NOTE ON THE BOREL METHOD OF MEASURE EXTENSION

G. Fox

(received May 22, 1962)

Introduction. This note concerns a countably additive measure on a Boolean ring of subsets of an abstract set, this measure being real-valued, admitting ∞ as a possible value. We are interested only in unique extensions, so we suppose the measure to be σ -finite. The following well known result will be referred to as the "extension theorem": "Every σ -finite measure on a ring extends uniquely to a σ -finite measure on the generated σ -ring. "Besides the familiar proof using outer measure, there is a Borel-type proof using transfinite induction [4]. We attempt here to reduce the Borel-type proof to its ultimate simplicity, reducing the problem to the bounded case.

If a sequence R_n , $n=1,2,\ldots$ $(R_n\in\mathcal{R})$ converges settheoretically to $R\in\mathcal{R}$, then $\mu(R_n)$, $n=1,2,\ldots$ converges to $\mu(R)$. This is expressed symbolically:

(1)
$$R_n \to R \implies \mu(R_n) \to \mu(R)$$
 $(R, R_n \in \mathcal{R})$.

Canad. Math. Bull. vol. 5, no. 3, September 1962.

⁽¹⁾ The term "measure" will imply countable additivity.

Assuming the extension theorem, (1) is a consequence of the countable additivity; but we will prove it independently, then use it as basis for proof of the extension theorem. It will suffice to prove the particular case:

(2)
$$R_n \to 0 \Longrightarrow \mu(R_n) \to 0$$
 $(R_n \in \Lambda')$.

In fact, the hypothesis of (1) asserts (2) that $R \triangle R \rightarrow 0$, and applying (2),

$$\mu(R_n) - \mu(R) \leq \mu(R_n - R) \leq \mu(R_n \triangle R) \to 0 \quad .$$

But this implies $\mbox{ lim sup } \mu(R_n) \leq \mu(R)$, and we show similarly that $\mbox{ lim inf } \mu(R_n) \geq \mu(R)$.

To prove (2), assume its hypothesis, and set $S_n = \bigcup_{i=n}^\infty R_i$, so that $\binom{(3)}{n} R_n \subseteq S_n \downarrow 0$. The S_n need not belong to R, but it will be shown in the next paragraph that they may be approximated by members of R as follows: To arbitrary R > 0 there corresponds a sequence T_n , $n = 1, 2, \ldots$ such that

(i)
$$T_n \in \mathcal{R}$$
 , $S_n \supseteq T_n \downarrow 0$

(ii)
$$S_n \supseteq R \in \mathcal{R} \implies \mu(R) - \mu(T_n) \le \epsilon \sum_{i=1}^n \frac{1}{2^i}$$
.

Assuming this, $\mu(T_n) \downarrow 0$ by (i), then $\limsup \mu(R_n) \leq \varepsilon$ by (ii), and since ε is arbitrary (2) will be proved, hence also (1).

⁽²⁾ The symmetric difference $E\Delta F = (E-F) \cup (F-E)$ is the ring addition, intersection being the ring multiplication.

⁽³⁾ The symbols ↑, ↓ indicate monotone increasing, decreasing convergence.

To establish the sequence T_n , set $E_n=\bigcup\limits_{i=n}^{n'}R_i$ where n' is a fixed index > n of sufficiently high rank that

$$\mu\begin{pmatrix} m \\ \cup R_i \\ i=n \end{pmatrix} - \mu\begin{pmatrix} n' \\ \cup R_i \\ i=n \end{pmatrix} < \frac{\epsilon}{2^n} \text{ for all } m \ge n'.$$

The T_n are defined inductively:

$$T_1 = E_1$$
, $T_n = E_n \cap T_{n-1}$ for $n > 1$.

Since $S_n \supseteq E_n \supseteq T_n$ (i) is satisfied, and (ii) is satisfied for n = 1. In fact, if $S_1 \supseteq R \in \mathcal{R}$ then $R \cap \bigcup_{i=1}^m R_i$, $m = 1, 2, \ldots$

increases monotonely to $\,R\,$, so that

$$\mu(R) - \mu(T_1) = \lim_{m \to \infty} \mu(R \cap \bigcup_{i=1}^{m} R_i) - \mu(E_1) \leq \lim_{m \to \infty} \mu(\bigcup_{i=1}^{m} R_i) - \mu(E_1) \leq \frac{\epsilon}{2}.$$

