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In this paper, we consider the following PDE-ODE system modelling cancer invasion
with slow diffusion and ECM remodelling,

up = Au"™ — xV - (uVv) — €V - (uVw) 4+ pu(l — u — w),
v = Av+u— v,

wi = —vw +nw(l —u — w).

For the special case n = 0, fruitful results have been achieved since Tao and
Winkler’s work in 2011. However, there is no any progress for the general case n > 0
in the past ten years. In this paper, we analysed some commonly used research
methods when 7 = 0, and found that these methods are completely unsuitable for
situations where n > 0. By introducing some new forms of functionals, we
reconstruct the relationship between the haptotactic term and the nonlinear
diffusion term, and ultimately prove the global existence of weak solutions. This
result improves and perfects a series of works previously presented in the literature.
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1. Introduction

As a major disease threatening human life safety, cancer has always been the focus
of social attention. The combination of mathematical models and various medi-
cal data will help people turn cancer research into a quantitative and predictable
science. The mathematical modelling of tumour growth and its theoretical research
have always been the concern of biologists and mathematicians. Generally speak-
ing, the growth of a tumour usually goes through two stages: vascular phase and
vascularization. That is, if there are no blood vessels to provide enough nutrients,
the tumour will stop growing when it grows to a certain size. In order to continue
to grow, some tumours will secrete a chemical substance, which is called urokinase
Plasminogen Activator (uPA), to recruit vascular factors, and to build a vascular
network around themselves to meet the growing nutritional needs. At the same
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2 C. Jin

time, blood vessels also provide a way for tumours to travel to other parts of the
body, which is called metastasis. In recent years, some reaction-diffusion-taxis mod-
els are proposed to characterize the process of tumour growth and invasion [1, 3,
4, 17]. In particular, the following model proposed by Chaplain and Lolas [4] has
attracted extensive attention of mathematicians in recent years.

ug = V- (D(u)Vu) — xV - (uVv) — £V - (uVw) + pu(l — u — w),
v =Av+u—v, (1.1)
wy = —vw + nw(l —u — w),

which describes the invasion and diffusion process of solid tumours during the vascu-
lar growth stage. In this system, u, v, w represent the cancer cell density, urokinase
Plasminogen Activator (uPA) concentration, and the extracellular matrix (ECM)
density respectively. D(u) denotes the mobility of cells, the positive constants
X, € denote the uPA-mediated chemotaxis, ECM-mediated haptotaxis coefficients
respectively, pu(l —u — w) denotes the proliferation or death of cancer cells. In the
second equation, +u represents the production of uPA by cancer cells, —v repre-
sents decay of uPA. As for the ECM density w, it is known that it does not diffuse,
therefore, one can omit the random motion. —vw denotes the degradation of ECM,
Nw(l — u — w) represents the remodelling of ECM components.

In the past ten years, this model has been widely studied. When D(u) = 1,7 = 0,
we refer to [5, 13, 18, 23] for the study of global existence of bounded solutions,
and refer to [6, 20, 22] for the study of large time behaviour. While, if the remod-
elling of ECM is considered, the calculation of the haptotaxis term will bring some
essential difficulties. Therefore, the following transformation is introduced to avoid
the estimation of the haptotaxis term

p=ue

and the first equation of (1.1) is transformed into

et py — div(ef“Vp) = —xdiv(pes“ Vo) + Epvwet™ + pet (1 — w — pes) (1 — Enw).
(1.2)

Noticing that w is bounded, then ||u|lz» ~ ||p||zr. Using this method, the global
existence and boundedness of classical solution for any initial datum in two dimen-
sional space is proved [10, 15]. While in three dimensional space, only a small
global classical solution is established [11, 16]. In fact, even for the haptotaxis-only
system, the global bounded solution for any p, n > 0 in dimension 3 is still open.
Considering the mechanism of avoiding crowding between individual cells, the
mobility of cells should be related to density, so a model with nonlinear diffusion is
also very practical, and the most representative one is the porous medium diffusion
model. For example, in [1, 2], the authors use porous medium diffusion to describe
the process of trophoblast cells invading the uterine tissue, that is,
uy = D,V - (™ 'Vu) — €V - (uV) + ku(l —u — w),
ny = An + konu(l — u) — kgno,
(1.3)
v = Dy Av + kynw — ksnv,

wp = —0nw + nw(l —u —w).
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In 2011, Tao and Winkler [19] first studied the global solvability of (1.1) by ignoring
the remodelling of ECM, that is, for

up = Au™ — xV - (uVv) — €V - (uVw) + pu(l — u — w),
v =Av+u—wv, (1.4)

wr = —Uw,

they proved the global existence of weak solutions when

ON? + 4N — 4
A el S if N <8,
N(N+4) '
M= oNe N o ANV
2N? + 3N +2 — -
if N> 9.
N(N +1) ! )

After that, the global existence of weak solutions to this problem began to be widely
studied, see for example [7, 12, 21, 24] etc. For this case, from the third equation
of (1.4), one observed that

w = woe~ Jo v(@9)ds, (1.5)

At this time, there are two commonly used methods to assist in dealing with the
haptotactic term.

Method I: A direct calculation from (1.5) leads to
t t 2
|Vw(:v,t)|2 < 2|Vw0(x)|26_2f0 v(z,s)ds + 2‘71]0(3?)‘26_2]0 v(z,s)ds ’

t
/ Vou(z, s)ds
0

Therefore,

" t 2
/ |Vw(z,t)|?dz < C + C/ e~ 2o v(@s)ds / Vo(z, s)ds‘ dz
Q Q 0

—C— 9/ Ve 2o vizs)ds (/ Vv(x,s)ds)dx
2 ¢ 0
t
=C+ Q/ e=2 /o vis)ds . (/ Av(z, s)ds)dm
2 Q 0

t
—C+ g/ 672f0t v(z,s)ds (/ ('Ut +v— u)ds)d:v
2 Q 0

t
<0+€/ o2 I vl s | (U(%t)+/ o(, 5)ds)dz
2 Q 0

gé’+g/v(x,t)dx.
2 Jo

Similarly, one can use iteration to sequentially obtain ||Vw(-, t)||z4, ||Vw(:, t)] s,
[9e(e, Dllga - -
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Method II: A direct calculation from (1.5) leads to

t
—Aw(z,t) = —Awpe Jo V@95 L 9e= o v(@s)dsg,, / Vo(z, s)ds
0

2

¢ ¢
— woe ™ Jo vi@s)ds / Vo(x,s)ds| + woe™ o v(@9)ds / Av(z, s)ds
0 0

2

t
= —Awge Jo v@s)ds _ o= Jo v(@s)ds (Vwo - / Vou(z, 5)ds>
0

wo

7|VW0|2 e j(;t u(
Wo

t
+ z,8)ds + woe™ fo v(z,s)ds/ (Ut +ou— u)ds
0

< N Awollzee + 4V v/woll7e + [lwoll o (1 + v(z, 1))
< Nwollpeev(m, t) + K

where K only depends on wg [19]. Therefore, the above two methods can make
the haptotactic term easy to handle, however, the two methods are obviously not
suitable for situations where 7 > 0. In fact, if the remodelling of ECM is considered,
that is, the third equation of (1.4) is replaced with

wr = —vw +nw(l —u —w),

the problem becomes much more complex since the regularity of w completely
depends on the regularity of u. Actually, due to that the ODE has no regularization
effect, the regularity of w is greatly reduced by —nuw in remodelling term. Therefore,
although a lot of results for the case 7 = 0 have been achieved in the past ten years,
there is no any progress in the case of n > 0.

