).

First, we note that, by Theorem 4.1, we may assume that the substitutions share the same
support. Let ζ1, ζ2 be two aperiodic primitive constant-shape substitutions with the same
expansion matrix L and support F1.

PROPOSITION 6.7. Let ζ1 : A → AF1 , ζ2 : B → BF1 be two aperiodic primitive
constant-shape substitutions with the same expansion matrix L and the same support
F1. Let� : A[B(0,r)∩Zd ] → B be a block map of radius r and let φ be the associated factor
map from AZ

d
to φ(AZ

d
). If there exists f ∈ Z

d such that Sf φζ1(x) = ζ2φ(x) for all
x ∈ Xζ1 , then φ is a factor map from Xζ1 to Xζ2 .

Proof. A straightforward induction shows that for all n > 0, there exists fn ∈ Z
d such

that Sf nφζ n1 (x) = ζ n2 φ(x) for all x ∈ Xζ1 . Let x ∈ Xζ1 be a fixed point of ζ1. By
minimality and using the Følner property, it suffices to show that any pattern of the form
φ(x)f n+Fn belongs to L(Xζ2). Since x is a fixed point of ζ1, we have that φ(x)Fn+f n =
(ζ n2 (φ(x)))Fn = ζ n2 (φ(x)0), which concludes the proof.

COROLLARY 6.8. Let ζ1 : A → AF1 , ζ2 : B → BF1 be two aperiodic primitive
constant-shape substitutions with the same expansion matrix L and the same support
F1. Let r > 0 and � : A[B(0,r)∩Zd ] → B be a block map of radius r and let φ be the
associated factor map from AZ

d
to φ(AZ

d
). For any f ∈ Z

d , it is decidable whether
Sf φζ1(x) = ζ2φ(x) for all x ∈ Xζ1 .

Proof. Note that

Sf φζ1(x) = ζ2(φ(x))

⇔ (for all n ∈ Z
d)(for all g ∈ F1), φζ1(x)L(n)+g+f = ζ2(φ(x))L(n)+g

⇔ (for all n ∈ Z
d)(for all g ∈ F1), φζ1(x)L(n)+g+f = ζ2(φ(x)n)g

⇔ (for all n ∈ Z
d)(for all g ∈ F1), φζ1(x)L(n)+g+f = ζ2(�(x|n+[B(0,r)∩Zd ]))g .

(15)

Let cg ∈ C and hg ∈ F1 be such that g + f = L(cg)+ hg , then equation (15) is
equivalent to

(for all n ∈ Z
d)(for all g ∈ F1), �(ζ1(x)|L(n)+L(cg)+hg+[B(0,r)∩Zd ])

= ζ2(�(x|n+[B(0,r)∩Zd ]))g . (16)

Using Proposition 2.5 withA = [B(0, r) ∩ Z
d ] and F = F1, we find a set E � Z

d such
that ‖E‖ ≤ ‖L−1‖r/(1 − ‖L−1‖)+ 3r̄ and

F1 + [B(0, r) ∩ Z
d ] ⊆ L(E)+ F1,
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so we can rewrite equation (16) as

(for all n ∈ Z
d)(for all g ∈ F1), �(ζ1(x)|L(n)+L(cg)+L(E)+F1) = ζ2(�(x|n+[B(0,r)∩Zd ]))g

(for all n ∈ Z
d)(for all g ∈ F1), �(ζ1(x|n+cg+E)) = ζ2(�(x|n+[B(0,r)∩Zd ]))g . (17)

We note that diam(supp(x|n+cg+E)) ≤ 2‖E‖ ≤ 2‖L−1‖r/(1 − ‖L−1‖)+ 6r̄ and
diam(supp(x|n+[B(0,R)∩Zd ])) ≤ 2r . Consider R = max{2r , 2‖L−1‖r/(1 − ‖L−1‖)+ 6r̄}.
To test if a sliding block code satisfies equation (17), we consider any pattern w ∈ L(Xζ1)

with support [B(0, RXζ1 (R)) ∩ Z
d ], where RXζ1 (·) denotes the repetitivity function of

the substitutive subshift Xζ1 . By Lemma 5.4, we note that this discrete ball contains an
occurrence of any pattern of the form x|n+cg+E and x|n+[B(0,r)∩Zd ] for any n ∈ Z

d and
g ∈ F1.

Proof of Theorem 6.6. Let Rζ2 be a constant of recognizability for ζ2. Using Theorem 6.2
and Proposition 6.7, there is a factor map from Xζ1 to Xζ2 if and only if there exist n >
0, f ∈ Fn and a factor map φ with radius R = 2r̄ + Rζ2 + 1 that satisfies Sf φζn1 (x) =
ζ n2 φ(x) for all x ∈ Xζ1 .