It remains to show that (ii) is satisfied for n, assuming it for n-1. Assuming the hypothesis of (ii),

$$\mu(R) - \mu(E_n) = \lim_{\substack{\mu \in R \\ m \to \infty}} \mu(R \cap \bigcup_{i=n}^{m} R_i) - \mu(E_n) \leq \lim_{\substack{\mu \in R \\ m \to \infty}} \mu(\bigcup_{i=n}^{m} R_i) - \mu(E_n) \leq \frac{\epsilon}{2^n}$$

$$\mu(\mathbf{E}_n) - \mu(\mathbf{T}_n) = \mu(\mathbf{E}_n - \mathbf{T}_n) = \mu(\mathbf{E}_n - \mathbf{T}_{n-1}) = \mu(\mathbf{E}_n \smile \mathbf{T}_{n-1}) - \mu(\mathbf{T}_{n-1}) \ .$$

Since $E \subseteq S_n \subseteq S_{n-1}$ and therefore $S_{n-1} \supseteq E_n \cup T_{n-1} \in \mathcal{K}$, by the induction hypothesis,

$$\mu(E_{n} \cup T_{n-1}) - \mu(T_{n-1}) \le \epsilon \sum_{i=1}^{n-1} \frac{1}{2^{i}}$$
.

The combined inequalities give the right member of (ii), thus completing the induction and so establishing (1).

The definition of set-theoretical convergence carries over, without essential modification, to Moore-Smith sequences of sets. For double-index sequences we have the following analogue of (2):

(3)
$$R_{mn} \rightarrow 0 \implies \mu(R_{mn}) \rightarrow 0$$
 $(R_{mn} \in \mathcal{R})$

In fact, if the right member of (3) were false there would exist $\epsilon > 0$ and two subsequences of the positive integers:

$$m_1 < m_2 < \dots, \quad n_1 < n_2 < \dots \quad \text{such that } \mu(R_{m_k}^n) \ge \varepsilon \quad \text{for} \quad$$

k = 1, 2, ... But because of (2) this would contradict the convergence $\lim_{k \to \infty} R$ = 0 implied by the left member of (3).

We now show that if $R_n \to E$ ($R_n \in \mathcal{K}$), then $\mu(R_n)$, $n=1,2,\ldots$ converges to a limit which depends only on the limit set E. Applying (3), we establish $\mu(R_n)$, $n=1,2,\ldots$ as a Cauchy sequence:

$$\begin{split} \left| \mu(R_{m}) - \mu(R_{n}) \right| &= \max \left\{ \mu(R_{m}) - \mu(R_{n}), \mu(R_{n}) - \mu(R_{m}) \right\} \\ &\leq \max \left\{ \mu(R_{m} - R_{n}), \mu(R_{n} - R_{m}) \right\} \\ &\leq \mu(R_{m} - R_{n}) + \mu(R_{n} - R_{m}) = \mu(R_{m} \Delta R_{n}) \to 0 \end{split}$$

Given a second sequence converging to the same limit: $R \stackrel{!}{n} \to E \left(R_n^! \in \text{$\scalebox{\sca

Therefore $\lim \mu(R_n') \leq \lim \mu(R_n)$ and , by symmetry, we have the inverse inequality, completing the proof of the assertion.

Let $\mathcal{R}*$ be the class of limits of convergent sequences R_n, $n=1,2,\ldots$ (R_n $\in \mathcal{R}$); this is a ring extension of \mathcal{R} ,

which we refer to as the "limit ring" of \mathcal{R} . The assertion of the preceding paragraph implies that a function μ^* is well defined on \mathcal{R} * by the formula:

$$\mu^*(R^*) = \lim_{n \to \infty} \mu(R_n)$$
, where $R_n \to R^*$ $(R_n \in \mathcal{R}, R^* \in \Lambda^*)$.

It follows from (1) that μ^* extends μ , and that any measure extension of μ to \mathcal{R}^* must coincide with μ^* . To prove the finite additivity of μ^* , consider a disjoint union (4) of two members of \mathcal{R}^* : R^*+S^* . We have

$$R_n \to R^*$$
, $S_n \to S^*$, $R_n \cap S_n \to 0$ $(R_n, S_n \in \mathcal{R})$.