In the present paper, we consider the initial and boundary value problem for the
system (1.1) with nonlinear diffusion, that is

up = Au™ — xV - (uVv) =€V - (uVw) + pu(l —u —w), in @,
vy = Av+u—v, in Q,
wr = —vw+Nw(l —u —w), in Q,
(1.6)
oum ual_guaiw =0 @‘ -0
on  "on on|,, onloa
u(z,0) = up(x), v(x,0)=uv9(z), w(x,0)=wy(z), x €,

where Q = Q x Rt, m > 1, Q ¢ RN (N > 2) is a smooth bounded domain. x;, &, i,
1 are positive constants.

According to previous research experience for some chemotaxis mod-
els, the larger m is, the easier it is to prove the uniform boundedness
of the solution, but this experience seems to be invalid for the cur-
rent model. On the one hand, due to the existence of remodelling term
nw(l — u — w), the methods (Method I and Method II) used in the study
of equations (1.4) is completely invalid. On the other hand, due to the
lack of a good coupling structure similar to the linear diffusion case
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between the diffusion term and the haptotactic term, the method used
for the linear diffusion case (see (1.2)) is also not suitable for the current
nonlinear diffusion model. Therefore, we have to try new methods. Fortunately,
we found a complex relationship between the haptotactic term and the nonlinear
diffusion term. In addition to constructing classical functional such as

2
F(u,w):/ (ulnu+ [Vl )dx,
Q w

we also construct the following new form of functionals

Fy(u,w) = /Q (ml_ ()™ —fuw) dz,

2k+1 2k+1 m1
m
Gl w) = (m—l) |

» /(u+6)(m71)(2k+17i)+1widx7
0

) Chin
C (m—1)(2k + 1) +1

3

which allows us to reconstruct the relationship between nonlinear diffusion term and
haptotactic term. In particular, by taking the derivative of the above functional, we
can use the diffusion term to neutralize the ‘bad’ effect brought by the haptotactic
term. That is (see lemma 3.6)

d

S Gi(u,w) + (26 + 1)/@

(u+e) ( (u+e)™ ! — §w> "

m—1
2

X do---

v (mm ~(u+e) ! - fw)

However, this also reduces the original good effect of the diffusion term. Fortunately,
we have the logistic term, with the help of this term, we can finally get the LP-norm
(V p > 1)uniform estimation of u and the W1*-norm estimation of v. However, it
is hard to get the L°°-norm estimation of u since the Moser’s iteration technique is
no longer applicable due to the diffusion term is not working.

Although the haptotactic term caused the main difficulties in the proof, we prove
that the chemotaxis still plays a leading role in determining whether the solution can
exist globally. More precisely, we prove that the weak solution will exists globally
for any m > % if x > 0, while for the haptotaxis-only model, that is the case
x = 0. We prove that for any m > 1, the solution always exists globally. This work
obviously improves the results in references[12, 19, 21, 24|, in which, only the
special case n = 0 is studied.

In what follows, we give the assumptions of this paper.

Up,wWo € LOO(Q),V\/wo S LQ(Q),
(H) vy € WH(Q) N W2P(Q), for any p > 1,
up, vo,wo = 0

We state the main results as follows.
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THEOREM 1.1. Assume that (H) holds, i > 0 and m > 1\2,—52 Then the problem (1.6)

admits a global nonnegative weak solution (u, v, w) € Xy X Xy X X3. In particular,
u, v, w are bounded uniformly in the following sense

5w (oG B)llwrse + ol Ol + [lul Ollr) < Cr, - forany r>1, - (1.7)
<t<oo

where C,. only depends on r, x, &, m, u, 1, ug, Vg, wo, $2. Here

X = {u € L¥(R"; L™ () for anyr > 1;Vu™ € LY (RT; LP(2)),

loc
up € Lin (RT;WHP(Q)),
for any p € (1,2), Vu™" 3 € L (R, LQ(Q))};
Xy = {v e L¥RT;W->(Q)); v, D*v € L} (RT; LP(Q)) for any p > 1};
Xy = {w € L®(Q); VVw € L5 (RT; L*(Q)), VuVvw € L, (RY; L*(Q)),
we € L] (RY;L7(Q)) for any r > 1}.

Although the haptotactic term caused the main difficulties in the proof, the

requirement of this index m > % was still caused by the chemotactic term. In

fact, if x = 0, we have the global existence result for any slow diffusion case m > 1.

THEOREM 1.2. Assume x =0, u > 0, m > 1 and (H) holds. Then the problem (1.6)
admits a global nonnegative weak solution (u, v, w) € Xy X Xy X X3. In particular,
u, v, w are bounded uniformly in the following sense

S (G Bllwree + ol B)llee + et Dller) < Cr, - for anyr>1, - (1.8)

where C,. only depends on r, x, &, m, u, 1, ug, vg, wWo, §2.

REMARK 1.3. As for the stability of the equilibrium points, the local stability of
equilibrium point (1, 1, 0) is easy to obtain by linear stability analysis, see for
example [11]. However, the research on global asymptotic stability of the equilib-
rium point is a very challenging problem. In fact, this problem is still unsolved even
for linear diffusion case m = 1.

2. Preliminaries

We first give the definition of weak solutions.
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DEFINITION 2.1. (u, v, w) is called a nonnegative weak solution of (1.6), if
(u, v, w) € X X X X Xa, such that for any T >0,

- // uprpdadt —/ u(z, 0)p1(z,0) dx—l—/ (Vu'™ — xuVv — EuVw)Vprdadt
Q Qr

—M// u(l —u —w)prdadt,

_ / / vpaydadt — /Q v(z,0)ps(z, 0)da + / |, VoVadodi
_ / / (1 — v)padadt,

_ / /Q wisdadt — /Q (2, 0)ps(x, 0)dz + / / vwipgdadt
:77// w(l —u — w)psdadt,

for any o1, 9, o3 € C(Qy) with p(z, T) = 0.

As a preparation, we introduce the following inequalities [8, 9, 14], which is useful
in the calculation of energy estimation.

LEMMA 2.2. Assume that Q is bounded with smooth boundary, and let w € C?(Q)

satisfies g—“’ = 0. Then we have
vioa

I|Vwl|?

<2 2 0 2.1
ey kIVw|®  on 0Q, (2.1)

where k > 0 is an upper bound for the curvatures of ). In particular, we have the
following inequalities

4
|V | 2+ VN)? / w|D?Inw|*dz, (2.2)
/ |Vw|"2dr < (\/N+r)2||w||2,;m/ |Vw|" 72| D?wl*dz, for anyr =2, (2.3)
Q Q

and

/ iaanw 2dsS < 5/w|D21nw\2dx+C5, (2.4)
o

where § > 0 is an arbitrary small constant, and Cy is a constant depending on 6.

