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Introduction. This note concerns a countably additive
measure on a Boolean ring of subsets of an abstract set, this
measure being real-valued, admitting o as a possible value.
We are interested only in unique extensions, so we sdppose the
measure to be o -finite. The following well known result will
be referred to as the '"extension theorem'': "Every o -finite
measure on a ring extends uniquely to a ¢ -finite measure on
the generated o -ring. " Besides the familiar proof using
outer measure, there is a Borel-type proof using transfinite
induction [4]. We attempt here to reduce the Borel-type proof
to its ultimate simplicity, reducing the problem to the bounded
case.

Proof for a bounded measure. In this section p is a
measure ‘1) on a ring A’ (of subsets of a fixed abstract set X)
which is bounded above by a fixed real constant M :
0<u(R) <M< o, all RekX. The boundedness of u will be
ap—plied in the transfinite induction.

If a sequence Rn ,n=1,2,... (Rn erC) converges set-
theoretically to R e/, then p.(Rn) , n=1,2,... converges

to p(R). This is expressed symbolically:

(1) R -~ R =>pR )~ pR) (R, R« R)

(1) The term ''measure' will imply countable additivity.
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Assuming the extension theorem, (1) is a consequence of the
countable additivity; but we will prove it independently, then
use it as basis for proof of the extension theorem. It will
suffice to prove the particular case:

(2) R_—-0= pR)=—>0 (R_eX)
n n n

2
In fact, the hypothesis of (1) asserts( ) that R AR >0,
n

and applying (2),

w(R ) - p(R) < p(R_-R) <p(R AR) =0

But this implies lim sup (R ) < w(R), and we show
n =

similarly that lim inf u(R ) > p(R)
o 2

[oe]

.

To prove (2), assume its hypothesis, and set S = w R
. i

n
1=-n

3
so that (3) R CS |0 . The S_ need notbelongto A/, but
n= n n

it will be shown in the next paragraph that they may be
approximated by mambers of /A as follows: To arbitrary

€ > 0 there corresponds a sequence T , n=1,2,... such
that "
(i) T. e X , s DT |o
n n— n
- n 1
(i1) S DRe A = u(R)- (T )< e T —
n-— nt= o ph

Assuming this, H(Tn) J/O by (i) , then lim sup p(R ) < €
! =

by (ii), and since ¢ 1is arbitrary (2) will be proved, hence
also (1).

(2) The symmetric difference EAF =(E-F) v (F-E) is the
ring addition, intersection being the ring multiplication.

(3) The symbols r , L indicate monotone increasing,
decreasing convergence.
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nl

To establish the sequence T , set E =(J) R, where n'
n n i
is a fixed index > n of sufficiently high rank that

m \ n' ¢
o uRi) - plv R, | < - for all m > n'
i=n i=n t 2

The T are defined inductively:
n

=E , = f >1
T1 1 Tn Enr\Tn1 or n

Since S DE D Tn (i) is satisfied, and (ii) is satisfied for
n= n=

n=1. Infact, if S, DRek then RAT R ,m=1,2,...

i=1
increases monotonely to R, so that
m m .
p(R) - p(T,) =lim p (RN R.) - p(E ) < limp (W R) - p(E ) < 5
m-> o i=1 m—>o i=i

It remains to show that (ii) is satisfied for n, assuming it for
n-1. Assuming the hypothesis of (ii),

m m
]..I.(R)—p.(En) =lim p(RAv Ri)—p(En) < lim p(w Ri) - p.(En) <
m-—> o i=n m->o i=n

Nblm

lJ'(En)-}"'(’rn) = H(En_?rn) = H(En-Tn-—i) = p'(En ~ Tn-i) B H(Tn—i)

Since E C S C S and therefore S DE uUT e A,
n— n—= n-1 n-1= n n-1

by the induction hypothesis,
: n-1 1
E - < -—
e n uTn-i) p'(Tn-'i)—e .Z i
i=1 2

The combined inequalities give the right member of (ii), thus
completing the induction and so establishing (1).