Applying (2),

$$\mu^*(R^{*+}S^{*}) = \lim \ \mu(R_n \smile S_n) = \lim (\mu(R_n) + \mu(S_n) + \mu(R_n \frown S_n)) = \mu^*(R^{*}) + \mu^*(S^{*}) \ .$$

So μ * will be a measure if we show, further, that

$$(4) \qquad R_n^* \uparrow R^* \implies \mu^*(R_n^*) \uparrow \mu^*(R^*) \qquad (R_n^* \ , \ R^* \in \mathcal{R}^*) \ .$$

In order to prove (4) we introduce the class $\mathcal U$ consisting of all finite or countable unions of members of $\mathcal K$: $\mathcal K \subseteq \mathcal U \subseteq \mathcal R$ *. We begin by proving that

$$(5) \quad \operatorname{U}_{\operatorname{n}} \uparrow \operatorname{U} \longrightarrow \mu^*(\operatorname{U}_{\operatorname{n}}) \uparrow \mu^*(\operatorname{U}) \quad (\operatorname{U}_{\operatorname{n}}, \operatorname{U} \in \mathcal{U})$$

We have: $U_n = \bigcup_m R_{nm} (R_n \in \mathcal{R})$, $U = \bigcup_n \bigcup_m R_{nm}$. We may re-order the R_{mn} as terms of a simple sequence (with indices 1,2,...) then take the partial (finite) unions as the terms R_n of a sequence increasing to U:

$$R_n \uparrow U (R_n \in \mathcal{R})$$
, $\mu(R_n) \uparrow \mu^*(U)$.

Then (5) follows from the fact that each R_n is contained in some U_m . Now assume the hypothesis of (4), and let $\varepsilon>0$ be arbitrary. Considering R_n^* as the superior limit of a sequence converging to R_n^* whose terms belong to $\mathcal R$, we see

⁽⁴⁾ We substitute + or Σ for \cup to indicate a disjoint union.

that there exist sets $U_n \in \mathcal{U}$ such that

$$U_n \supseteq R_n^*$$
 and $\mu^*(U_n) - \mu^*(R_n^*) < \frac{\epsilon}{2^n}$.

Then $U' = \bigcup_{i=1}^{n} U_i$, n = 1, 2, ... is an increasing sequence of i=1

sets of \mathcal{U} having a limit $U \in \mathcal{U}$, so by (5),

$$\mu^*(U_n') \uparrow \mu^*(U) \ge \mu^*(R^*) .$$

But
$$\mu^*(U_n') - \mu^*(R_n^*) = \mu^*(\bigcup_{i=1}^n U_i - R_n^*) \le \sum_{i=1}^n \mu^*(U_i - R_i^*) < \epsilon$$
.

Then, since ε is arbitrary, $\lim \mu^*(R^*) \geq \mu^*(R^*)$, and the inverse inequality is obvious, proving (4). This establishes μ^* as the unique measure extension to \mathcal{K} * of the original measure μ on \mathcal{K} .

We define inductively the transfinite sequence of rings:

$$R' = R_0 \subset R_1 \subset R_2 \subset \dots \subset R_{\alpha} \subset \dots \subset R_{\sigma}$$

For $\alpha>0$, an ordinal of the first kind, $\mathcal{R}_{\alpha}=\mathcal{R}_{\alpha-1}^*$, the limit ring of $\mathcal{R}_{\alpha-1}$. For an ordinal α of the second kind, $\mathcal{R}_{\alpha}=\bigcup_{\beta<\alpha}\mathcal{R}_{\beta}.$ The ordinal σ is the smallest such that $\mathcal{R}_{\alpha}^*=\bigcup_{\sigma}\mathcal{R}_{\beta}.$ The ordinal σ is the smallest such that $\mathcal{R}_{\alpha}^*=\bigcup_{\sigma}\mathcal{R}_{\beta}.$ The ordinal σ is the smallest such that $\mathcal{R}_{\alpha}^*=\bigcup_{\sigma}\mathcal{R}_{\beta}.$ (The symbol σ denotes this ordinal and also serves as the sign of the generated σ -ring.) In the case $\sigma=0$, \mathcal{R} is already an σ -ring and there is no measure extension problem. An ordinal $\alpha(0\leq\alpha\leq\sigma)$ will be called "accessible" if

- (i) The original measure μ on $\mathcal R$ extends uniquely to a measure μ_α on $\mathcal R_\alpha$, μ_α being bounded by M , the bound of $\mu.$
- (ii) For arbitrary $\epsilon > 0$ and $S \epsilon \mathcal{R}_{\alpha}$, there exists $U \epsilon \mathcal{U}$ (class of finite or countable unions of members of \mathcal{R}) such that

$$\dot{U} \supseteq S$$
 and $\mu_{\alpha}(U) - \mu_{\alpha}(S) < \epsilon$.