Using Neumann heat semigroup theory, we prove the following lemma.
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LEMMA 2.3. Let Q C RN be a bounded domain with smooth boundary. Assume that
ue LI x (0, 7)), vo € W249(Q) with ¢ > 2. Then the following problem admits

v—Av+v=u, (x,t)€Qx(0,T)

ov
n 0

o

v(z,0) =vo(z), x€Q

admits a unique strong solution v e W2 (Q x (0,T)), such that for any r <

Ngq
(N+2—q)4~’
1
t q
sup [|Vo(-,t)||r < Cy + Cy ( sup / ||u(s)||quds> , (2.5)
te(0,T") te(r,T) Jt—7
and

t vy t ~+1
sup / ||Vv||‘1+W7 ds < Cy < sup / ||u(s)||%qu> + Oy, (2.6)
t—T1

te(r,T) Lq+?\? te(r,T) Jt—7
where T = min {1, %}, Ci(i=1, 2, 3, 4) are constants depending only on vy, €.

Proof. By Duhamel’s principle, v can be expressed as follows
¢
v =e"tePy +/ e~ =) et=9)8y (5)ds,
0
where {e!®};> is the Neumann heat semigroup in Q. For any r € (1, +00), we have

t

Vo0l < e Vanllr + [0 (14 (= 9)7FGH7E) fu(o) s
0

q—1

*%>+%)%1) ds) '

Q=

t
<e Y Vool + (/ e~ (9 (1 +(t— s)*(%(
0
¢ 7
< ( / e<”>u<s>||%qu>
. a=1
v q
<Nl + ([ e (145 FG D) a0)
0

t 7
x ( / e<“>u<s>||%qu)
0

A direct calculation gives

N 1 1 1 1 N+2-
((—)+>q<1<:>>+q.
2q r
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N
Then when r < m,

t q
4O ( / e<”>||u<s>|%qu)
0

We also note that for any ¢ > 0, there exists an integer N such that t = N7+ o
with 0 < o < 7. Therefore, we have

Nt1+o

[ o as = e (Z [ emenass [ e3u<s>||%qu)
kT t

(Zekf [ s et ||u<s>|%qu>
Nt

627' a
< S sw / u(s) |2, ds,

—1r<a<tSo_r

IVo(, )l < e[ Vol

which implies that (2.5). By L theory of linear parabolic equations, we obtain

t t
sup / ||D2v(-,t)||%q <C3+Cy sup / lu(s)]|9,ds, for any ¢ > 1.
t—1 t—7

T<t<Tmax T<t<Tmax
(2.7)
From Gagliardo-Nirenberg interpolation inequality, we infer that
IVol 7 Xy < ColIVOll D3], + Coll Vol 7F Y. (2.8)
Using (2.5), (2.7) and (2.8), we derive (2.6). O

3. Uniform energy estimations and global solvability of
chemotaxis-haptotaxis system

In order to prove the existence of the weak solution of problem (1.6), some prior
estimates are necessary. Since problem (1.6) is degenerate at u = 0, in order to
facilitate us to obtain various prior estimates later, we first use the standard method
to build a framework, that is, consider its regularization problem

ug =mV - ((u+e)" 'Vu) — xV - (uVv) — £V - (uVw) + pu(l —u — w), in Q,
ve=Av+u—wv, inQ,

w =eAw —ww +nw(l —u—w), in Q,

ou L, Ov ow
onl,, ' 0n|y,  Onl,g
u(x,0) = ueo(x), v(x,0) =ve(x), w(x,0)=w(x), =z,

:0’

(3.1)

for any € € (0, 1), and (uco, veo, weo) is smooth approximation of (ug, vo, wy) with
(ue0, V=0, weo) sufficiently smooth. By standard fixed point method, it is easy to
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obtain the local existence of classical solutions to the above problem, see for example
[19]. That is

LEMMA 3.1. Assume B, m > 1, € € (0, 1). Then there exists Tyyax € (0, +00] such

that_the problem (3.1) admits a classical solution (uc, v, we) € C*H(Qr,,,) N
CO(Q % [0, Thax)) with

ue >0, ve >0, w:>0 forall (z,t)€Qx(0,Tmax)-

Moreover, we have the following dichotomy: Either Tya.x = 00, or

limsup (s ()| = + [ocllwe + o ) = oo.
t

max

Throughout this paper, we denote

. Tmax
T:=min{ 1, 5 < 1.

In what follows, we focus on the uniform energy estimates of (u., ve, w,).
For simplicity, we omit the subscript ¢ of the approximate solutions
(ue, ve, we) in the subsequent energy estimate calculations.

Firstly, it is easy to obtain the following estimates.

LEMMA 3.2. Let (u, v, w) be the classical solution of (3.1) in [0, Tiax). Then

t
sup  lu(-,t)||lr + o sup / /(u2 + uw)dzds < Oy, (3.2)
t€(0,Tmax) t€(7,Tmax) Jt—T

t
sup  (wllz= + v, t)l[7) +  sup / [0(, )| F2ds < Ca (3.3)
t—T1

t€(0,Tmax) te(7, Tmax)
where the constants C1, Co only depend on i, ug, vg, wy and §2.
Proof. By comparison lemma, it is easy to see that
w < max{l, ||weo|lLe} < max{l,2|lwo| L }-

By direct integration over ) for the first equation of (3.1), (3.2) is easy to be
obtained. By L? theory of linear parabolic equations, (3.3) is arrived. O

LEMMA 3.3. Let (u, v, w) be the classical solution of (3.1) in [0, Tymax). Then for
any T < Tiax,

2
sup /<ulnu+ [Vl )dx
0<t<T

/ /(u—l—a |Vu|? + |V * (u+v)+u2|lnu> dzdt

—|—5/ /w|D2 Inw|?*dzdt < Cr, (3.4)
0o Ja

where Cp is independent of e, it depends only on x, &, m, p, 1, ug, vo, wo, 2, and T.
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In particular, we also have

\V4 2
sup / (ulnu + |w|> dz
0<t<Tmax

2
sup / /(u—i—s |Vul? + \V | (u+v)+u2|lnu|> dzdt
t—7

(7, Tmax)
sup / / w|D? Inw|*dzdt < < - (3.5)
(7, Tmax) Jt—7

where C' is independent of € and Tmax, it depends only on x, &, m, i, n, ug, Vg,
wo, Q.

It should be noted that the estimation (3.4) is time-dependent, but (3.5) is not
time-dependent. Although (3.5) depends on ¢, it is useful for us to obtain uniform
estimations independent of time and e.

Proof. By direct calculation,

2 2
it fy et = [,V g [ e
- wt(i” 'Z"s'z)dw—; [
/Vw|2 widx A—wtdx
[Vw|?