287

https://doi.org/10.4153/CMB-1962-029-6 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1962-029-6

The definition of set-theoretical convergence carries
over, without essential modification, to Moore-Smith sequences
of sets. For double-index sequences we have the following
analogue of (2):

(3) R —=0-—puR _ )—>0 (R eX)

mn mn mn

In fact, if the right member of (3) were false there would exist
€ >0 and two subsequences of the positive integers:

m1<m2<..., n1<n2<... such that p(R n)—>—e for

k k
k=1,2,..., But because of (2) this would contradict the
convergence lim R =0 implied by the left member of (3).

k=0 Kk
We now show that if R - E (R €£’), then p(R ),
n n n

n=1,2,... converges to a limit which depends only on the
limit set E . Applying (3), we establish p(R ), n=1,2,...
n

as a Cauchy sequence:
[w(R_)-p(R )[=max {w(R_)-w(R ), (R )-u(R_)}
< max {p(Rm-Rn), p(Rn-Rm)}

< H(Rm-Rn) + u(Rn-Rm) = u(RmARn) -0

Given a second sequence converging to the same limit: R
R' - E(R'e¢eA"), we have R'AR == 0, so that
n n n n

R')-uR)<p(R'-R )< p(R'AR ) =0

o n) p(R ) <p(R -R ) <p(R AR )

Therefore lim ].L(R;l) < lim p.(Rn) and , by symmetry, we have
the inverse inequality, completing the proof of the assertion.

Let K% be the class of limits of convergent sequences
R ,n=1,2,... {R €A£); this is a ring extension of K,
n n

which we refer to as the "limit ring'" of £ . The assertion of
the preceding paragraph implies that a function p* is well
defined on A’ * by the formula:
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p¥(R*) = lim p.(Rn) , where Rn - R* (Rne A, R*eAH).
It follows from (1) that pu* extends u , and that any measure
extensionof u to A * must coincide with p* . To prove the
finite additivity of p* , consider a disjoint union(4) of two

members of A% : R¥ + S*. We have

R -R¥, S -8, R nS -0 (R,S € &)
n n n n n n

Applying (2),

p*(R*+S*) =lim p.(RnkJSn) =lim (u( Rn)+p,( Sn)+|.L(Rnf\Sn)) =k (R*)+uk(S*) .

So p* will be a measure if we show, further, that

(4)  R¥ T R¥ — p(R¥) T u*(R¥)  (R*, R £'%)

In order to prove (4) we introduce the class Z( consisting
of all finite or countable unions of members of A :
K C2Z¢C A *. We begin by proving that

(5) U Tu = wH(U ) T wx(U) (U , Ue )

(R E/Q), U=U UR

UR .

m nm nm n m nm

We may re-order the Rm as terms of a simple sequence
n .

We have: U =
n

(with indices 1,2,...) then take the partial (finite) unions as
the terms Rn of a sequence increasing to U:

R Tu (R_e R, w(R ) T ux(U) .

Then (5) follows from the fact that each Rn is contained in
some Um . Now assume the hypothesis of (4), and let ¢ > 0
be arbitrary. Considering R;*l as the superior limit of a

sequence converging to R* whose terms belong to X, we see
n

(4) We substitute + or T for \w to indicate a disjoint union.
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that there exist sets U € Z( such that
n

U DR* and pHU ) - p*(R¥) < —
n-— n n n

n
2
n
Then U' = v U, , n=1,2,... is an increasing sequence of
n .
i=1

sets of &/ having a limit Ue Z/, so by (5),

wH(U!) T w#(U) > p*(R*)

n n
*
But p*(U') - wk(R*) = u* U. - R¥) < T u*(U.-R¥) <
ut  p( ) }J-(n) M(:, i ) i_ifJ-(i i) €

Then, since ¢ is arbitrary, lim p*(R*) > p*¥(R*) , and the
n =

inverse inequality is obvious, proving (4). This establishes p*
as the unique measure extension to X * of the original measure
w on X .