We first show that if such a factor map exists, we can find another factor map ψ with
the same radius such that Sf φζn1 (x) = ζ n2 φ(x) for all x ∈ Xζ1 and for some n ≤ |B||A|R .
Indeed, equation (9) defines other factor maps φn that, by equation (13) for n ≥ �log2(R)�,
also have radius R. We can thus find two indices m, n ∈ ��log2(r̄)�, �log2(r̄)� + |B||A|r̄ �
such that φn = φm = ψ andm < n. By equation (14), the factor maps φn satisfy Sgφnζ1 =
ζ2(φn+1) for some g ∈ F1. Hence, there exists f ∈ Fn−m such that Sfψζn−m1 (x) =
ζ n−m2 ψ(x) for all x ∈ Xζ1 .

Finally, for every n≤|B||A|R , every f ∈Fn, and every block map� : A[B(0,R)∩Zd ] →B,
Corollary 6.8 allows us to decide whether that block map defines a factor map from Xζ1 to
Xζ2 . Since there is only a finite number of possibilities, this completes the proof.

Using the fact that minimal substitutive subshifts from aperiodic primitive constant-
shape substitutions are coalescent (Proposition 6.4), we can decide if two aperiodic
primitive constant-shape substitutions with the same expansion matrix are conjugate.

COROLLARY 6.9. Let ζ1, ζ2 be two aperiodic primitive constant-shape substitutions
with the same expansion matrix L. It is decidable to know whether (Xζ1 , S, Zd) and
(Xζ2 , S, Zd) are topologically conjugate.

6.2.4. Aperiodic symbolic factors of substitutive subshifts. The radius of the sliding
block codes given by Theorem 6.2 can be improved when the substitutions involved are
injective on letters. Indeed, under the assumption of injectivity, we can deduce from
equation (11) that, by injectivity of the substitution ζ2, φn(x) and φn(y) coincide on the
set {m ∈ Z

d : Ln(m)+ Fn ⊆ (Ln(Pn)+ Fn)
◦r − f n(φ)}. Moreover, if φn is given by a

Pn-local map, we need that

Fn ⊆ (Ln(Pn)+ Fn)
◦r − f n(φ),
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which is true if Fn + Fn + [B(0, r) ∩ Z
d ] ⊆ Ln(Pn)+ Fn. Proceeding as in the proof of

Theorem 6.2, we get that φn has radius at most 3r̄ + 1. As mentioned in Remark 2.6, this
bound is independent of the choices of the powers ζ1 and ζ2. We thus have the following
result.

COROLLARY 6.10. Let ζ1, ζ2 be two aperiodic primitive constant-shape substitutions with
the same expansion matrix L and support F1, such that ζ2 is injective. If φ : Xζ1 → Xζ2 is
a factor map, then there is a factor map ψ : Xζ1 → Xζ2 with radius at most 3r̄ + 1 such
that φ = Sjψ for some j ∈ Z

d .

Now, as in [20], we prove that we can always assume that the aperiodic substitutions
are injective on letters. Indeed, let ζ : A → AF be an aperiodic primitive constant-shape
substitution and consider B ⊆ A such that for any a ∈ A, there exists a unique b ∈ B
satisfying ζ(a) = ζ(b). We define the map � : A → B such that �(a) = b if and only if
ζ(a) = ζ(b). Then, there exists a unique constant-shape substitution ζ̃ : B → BF defined
by ζ̃ ◦ φ = φ ◦ ζ . It is clear that ζ̃ is primitive and � induces a topological factor from
(Xζ , S, Zd) to (Xζ̃ , S, Zd) denoted by φ. The substitution ζ̃ defined this way is called the
injectivization of ζ .

PROPOSITION 6.11. [6] Let ζ be an aperiodic primitive constant-shape substitution and ζ̃
be its injectivization. Then, (Xζ , S, Zd) and (Xζ̃ , S, Zd) are topologically conjugate.

Proof. Since φ is a factor map, we prove that it is one-to-one. Let x, y ∈ Xζ be such
that φ(x) = φ(y). Note that ζ(x) = ζ(φ(x)) = ζ(φ(y)) = ζ(y). The fact that ζ : Xζ →
ζ(Xζ ) is a homeomorphism lets us conclude that x = y.

By construction, ζ̃ may not be injective on letters, so we proceed in the same way to
obtain an injectivization of ζ̃ (and of ζ ). Since in each step the cardinality of the alphabet is
decreasing, we will obtain, in finite steps, an injective substitution ζ such that (Xζ , S, Zd)
and (Xζ , S, Zd) are topologically conjugate.

Now, let ζ be an aperiodic primitive constant-shape substitution. From [8, Theorem
3.26], we know that any aperiodic symbolic factor of (Xζ , S, Zd) is conjugate to an
aperiodic primitive constant-shape substitution with the same expansion matrix and
support of some power of ζ . This substitution may not be injective, but using Proposition
6.11, we can find an injective substitution which is conjugate to the symbolic factor. Then,
thanks to Corollary 6.10, we only need to test finitely many sliding block codes, which are
the ones of radius 3r̄ + 1. In particular, we prove the following result, extending what is
known [18] for linearly recurrent shifts (in particular, aperiodic primitive substitutions).