= 5 2 (eAw —vw + nw(l —u — w))dz
Q

w

2 2

_ / (|Vu; w72|Aw‘ )dx/VwVvdxn/Vqudx
2 Q w w [9) Q
1 2

+,/ Vel (n —3nw — nu — v)dz.
2 Q w

Similar to the proof of lemma 2.6 in [8], we have

2 Awl?
E/ (|Vb;| Aw—2| w| )dx:—g/w|D2hlw2d$+€/ ——|Vw|2d5'
2 Jo \ w w Q 2 Joq w

Putting the above two equalities together, we get the following conclusion

A
—/ —w(EAw—vw—&-nw(l—u—w))dx
Q

2 2
ST Q|V5| dx+€/w|D21nw| dm+2/ﬂ|vw (3nw 4+ nu + v)dx

2
*f/VwVvdxfn/Vquderﬂ/ Vel d:c+5/ 19 = |Vwlds.
Q Q 2Ja w 2 Joq w

(3.6)
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Multiplying both sides of the first equation of (3.1) by 1 + Inu, and integrating the
resultant equation over € yields

—/ulnuda:—l—m/ ute)” |Vu| dz
zx/VvVudx—!—f/Vquda:—&—u/u(l—i—lnu)(l—u—w)dx. (3.7)
Q Q Q

The combination of (3.6) and (3.7) leads to

d 2 m—1
d <nu1HU+§|VW| )dx+nm/ T Gupas + e [ wlD? e
2 w Q u Q

dt
§ [Vel” wf* (377w—|—r]u+v)dx—|—m]/u(l—!—lnu)(u—l—w)dx
2 Q W Q
1 2
_ 9 v \2ds+5"/ Vel g, +Xn/VvVudx
2 aﬂwa

—f/VwVvdz+u77/u(1+lnu)dx
Q

2
_ lg|V \QdS’—l—@/ ﬂdw—xn/uAvd
2 Joaw 2 Jo w 9)

+§/wAvdx+,u77/u(1+lnu)
Q

1 2
<€§ 8|V 1?dS + 77/|VW\ dx—i—/( n°u? + &w?
2 dean 0 w 0

+|Av|?)dz + liln / w2 Inudz + C. (3.8)
Q
Recalling (2.4), we have
= / an w[?dS < & / w|D? Inwl|?dz + Ce. (3.9)
oQ w

We substitute (3.9) into (3.8) to obtain

\V4 2 m—1
— nulnu+ £ [Vel® da:—l—nm/ w|VU|2dx+§j/ w|D? Inw|*dx
dt o) w Q u 2 O

2
-|-§/ﬂ(?ﬂyw—i—nu—i—v)dJH—M u?(1 4 [Inu|)dz
2 /o w 2 Jo
2
< %n/ W;L dx+/(x2n2u2+£2w2+|Av|2)dr+C- (3.10)
Q

Using (3.2) and (3.3), by direct calculation, we complete the proof of (3.4).
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Global solvability of a cancer invasion model 13

On the other hand, we note that

2
§(n+1)/ Vel dx:—ig(n—kl)/wAlnwdxé%/w|D2lnw|2dx+%a
Q Q

2
(3.11)
which together with (3.10) yields
d 2
nulnu 4+ 2 ¢ [Vwl? dx+nm/ 7|Vu| dz + gs/(,L;|D21nw|2da7
Yw 2
5/| | 377w—|—77u+v—|—1)dx—|—L;n/u2(1+|lnu|)dx
Q
1) 2 A
£ + / Vel dx+/(X2n2u2+£2w2+\Av|2)dx+C
2 Q Q
55 2 2 2.2 2 2 2 2 Q
1 w|D*Inw|*dz + (X n-u” 4+ &w” + |Av|*)dz + = (3.12)
Q

where C' is independent of . Denote

2
ft) :/Q (nulnu—i— §|V:}u> dz,

clearly,

nm/ ut e |V |2d:17+S /w|D21nw| dx

w
+§/ ‘7(3nw+nu+v+1)dm
2 O w

B2 finf)de > %f(t) _c
Q

Then (3.12) implies that

f/(t)—kmini#’é}f(t) §/(X2n2u2+§2w2+|AU|2)d$+g+C.
Q 3

Then the uniform boundedness of f is derived from (3.2) and (3.3). Furthermore,
(3.5) is obtained by integrating (3.12) from ¢ — 7 to t. O

Next, our purpose is to continuously improve the regularity of the solution. In this
process, the key is to deal with the haptotaxis term. We try to offset the influence of
the haptotaxis term with the diffusion term. First, we can get the following lemma.
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14 C. Jin

LEMMA 3.4. Let (u, v, w) be the classical solution of (3.1) in [0, Tmax), and assume

2N
m> 55 Then

t
sup /umdx—l— sup / / (u+e)
0<t<Tmax JQ T<t<Tmax Jt—1 JO
2

‘v <m7f (u+e) - §w>

+ um“) dzds < C, (3.13)

where C' is independent of € and Ty, and it depends only on x, &, m, u, 0, ug,
Vo, Wo, Q.
In addition, we also have

T
/ / (u +€)*™ 3| Vul|?dzdt < Cr, (3.14)
0o Ja

and for any 1 < p < 2,

T
/0 /Q IV(u+¢e)"|Pdedt < Crp, (3.15)

where Cr, Crp are independent of €, and Cr depends on T, Cr, depends on T'
and p.

Proof. Noticing that

D2 2 4 D2
D nwf? = |Dw| n [Vw[* 2Vw wVw
w w3 w?
|D%w|?  |Vw[*  1|D%w|? |Vwl4
> + - = -2 ,
w w3 2w w3
that is
|D>w? [Vwl*

< 2w|D?*Inw|* + 2—.
w

Recalling (2.2), we conclude

D2 2 \V4 4
7‘ vl deZ/w\D21nw|2dx+2/ | a;\ dz
Q W Q Q W
< (2+2(2+\/ﬁ)2)/w\p2 In w|?dz. (3.16)
Q

Noticing that
mV - ((u+¢e)" " 'Vu) — £V - (uVw)

=V- (mnz 1(u+5)V(u+s)m_1 - f(u+s)Vw> + &eAw

m 1 (u+e)™ ! — fw)) + feAw, (3.17)
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Global solvability of a cancer invasion model 15
multiplying both sides of the first equation of (3.1) by —<(u+¢)" ' — {w, and
using (3.17), (3.5) and lemma 3.2, we arrive at

2

dx

d 1 m
T Q(m_l(u+s) —fuw)dx—&-/ﬂ(u+5)
:—5§/va< m (u+€)m_1—§w) dz
Q m—1
+X/quV< m um_l—fw) dx
Q m—1
+/uu(1—u—w)( m um1—§w>dm
Q m—1
+§/ u(—eAw 4+ vw — nw(l —u — w))dz
Q
gl [l p 2 [ o (St - g
h 2 0 w 2 Jq m—1
X2 1 m 2
A 2 - m—1
+ 5 /Qu|Vv| dx+2/ﬂu V(m_l(u+s) fw) dz
3mu

- um+1dx+52/ Awl?dz + C
s, Mt

1 2
<5 [ (ute)
),

dx
—&/umﬂdx—FC/ \VU|2(TZL+1)dx+N52/ |D2w|?dz + C,
2(m —1) Jo Q Q

v (mni 1(u +e)ym 1 — @;)

2
dx

\Y (mnz (u+e)" ! - fw)

namely,

d 1 N

+%/ﬂ(u+a)

+&/ um“dzgo/ \vv|2(’7f”dx+N52/ |D2w|?dz + C. (3.18)
2(m—1) Jo Q Q

2
dx

v (m”z 1(u+5)m*1 = §w>

Taking advantage of Gagliardo-Nirenberg interpolation inequality and (3.3), we
have

ZLVJrl) 2 jimal (N+23\§m+1)
D% 0[[ s + Cal[ Vo[ 2

(N+2)(m+41) 2(m
||VU||L(N+X3\§m+1) < ClHVUHm

< G3|| D27 + Ca (3.19)
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16 C. Jin