We define inductively the transfinite sequence of rings:

A= c X ck c...crR c... cR
o 1 2 [} o

For o> 0, an ordinal of the first kind, A = A * 1 the limit
o a-

ring of /\‘70[ I For an ordinal o of the second kind,

A = U K. . The ordinal o is the smallest such that
@ p
B<a
K’:j = L s /(70_ is the o -ring generated by A. (The symbol

o denotes this ordinal and also serves as the sign of the generated
o -ring.) In the case o =0, A is already an ¢ -ring and there is
no measure extension problem. An ordinal «(0< a <o) will be
called "accessible' if -

(i) The original measure p on /A extends uniquely to a
measure p = on /()a/ s oMy, being bounded by M , the bound of .

(ii) For arbitrary € >0 and Sce /"(Oa, there exists U e Z¢

(class of finite or countable unions of members of A ) such that
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UDS and pa(U) - ua(S) <€

To complete the proof of the extension theorem for the bounded
case, it will suffice to prove inductively that every «

(0 < a< o) is accessible. Since 0 is accessible, it suffices

to prove a > 0 accessible, assuming every P < o accessible.

First, let o be of the first kind so that o-1 is
accessible. As has been shown, 1 extends uniquely to a

measure p_ on A’Z s &Ta which is obviously bounded by M.

But B, the unique measure extension of p itself the

a-1"'
unique measure extension of p to A’ 1 is the unique
measure extension of p to A’ , so (i) is satisfied for a.

a
The class 2/ 1 of finite or countable unions of members of
£,

e >0 and Sce /\70(, there exists V ¢ f’/a A such that

is related to /A~ asis Z/ to /(/1 . So, for arbitrary
a

VDS and (V) -p (S)< 52

By the definition of f/a ’ and the fact that & " is a ring,

we may express V as a disjoint finite or countable union of

members of X :
a-1

V=T (T ¢ £ )
n n a-1

Since «@-1 is accessible and p extends p there exists
a a-

1 )
Un € Z/ such that

Un2 Tn and lJ'oz(Un) h IJ'a/(Tn) < 2n+1
Setting U =0 Un, we have SCVC Ue Z
4 S

b (U)-p_(S) = ua(U)-pQ(v>+pa<v>—pa§s> <p (U)-p (V) +5 .
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. . . . »J
But since p.a is a finite measure on /‘ia ,

€
l‘Loz(U)-.Haz(v\/) - pa(b-v) = Ha{ kn) Un-Tn)} <= p'a/(Un-Tn) < E

The combined inequalities establish (ii) for o .
Now let o be of the second kind. Because of the induction
hypothesis, a function p is well defined on /\?a by the
(03
formula pa(S) =p.ﬁ(S) , where R< @ is such that Se A’

(Se A ). It mustbe shown that, in virtue of this definition,
a

a is accessible. Already, by the induction hypothesis, (ii) is
satisfied, E, is finitely additive and bounded by M . Since

any measure extension of p to /;y would satisfy the defining
formula for By o My is the only possible such extension. It
remains only to prove the countable additivity of M, Suppose

o0
that S= = Sn (S, S « KQ) . Because of the finite additivity,

1 n

o0

S)> Z
P'O(( )" 1 HO{ (Sn)

Applying (ii) for o, for given € > 0 there exist sets U e Z/
such that "

U >s d - (S )< =—
= an IJ'cx(Un) p'a( n) n

n n 2
Because O restricted to Afji , is the measure My o
0 o0 o0
S) < v < Z <Z S
B (S) < p 1Un__ 1Ha(Un) X m(S))+ e

Since € is arbitrary the combined inequalities give
o0

k(8) = 217 1, (S)

This completes the induction, and therefore the proof of the
extension theorem for the bounded case.
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Proof for a o -finite measure. Henceforth p is a
o -finite measure on the ring A . Applying the extension
theorem for the bounded case, we show in this section that

the o -finite measure p extends uniquely to a o -finite
measure on the generated ¢ -ring /{:T . Let /  be the
o

subring of A~ consisting of the sets of £ of finite measure.
Because p is ¢ -finite the o -ring generated by /0 is /'0..
Therefore to extend u uniquely to a measure on 4 - it will
suffice to do the same for its restriction to /\'(‘) . So we
assume henceforth, without loss of generality, that the original
measure p on A is finite.