LEMMA 6.12. Let ζ be an aperiodic primitive constant-shape substitution. The substitutive
subshift (Xζ , S, Zd) has finitely many aperiodic symbolic factors, up to conjugacy.

7. Future works and discussions
7.1. Listing the factors and decidability of the aperiodicity of multidimensional substitu-
tive subshifts. Since substitutions are defined by finite objects, it is natural to ask about
the decidability of some properties about them. Lemma 6.12 states that any aperiodic
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substitutive subshift Xζ has finitely many aperiodic symbolic factors. Furthermore, from
[8, Theorem 3.26] and Proposition 6.11, any such factor is conjugate to a substitutive
subshift defined by an injective constant-shape substitution with the same support as ζ .
Thus, we would like to give a list ζ1, . . . , ζk of injective constant-shape substitutions that
define all aperiodic symbolic factors of Xζ .

Corollary 6.10 allows to give a bound on the size of the alphabet of any injective
constant-shape substitution that would define an aperiodic symbolic factor of Xζ . Hence,
we can produce a finite list of candidates. Furthermore, if we know that two substitutions
from that list are aperiodic, then Theorem 6.2 allows us to decide whether they are
conjugate. Therefore, positively answering the following question would allow us to list
all possible aperiodic symbolic factors of Xζ .

Question 7.1. Is it decidable whether a primitive constant-shape substitution is aperiodic?

7.2. Toward a Cobham’s theorem for constant-shape substitutions. In [22], it was proved
that if ζ1, ζ2 are two one-dimensional aperiodic primitive constant-length substitutions
and (Xζ2 , S, Z) is a symbolic factor of (Xζ1 , S, Z), then their lengths have a common
power (greater than 1), generalizing a well-known result proved by Cobham [9]. In the
multidimensional framework, Theorem 4.1 and [17] imply that this still remains true when
the expansion matrix is equal to a multiple of the identity, but there is no generalized
version for all constant-shape substitutions, which raises the following question.

Question 7.2. Is there a version of Cobham’s theorem for constant-shape substitutions?

7.3. Connections with first-order logic theory. In the one-dimensional case, the decid-
ability of the factorization problem between two constant-length substitutions was proved
in [20] using automata theory and its connection with first-order logic. We describe the
proof in the following. Let k ≥ 2. An infinite sequence is called k-automatic if there is a
finite state automaton with output (we refer to [2] for definitions) that, reading the base-k
representation of a natural number n, outputs the letter x(n).

Now, consider the first-order logical structure 〈N, +, Vk , =〉, where Vk corresponds to
k-valuation function Vk : N → N by Vk(0) = 1 and

Vk(n) = max{p : qr divides n}.
A subset E ⊆ N is called k-definable if there exists a first-order formula φ in

〈N, +, Vk , =〉 such that E = {n ∈ N : φ(n)}. An infinite sequence x ∈ AN is called
k-definable if for all a ∈ A, the set {n : xn = a} is k-definable.

THEOREM 7.3. [7, 10] Let A be a finite alphabet and k ≥ 2. An infinite sequence x ∈ AN

is k-automatic if and only if it is k-definable and if and only if it is the image under a
letter-to-letter substitution of a fixed point of a substitution of constant length k.

THEOREM 7.4. The theory 〈N, +, Vk , =〉 is decidable, that is, for each closed formula
expressed in this first-order logical structure, there is an algorithm deciding whether it is
true or not.
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Theorem 7.3 extends to multidimensionnal constant-shape substitutions for which the
expansion matrix is proportional to the identity. Hence, in that case, the decidability of the
factorization problem can be deduced by the Büchi–Bruyère theorem. In the general case, it
is not clear that these tools can be applied. For an integer expansion matrix L ∈ M(d, Z),
we do not have the analogous notions of L-automaticity and of L-definability. This raises
the following questions.

Question 7.5.
(1) Can we extend the notion of k-automaticity to the general case of integer

expansion matrices? More precisely, can we define L-automatic sequences so
that these sequences are exactly the image under a letter-to-letter substitution of
a constant-shape substitution with expansion matrix L?

(2) Can we define a logical structure depending on L and a notion of L-definability to
obtain an analog of the Büchi–Bruyère theorem for constant-shape substitutions?

(3) Assuming that the logical structure exists, is this theory decidable?

7.4. Topological Cantor factors of substitutive subshifts. In the one-dimensional case,
the topological Cantor factors of aperiodic primitive substitutions are either expansive or
equicontinuous [18]. This classification result is no longer true in the multidimensional
framework ([8, Example 4.3] is an example of an aperiodic primitive constant-shape
substitution with a Cantor factor which is neither expansive neither equicontinuous).
Moreover, we only study the aperiodic topological factors of substitutive subshifts, leaving
open the study of the topological factors with non-trivial periods. The following are open
questions.

Question 7.6.
(1) Are the expansive factors of aperiodic substitutive subshifts also substitutive?
(2) Is there a classification theorem for topological Cantor factors of constant-shape

substitutions?
(3) Do aperiodic primitive constant-shape substitutions have a finite number of aperiodic

topological Cantor factors, up to conjugacy?
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