> 2(":’:1) when m > N+2, we infer from (3.18), (3.19),

m
v (m "
&/ u™ e <o | | D™ de + N€2/ |D%w|?dz + C, (3.20)
2(m —1) Q Q

s (N+2)(m+1)
Noticing that N
2

(ut+e)" ™ - £w>

d 1 1
% Q( 1(u+5) —fuw>dx+2/9(u+e)

+

for any small constant o > 0, with C, depending on o. Noticing that

1
/ u™dr > / < (u+e)™ — fuw) dz — C,
Q a\m—1

and using L? theory of linear parabolic equations, we conclude that

sup /(u—l—s)mdx—i—f sup / / u+e)
Q T<t<Tmax Jt—7

O<t<TI“aX

v(mm1(“+€) —§w>

SR sup / / u™dzds
2( ‘r<t<dex t—7

< Cs0  sup / /|D2 | dads
t—1

T<t<Tmax

+ Cee®  sup / /|D2 ?dzds + C,
t—7 JQ

T<t<Tmax

< Cro sup / /|u|m+1dwds
T<t<Tmax Jt—7 JQ

t
+Cge?  su D?w|?dzds + C’U.
p
Q

T<t<Tmax Jt—

dxds

Here, all these constants Cj, 6’7 C are independent of . By the arbitrariness of o
using (3.5), (3.16), and (3.13) is proved by taking o appropriately small in the above

inequality.
In addition, using (3.3), (3.4) and (3.13), and noticing that

v (mm -(u+ a)m—l)

2 2

<2u+e)

m m—1
V(ml(u—l—a) —§w>

+282(u+¢) |Vw|?,

(ute)

we arrive at (3.14).

https://doi.org/10.1017/prm.2024.70 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2024.70

Global solvability of a cancer invasion model 17
For any 1 < p < 2, we also notice that
IVt €)™ [ = (s + €)% (u+ €)™ 2 Va7,
< I+ &) FVulfu+ el ?
< lm(u+ €)™ Vullfs +C,.
Then (3.15) is derived from (3.14) and the above inequality. O

To improve the regularity of u, we need the following estimate on w. Although
this estimation does not depend on T},.y, it depends on . In order to obtain some
subsequent uniform estimates that does not depend on €, we need to the exact order
of its dependence on €.

LEMMA 3.5. Let (u, v, w) be the classical solution of (3.1) in [0, Tyax). Then for
any r > 2,

t
sup /\Vw|rdm+ sup / //€|Vw|r+2dxds
0<t<Tmax T<t<Tmax Jt—1 JQ

—  sup / / (u" + 0" 4 1)dzds, (3.21)
t—T1

€2 7<t<Tmax

where C is independent of € and Tyax, it depends only on x, &, m, u, 1, ug, Vo,
wp, T, €.

Proof. Applying V to the third equation of (3.1), multiplying both sides of the
resultant equation by |Vw|"~2Vw for any r > 2, and using lemma 2.2, we obtain

r r—2|y72
rdt/ |Vw| dx—f—e/ |Vw|" 2| V2w[*dz
+(7“—2)6/ |Vw|r_2(V|Vw|)2dx+/ [Vw|"dz
Q Q
:/(vwfnw(lfu—w))Vo(|Vw|r72Vw)dx
Q

+5/ 7(|le ) |Vp- 2dS+/ Vel da

<5 [ variepas+ E22E [ w29 ivaa
Ch =2, 2, 2 r r

+— | |Vw|" % (v +v7)dae + | |Vw|"dz + ke [Vw|"dS.  (3.22)
€ Ja Q o0

Recalling (2.3), and noticing that w is bounded, then there exists a constant p such
that

E/ |Vw|" 2| V2w|?dz > pa/ |Vw|"2d. (3.23)
4 Ja Q
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18 C. Jin

By the boundary trace embedding inequalities, we conclude that for any small
6> 0,

-2
/@5/ volds < )5/ \vwr‘*?(ww‘)?dﬁczf Vo|mdz.  (3.24)
o0 4 Q Q
The combination of (3.22)—(3.24) leads to

rdt/ |Vw|"dz + = /|WV 2|V2w|2dx+ /\v |"~2(V|Vw|)?d

+/ \Vw|rd:c+p5/ |Vw|"T2da
Q Q
< %/ |Vw|’”’2(u2+112)da:+(02+1)/ V| da
Q Q

<o [ maraes G [ o
Q €2 Ja

C Cs
< BE/ |Vw|"T2dx + —f/(ur +o")dz + —. (3.25)
2 Jo €2 Jo €2

It implies that

sup / |[Vw|"dz <

0<t<Tmax

sup / / (u" 40" + 1)dzds. (3.26)
t—1

T<t<Tmax

NH

Using (3.26), and integrating (3.25) directly, we arrive at

sup / /8|Vw|’+2dxds — / / (u" + 0" 4+ 1)dzds. (3.27)
T<t<Tmax Jt—7 €2 T<t<Tmax t—r

Here these constants C; are independent of e. Then (3.21) is derived from (3.26)
and (3.27). O

Based on the above lemmas, we can improve the regularity of the solution, and
obtain the following result.

LEMMA 3. 6 Let (u, v, w) be the classical solution of (3.1) in [0, Tiax). Assume

that m > N+2 Then for any positive integer k, we have

t
sup /(u + )MV gy 1 sup / / ukHDm=1+245q
t—7

0<t<Tmax T<t<Tmax

sup / /u—i—a (
r<t<Tmx t—7JQ

v (m”z —(u+e)" - £w>

where C' is independent of € and Tiax, it depends only on k, x, &, m, p, n, ug, Vo,
wo, Q.

2k
Lk - 6)

2

x dzds < C, (3.28)
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Global solvability of a cancer invasion model 19

Proof. For any given positive integer k, multiplying both sides of the first equation
of (3.1) by (727(u+¢e)™ ! —&w)? !, recalling (3.17), and noticing that w is
bounded, then we arrive at

m 2k+1
/Q (m— 1(u—|—6)m71 —§w) updx

+(2k + 1)/(u+5) (mﬂi () _Sw)Qk

Q

v (mm (u+e) - fw)
= —ef(2k+ 1)/Q (m”j (ut e - gw) "

XV ( T (yte)ymt - §w> Vewdz
m—1

+x(2k + 1)/Q <m”z —(u+e)" ! - §w>

x uVoV (

2

X dx

2k

m l(u + E)m—l _ §w> dz

m - 2k41
+/Quu(1—u7w) (m_l(que) 1§w) dz

k 2k

2
dx

X

m m—1
V(ml(u—l—s) —§w>

m 2k
+5§2(2k+1)/ (m 1(u+5)m*1 §w> |Vw|?da
o \m —

+x2(2k + 1)/

Q

3 m 2k+1
N M( ) /u(2k+1)(mfl)+2dx+01'
4 Q

m—1

2%
(mni 1(u+5)m_1 —§w) u|Vol2dw

That is

m 2k+1 3 m 2k+1
/ ( (u+e)mL —§w) uda + H ( ) /u(2k+1)(m71)+2dx
Q \m — 1 4 m—1 Q

1 2%k
+2 ;_1/Q(u+s) (mrfl(ws)m—l—gw)
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20 C. Jin

2
x |V (mn_l 1(u+5)m*1 —§w>
m 2%k
< 552(2]{7 + 1)/ (m 1 (u+ g)m_l _ gw) |Vw|2dx
0 _

2k
+X2(2k+1)/< m (u+5)m1§w> u|Vo|*dz + Cy
o \m— 1

=T+IT+C,. (3.29)

We first calculate the first term on the left of the above inequality.