Between /A and /{(;- we interpolate the ring / '
consisting of all members of /\;;- contained in some member
of A . In other words, R' ¢ A ' if and only if R' € ~ , 2nd
R' CR for some R e A (depending on R'). Let /., bea

given ring (of subsets of X) and let E be a given set (subset
of X). The "trace' of /\"’/1 on E, denoted /:,1 ~E, is

the ring of sets of the form R1 ~E , where R1 e / .
Since a member of /\;;_ is contained in R e /A if and only if

it belongs to the trace /{70_ ~ R, we have

At = v (K, OR, RCR C AL
ReK
Our procedure will be to first extend p uniquely to a finite

measure p' on A’', then to extend p' uniquely to a
o -finite measure on A .
o

First, we extend p uniquely to a finite measure p' on
A’t. For arbitrary Re £°, the restriction of u to A "R is
bounded, and the ¢ -ring generated by A AR is(5)

Va R)O_ = /{7cr\R

(5) The left member is merely the notation for the generated
o -ring. Its identity with the right member is proved as
theorem E, sec.5 [3].

293

https://doi.org/10.4153/CMB-1962-029-6 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1962-029-6

The extension theorem for the bounded case asserts that this
restriction extends uniquely to a finite measure kg on

/A AR. We will combine the measures Mg Re A to
o

form a single measure p' on A'' . We observe that if

R,CR, (R,R

1 € A) then KR and the restriction of Fr

1 2
to X A R1 must coincide on their common domain, since
o

2

they are both mesasure extensions of the restriction of p to
A A R1 (uniqueness of measure extension in the bounded case).

Hence, for any two members R, , R_ of A, B s M
1 2 R1 R2

coincide on / A (R.1 A~ R_). Therefore a function p' is
T

2
well defined on 4’' by the formula

w'(R') =“R(R') , where R is such that R'T Re /<7 (R" € A'') .

It is already obvious that p' is a finite measure on A ' which
extends every hg and so also extends p . But any measure

on A'' which extends p must also extend every KR (Re/A)
(uniqueness of measure extension in the bounded case), so p'
is the only possible measure extension of p to A '
We now extend p' uniquely to a o -finite measure on £’
T
Every member of 4 _ may be expressed as a disjoint, finite or
C o

countable, union of members of 4'' . Consider two such
representations of the same set E € A’
o

E=X S == T (S , T e K")
n m n m

Since ' is a measure on A£' ,

ZTu'(S)=Zpu'(S n= == Z ' T )==pu'
nu(n) np.(nﬁme) nmp. (snm m) mH(Tm)

Therefore a function B is well defined on /\’(;_ by the formula

o (E) =% ! (Sn), where E =Z Sn (Sn ¢ A’') is any representation

294

https://doi.org/10.4153/CMB-1962-029-6 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1962-029-6

The function Ko extends u' , it is finitely additive and, if it

is shown to be a measure, it will be ¢ -finite. But any measure
on /?0_ extending u' must satisfy the defining equation for

B, SO p_ is the only possible such extension. It remains

only to prove the countable additivity fof By - Suppose that
00
E =2 E (E ¢ K)
n n o
1
Each term of the union has a representation of the form(6)

E =X § (S e A1)
nm

In the special case where E ¢ /{7' we have

© 0 o o

p (E)=p'"(E)=p'(Z Z S )=Z Z p'(S _)=Z p (E).

7 n=f m={ om n=1 m=1 nm n=1 T =
0

In the general case we may express E: E=Z Sn (Sne Ay
1

We apply the special case, taking account of the definition Ko

and noting that S NE ¢ f' :
n m

0 0 0 =] - <]
o0 o] 0
= ! =

This establishes the countable additivity of By and so

completes our proof of the extension theorem:.

(6) By adjoining, if necessary, an infinity of terms equal to
the empty set, we may suppose all representations to be
countably infinite.
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