2k
m m—1 +
/ <m 1(u—|—s) —fw) ugdx
Q -

2k+1

N

k m— 17
:( m )2k+1/ T (—mle)iCh <(u+6)(m71)(2k+17i)+1> wide
Q t

2k+1—1
m—1 7
w urdx

m
)" Chpya ( (u+5)

m—1 2o (m - Dk +1 1)+ 1
2k+1 2k+1 m—
— m T m 5) C2k+1 d (m—1)(2k+1—0)+1 4

ﬂ./ (u+€)(m—l)(2k+1—i)+lwi—1wtdx)
Q

21
) m O\ 2E+1 2k (—m=Le)iCh, d (1 4 &) MDD+ g,
—1 2o m-D)(k+ 1 i)+ 1dt Jg

2k+1 2k+1 . m—1 &\t
m i(—"58) Corga (m—1)(2k+1—i)+1 i—1
7<m—1) ; (m—l)(2k+1—i)+1/§z(u+€) W wde

2%k+1 2k+1 m
2( m ) > (= (TE) ‘Chuyr  d /(u+€)(m—1)(2k+1—i)+lwidx

m—1 = (m—1)2k+1—1d)+1dt

70/ (u2k(m71)+2+|wt|2k(m71)+2+1> A
o

2k+1 m
y ( - )2k+1 + (—m=Le)ich, d (1 4 &) DR+ g
-1 P (m—-1)2k+1—-14)+1dt

241
u ( m ) / u(2k+1)(m—1)+2dm_02/ (|wt‘2k(m—1)+2 +1) d.
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Global solvability of a cancer invasion model 21

In what follows, we calculate I, I respectively. Using Young’s inequality and
recalling (3.5), it is not difficult to see that

I<03/u2k(m—l)+2+5k(m—l)+l/ |vw‘2k(m—1)+2dx_~_c45/ |VW|2dl’
Q Q Q

2k+1
< 14 m /u(2k+1)(m71)+2dx+8k(m71)+1/ ‘vw|2k(m71)+2dx+05_
8 m—1 Q Q
(3.31)

Noticing that w is bounded, and using (3.3) gives

2k+1
m<t <m> / WM 42 g, 06/ (Vo “EREEE 4 4 oy
Q Q

8\m—1
(3.32)
. 4k(m—1)4+2(m+1) .
Next, we estimate the second term Cg/ Vol ™ dz in (3.32). From
Q
Gagliardo-Nirenberg inequality, we infer that
oY 11—« . 1 1 1 1—«
V0l < CIDPIE Tl + CIVala, with - = (q1 - N) ar it
(3.33)
By direct calculation, it is easy to obtain
pa<q1<:)£<1+@.
Q1 N

When N = 2, take

p:4k(m—1);;2(m+1)

;o @ =2k(m—-1)+m+1, g =2

in (3.33). Then pa < g1. Using (3.3), we infer from (3.33) that for any small constant
p >0,

4k(m—1)42(m+1) 9 pa
Co / Vo HEEEE 4 < O D20 P 1y emss + Co
Q

< p/ |D?y|?Rm=D+mHlqe 4 €, when N = 2,
Q

(3.34)
since pa < q.
When N > 3. By (2.5) and (3.13), we see that
N(m+1)
su Volli-<C, Vr< —m——. 3.35
o Vollz N+i-m), (3.35)
We take
4k(m —1)+2 1
N(m+ 3%)
=——=8"  (N>3
=Ny Tom), )
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22 C. Jin
in (3.33). Then ||Vv||pe= is uniformly bounded by (3.35), and

5
m-&-ﬁ

Nriom), W23

2
pa<q1<:>£<1+q—2<:>—<1+
q1 N m

5
By direct verification, the above inequality 7% <1+ (Nﬁ_if%” holds when m >
2N

m. Then

C’e/ |V’U|4k(m—1332(m+1)dx S,O/ |DQ,U|2lc(m71)+m+1dgc_|_C~«p7 when N > 3
Q Q
(3.36)

for any small constant p > 0.
Substituting (3.34) and (3.36) into (3.32) yields

2k+1
1< ,u( m ) /u(2k+1)(m—1)+2dx+p/ \D2v|2k(m_1)+m+1dx+ép
g \m—1 Q Q
(3.37)

for any small constant p > 0 with ép depending on p.
By substituting the inequalities (3.30), (3.31) and (3.37) into (3.29) yields

2k+1 2k+1 m—1 £\ i
m Z (—2=8)' Copia i/(u+5)(m—1)(2k+1—i)+1widx
m—1 (m—1)2k+1—4)+1dt Jg

1=

2k
+ 2k2+ ! /Q(u—ke) (mri 1(u+5)m_1 —gw)

2
dx

v (m"z () - gw>

2k+1
LEfm /u(2k+1)(m71)+2d$
8 m—1 O

<C2/ |Wt|2k(m*1)+2dz+€’“(m’1)+1/ Vo[ 2K0m= D424
@ Q

+p /Q | D2y|PROn=D+mH1 gy L O (3.38)

Noticing that

T (=LY
m m— k —1i i
2 (m—1)(2k+1—+i)+1/9(“+5)( DT
=0

< ﬁ/ WCEDm-14+24, | o
8 Ja
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and for any small constant p > 0, there exists a constant C', such that
/ |U|2k(m71)+2d:17 < p/ ‘D2U|2k(m71)+2d$ + Cp/ |v\2dx
Q Q Q

gﬁ/ ‘D2U|2k(m_l)+m+ld$+ép,
Q

combining (3.21), and using L? theory of linear parabolic equations, from (3.38) we

23

derive

k41 2k+1 m—1¢£\i i

m (—="=8)'Cap i (m—1)(2k+1—4)+1, i
m m (3 Zd

( —1) Z(m— D2k +1-1) <, /Q(U%) o

= + 1 o<t<Thax

2k + 1 / / (
u—+e
T<t<Tm1x
m
\v4 _
(m — (u+¢e)m~ fw)
2k+1 t
+ 37/1 m sup / /u(2k+1)(m_1)+2d$d8
g8 \m—1 T<t<Tmax J t—
< Cip  sup / / |y |2k(m 1)+2d$d8—|—0115k(m 1)+1
T<t<Tmax
sup / / |Vew|#F(m=D+2q5ds
7-<t<T‘max t—1
+Ci2p  sup / / | D?y|2Rm=DFmHtlqads + M,
T<t<Tmax Jt—7 JQ
t
<Cis  sup / / (‘u|2k(m71)+2 4 |v|2k(m71)+2+1> dads
T<t<Tmax Jt—1 JQ
t
+Ciqy  sup / / (|u|2k(m*1) + |v)?*0m=D) 4 1) dxds
T<t<Tmax Jt—7
+ Crap  sup / / | D2y 2RO =D Fmtl qpds 4 M,
T<t<Tmax
2k+1
< B (m) sup / / (2k+1)(m— 1)+2d.’L‘dS
8 \m—1 T<t<Tmax Jt—7
+Cisp  sup / / |D?y|GHHDm=1+245.45 4+ M,
T<t<Tmax Jt—7
2k+1
< H < m > sup / / (2k+1)(m—1) +2d1’d8
8 \m—1 <t < Tinax J t—7

+ Cigp sup / /|u|(2k+1)(m*1)+2dxds+ﬂp.
T << max Jt—1 JQ

" () ew)%

X

dxds
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Take p appropriately small in the above inequality, such that Cigp < ( n )2k+1
Then we finally arrive that

m U (MmO, (m—1)(@k1—i)+1 i
_ su u—+ )\ O+ yide
(m—1> 2 (m —1)(2k+1—2)+10<t<£mx/§2( )

2k + 1 o
+ sup (u+e) (u4e)" " —&w
T<t<Tmax -1

v(m"zl(uﬂ) —§w>

2k+1 t
+ & (m ) sup / / RN M=D+2q4245 < O,
8 \m-—1 T<t<Tmax Jt—7 JQ

which implies (3.28). O

X dxds

By (3.28), there exists k sufficiently large such that (m —1)(2k+1)+1 > N,
then by Neumann heat semigroup theory, it is easy to obtain the L>° estimation of
Vu. By LP theory of linear parabolic equations, we also have Wg’l estimation of v
and LP? estimation of w;.

LEMMA 3. 7 Let (u, v, w) be the classical solution of (3.1) in [0, Tmax). Assume

that m > N+2 Then

sup [0l D)lwie < C,
0<t<Timax

and for any p > 1,

t
sup [ (lorlfs -+ el + 1D%],) dads < C.

T<t<Tmax

where C, C are independent of € and Tiax, it depends only on k, x, &, m, W, n,
Up, Vo, Wo, Q.

In addition, by (3.28), and combining with Neumann heat semigroup theory,
it is also easy to obtain the L estimation of Vw (depending on ). Further-
more, by (3.28) and Lemma 3.7, using standard Morser iterative technique, the L™
estimation of u is also easy to obtain.

LEMMA 3. 8 Let (u, v, w) be the classical solution of (3.1) in [0, Tmax). Assume

that m > N+2 Then

sup  ([lu(,t)l|l Lo + [lw (s t)llwre) < Ce,
0<t<Tmax

where C. depends on €, and is independent of Tiax.

Using lemmas 3.1, 3.7, and 3.8, the solution of the regularized problem (3.1)
exists globally for any € > 0, and these estimations in lemma 3.2-Lemma 3.7 are
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independent of €. To obtain the global solution to the original problem (1.6), we
also need to make some a priori estimates for ;.

LEMMA 3. 9 Let (u, v, w) be the classical solution of (3.1) in [0, Tmax). Assume
that m > N+2 Then for any 1 <r <2, and any T > 0,

el 22 0,m);w 1.7 () < C1y (3.39)

where Cr . depends on T, v, and it is independent of .

Proof. For any ¢ € C*°(Qr), we see that

T
/ / uppdedt = / / (u+e) ( (u+e)m™ §w> Vdz
0o Ja -1
T
+ X/ / uVoVedzdt + u/ / u(l — u — w)pdzdt.
0 Jo o Jo

Then for any ¢ > 2, using (3.13), (3.28) and lemma 3.7, we derive that

</OT (m”fl(uﬂ)ml—&w)

1
X lu+ell? o [[VellLadt
La—2

u+e€

uppdadt
Q

L2

T T
+x / lullz2 [Voll = [Vl odt + / (1 — 2w — )l 2am 1 oll2dt

2 % T
<c (/ ( dt) (/ wn%th>
L2 0
T 3 T 3
+x</0 ||u|iz||w||%wdt> (/ wn%m&)
" b or :
+u</0 ||u<1—u—w>||%2dt> (/ IIsDII%zdt>
T 3
<c</ ||¢%V1‘th> ,
0

namely for any q > 2,

Nl=

u—+ €

"ty fw)

Il gy ) < O

which implies (3.39). O

Combining lemmas 3.1 -3.8, and noticing (3.16), we have the following proposi-
tion.
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PROPOSITION 3.10. Assume that m > N+2 For any e € (0, 1), the problem (3.1) in

[0, Tinax) admits a unique positive global classical solution (uc, ve, we) € c?LQ)n
C°(Q2 x [0, 00)) such that

sup  (Jloe(-, ) [wroe + [|we (-, )| + |lue(-st)]|zr) < Cry,  for any r > 1, (3.40)

0<t<oo

and for any T > 0,

2
sup / <|sz| )d +/ /(U5+62m 3|V, |2
0<t<T

uel Ve [* 5|D2w5|2) dzdt < Cr, (3.41)

We
T
/ / (\D2v5|r + [Orve|" + |8tw5|7’) dadt < Cppy  for any r > 1, (3.42)
o Ja

IV (ue + €)™ lr(@r) + 10sucl 2 (0,7);w 10 (0)) < Crp,  for any 1 <p < 2,
(3.43)

where C., Cr, Cryp, and Cr, are independent of €, they depend on x, &, m, u, 1,
U, Vo, wo, 2, C, depends on r, Cr depends on T, Cr, depends on T, p, and Cr,
depends on T, r.

Proof of theorem 1.1. Since (ue, ve, w,) are classical solutions of (3.1), they obvi-
ously satisfy the equations (3.1) in the sense of distribution. By proposition 3.10,
using Aubin-Lions lemma, and Sobolev compact embedding theorem, there exists
a subsequence of {(uc, v, w:)}, which we still remember as itself for convenience,
such that as e — 0,

Ue,we — u,w in L"(Qr) for any r > 1,

V(ue +&)™ = Vu™, in LP(Qr) for any 1 < p < 2,
eAw — 0, in L*(Qr),

ve — v, in W2H(Qr) for any r > 1,

Vv — Vo, in L"(Qr) for any r > 1,

v: — v, uniformly.

Letting € — 0 and utilizing the above convergence results, we can ultimately verify
that (u, v, w) satisfies definition 2.1, that is, (u, v, w) € X} X Xy x X3 is a weak
solution. Theorem 1.1 is proved. O
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4. Global solution to the haptotaxis-only system

In this section, we consider the haptotaxis-only system. Similar to § 2, to prove the
existence of weak solutions, we consider the following regularized problem

u=mV - (u+e)" " Wu—£V- (uVw) + pu(l —u —w), in Q,
vy =Av+u—v, inQ@Q,

wp = eAw —vw + nw(l —u —w), in Q,

ou ov ow

R f— , A = y A p— 07
on |, on |y on

[219)

w(z,0) = uso(z), v(x,0)=ve(x), w(x,0)=uwo(z), =zl

Similar to § 3, in the subsequent energy estimate calculations, we omit
the subscript ¢ of the approximate solutions (u., v., w.) in the subsequent
energy estimate calculations.

It is clear that lemmas 3.1, 3.2, and 3.3 also hold for x = 0. Similar to lemma
3.4, we also have

LEMMA 4.1. Let (u, v, w) be the classical solution of (4.1) in [0, Tiax). Then

¢
sup / udz+ sup / / (u+e)
0<t<Tmax JQ T<t<Tmax Jt—7 JQ
2

v (m"_l (u+e)" ! - §w)

X

+ um+1) dzds < C, (4.2)

where C' is independent of € and Tmax, it depends only on x, &, m, u, n, ug, Vo,
wp, 2. In addition, we also have

T
/ /(u + )23\ Vu|2dzdt < Cr, (4.3)
0 Q

and for any 1 < p < 2,

T
/0 /Q IV (u+ &)™ Pdadt < Cry, (4.4)

where Cr, Crp are independent of €, and Cr depends on T, Cr, depends on T
and p.

Proof. Similar to the proof of (3.18), we see that

Ci/ﬂ(ml_l(u—ks)m—guw) d:v—&—/ﬂ(u—ke)

2
dx

v (m"i () - gw>
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= —Ef/ VwV ( (u +e)™ T = §w> dx

—|—/Q,uu(1 —u—w) <mnj 1um71 —§w> dz

+§/ u(—eAw 4+ vw — nw(l —u — w))dz
€§2||w||L°°/ [Vw|? / m m—1
dz s+ 3 QV mil(u—i—e) Ew
—Miu/umﬂdx—l—g/ |Aw|*dz + C
) Ja Q

4(m—1
m m—1 _ _ 3mu m—+1
V(m_l(u+€) £w> dz 74(771_1)/911 dz

+ N€2/ |D%w|?dz 4 C,
Q

2
dx

N

2

that is

d 1 1 ’
& o (m — l(u—i—s)m - fuw) dz + 5/0(114—5) \Y (mm l(u—i—s)m_l - fw) dz
3my / m+1 2 / 2 12 ~
+— 1 u dx < Ne Dw|*dx + C. 4.5
im-1) Jo o )
Then completely similar to the proof of lemma 3.4, we complete the proof. |

Completely similar to lemma 3.5, we also have that

LEMMA 4.2. Let (u, v, w) be the classical solution of (4.1) in [0, Tymax). Then for
any r > 2,

t
sup /|Vw| dz+ sup / /5\Vw|r+2dxds
0<t<Tinax T<t<Tanax Jt—7

—  sup / / (u" +v" + 1)dzds, (4.6)
t—1

€2 1<t<Tmax

where C is independent of € and Thmax, it depends only on x, &, m, W, m, Ug, Vg,
wWo, T, Q.
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Then similar to lemma 3.6, we also have that

LEMMA 4.3. Let (u, v, w) be the classical solution of (4.1) in [0, Tax). Then for
any positive integer k, we have that

t
sup /(u+5)(m—1)(2k+1)+1d$+ sup / /U(2k+1)(m_1)+2dxds
t—T1

0<t<Tmax T<t<Tmax

sup / /U+E (
7—<t<T‘max t—1

\Y (mT -(u+e)" - gw)

where C' is independent of € and Tyax, it depends only on k, x, &, m, @, 1, ug, Vo,
wo, Q.

2%
— (u+e)™ ! — &u)

2
drds < C, (4.7)

X

Proof. For any given positive integer k, multiplying both sides of the first equation
of (4.1) by (725 (u+¢e)™ ! — &w)? !, and noticing that w is bounded, then we

arrive at

m 2k+1
/Q (m -1 (ute)y™™ €w) e

+(2k+1)/9(u+6) (mml(u+5)m—1 —§w>2k

2
X

v (mm (u+e)m ! - gw)

= —e€(2k + 1)/Q <m”z (u+e)" ! - gw>2k

xv( o (u—i—a)m_l—fw) Vewdz
m—1

2k+1
m m—1
+/Q,uu(1fu7w) <m_1(u+5) fw) dz

k 2k
<HR (oo |9 (ot -e)

2 2k
+ 65 (2;{3 + ]-) /Q <mri 1(u+ E_:)mfl _ £w> \Vw|2dx

3 m O\ 2EH
_op /u(2k+1)(m_1)+2dx+01.
4 m—1 Q

2
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Combining with (3.30), and using (3.31) yields

m 2k+1 2k+1 (7m7—1£)i §k+1 d (m—1)(2k+1—i)+1
- m - " o ld
(m—l) ;(m—l)(2k+1—i)+1dt/sz(u+€) o

2% +1 m _— 2
T /Q(u—l—e)(ml(u-i-a) —gw)
m 5 m 2k+1
\% (ute)™ 1t —tw dx Tyl / uZkHDm=1+2 4,
m—1 8§ \m—1 Q

2k
Q _

+ Cs / |wy | 2R =247 4
Q

X

2k41
< H m /u(2k+1)(m71)+2dx+€k(m71)+1/ |Vw|2k(mfl)+2dx
8 m—1 0 Q

+ Oy / |wy| R =+2q, 4 4. (4.8)
Q

(4.6), (2.5), and using LP theory of linear parabolic equations, we arrive at

m 2k+1 2/@2-‘1-1 (_T ) O§k+1
m—1

(m—1)2k+1—14) +1ocion /<u+€)(m_1)(2k+1—i)+lwid$
=0 - 0<t<Trmax J O

2k +1 2k
+ + sup / /u—i—a ( (u4¢e)m~ —§w>
T<t<Tmax t—T1 1
v(mnz1(“+€) _§°">
2k+1 +
+ n (m) sup / / wZFD(m=1)+2 145
2\m-1 <t < T Jt—1
<Cs  sup / / Jwe [P D+2q2ds 4 Cgehlm=1H1
T<t<Tmax Jt—7
X sup / / |Vw|2Fm=D+24zds + Cr
T<t<Tmax Jt—T
sup / / |u‘2k(m 1)42 |v|2k(m D+2 4 1) dads
T<t<Tm'1x t—1
T / / ('u‘%(m_l) + MQk(m_l) + 1) dxds + Cig
T<t<Tmax Jt—7 JQ

m 2k+1 t
< H () sup / /u(2k+1)(m_1)+2dxds + C11.
8 m — 1 T<t<Tmax Jt—7 JQ

Then (4.7) is proved.

By

X

dads
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Completely similar to lemmas 3.7- 3.9. We have the following results.

PROPOSITION 4.4. For any ¢ € (0, 1), the problem (4.1) admits a unique positive
global classical solution (ue, ve, we) € C*1(Q) N CY(Q x [0, 00)) such that

osllp (JJve (-, O)llwriee + llwe (5 )| e + [Jue(-, )| r) < Cry  for any r > 1, (4.9)
<t<oo

and for any T > 0,

2
sup /(|Vw5| >d +/ /<u5+52m 3| Vue |?
o<t<T Ja

e[ Ve * 5D2w5|2> dadt < Cr, (4.10)

€

T
/ / (|D21)E|T + |0ve|” + |(9twg|r) dxdt < Cp,.,  for anyr > 1, (4.11)
o Ja

IV (ue + )"l (@r) + 10suc|l2(0,m);w-10()) < Orp,  for any 1 <p <2,
(4.12)

where Cy., Cr, Crp, and Cr, are independent of €, they depend on x, £, m, u, 7,
U, Vo, wo, 2, C, depends on r, Cr depends on T, Cr, depends on T, p, and Cr,
depends on T, r.

Letting ¢ — 0, we complete the proof of Theorem 1.2.
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