To complete the proof of the extension theorem for the bounded case, it will suffice to prove inductively that every α ($0 \le \alpha \le \sigma$) is accessible. Since 0 is accessible, it suffices to prove $\alpha > 0$ accessible, assuming every $\beta < \alpha$ accessible.

First, let α be of the first kind so that α -1 is accessible. As has been shown, $\mu_{\alpha-1}$ extends uniquely to a measure μ_{α} on $\mathcal{K}_{\alpha-1}^* = \mathcal{K}_{\alpha}$ which is obviously bounded by M. But μ_{α} , the unique measure extension of $\mu_{\alpha-1}$, itself the unique measure extension of μ to $\mathcal{K}_{\alpha-1}$, is the unique measure extension of μ to \mathcal{K}_{α} , so (i) is satisfied for α . The class $\mathcal{K}_{\alpha-1}$ of finite or countable unions of members of $\mathcal{K}_{\alpha-1}$, is related to \mathcal{K}_{α} as is \mathcal{K} to \mathcal{K}_{1} . So, for arbitrary α and α and α there exists α such that

$$V \supseteq S \quad \text{ and } \quad \mu_{\alpha}(V) - \mu_{\alpha}(S) < \frac{\varepsilon}{2} \ .$$

By the definition of $\mathcal{A}_{\alpha-1}$ and the fact that $\mathcal{R}_{\alpha-1}$ is a ring, we may express V as a disjoint finite or countable union of members of $\mathcal{R}_{\alpha-1}$:

$$V = \sum T_n \quad (T_n \in \mathcal{R}_{\alpha-1})$$
.

Since $\alpha\text{--}1$ is accessible and μ_{α} extends $\mu_{\alpha\text{--}1}$, there exists U $_n$ & Z/ such that

$$U_n \supseteq T_n$$
 and $\mu_{\alpha}(U_n) - \mu_{\alpha}(T_n) < \frac{\epsilon}{2^{n+1}}$.

Setting $U = \bigcup_n U_n$, we have $S \subseteq V \subseteq U \in \mathcal{U}$

$$\mu_{\alpha}(U) - \mu_{\alpha}(S) = \mu_{\alpha}(U) - \mu_{\alpha}(V) + \mu_{\alpha}(V) - \mu_{\alpha}(S) < \mu_{\alpha}(U) - \mu_{\alpha}(V) + \frac{\epsilon}{2}.$$

But since μ_{α} is a finite measure on \mathcal{R}_{α} ,

$$\mu_{\alpha}(\mathtt{U}) - \mu_{\alpha}(\mathtt{V}) = \mu_{\alpha}(\mathtt{U} - \mathtt{V}) \leq \mu_{\alpha}\{ \underset{n}{\cup} \mathtt{U}_{n} - \mathtt{T}_{n}) \} \leq \Sigma \ \mu_{\alpha}(\mathtt{U}_{n} - \mathtt{T}_{n}) < \frac{\epsilon}{2} \ .$$

The combined inequalities establish (ii) for α .

$$\mu_{\alpha}(S) \geq \sum_{1}^{\infty} \mu_{\alpha}(S_{n}).$$

Applying (ii) for α , for given $\epsilon > 0$ there exist sets $U \in \mathcal{U}$ such that

$$\mathtt{U}_{n} \overset{\textstyle >}{\underset{n}{}} \mathtt{S}_{n} \quad \text{and} \quad \mu_{\alpha}(\mathtt{U}_{n}) \text{ - } \mu_{\alpha}(\mathtt{S}_{n}) < \frac{\varepsilon}{2^{n}} \ .$$

Because μ_{α} , restricted to $\frac{1}{2}$, is the measure μ_{1} ,

$$\mu_{\alpha}(S) \leq \mu_{\alpha} \begin{pmatrix} \infty \\ \smile U \\ 1 \end{pmatrix} \leq \begin{array}{ccc} \infty \\ \Sigma \\ 1 \end{pmatrix} \mu_{\alpha}(U_{n}) < \begin{array}{ccc} \infty \\ \Sigma \\ 1 \end{pmatrix} \mu_{\alpha}(S_{n}) + \varepsilon \quad .$$

Since € is arbitrary the combined inequalities give

$$\mu_{\alpha}(S) = \sum_{1}^{\infty} \mu_{\alpha}(S_{n}) .$$

This completes the induction, and therefore the proof of the extension theorem for the bounded case.

Proof for a σ -finite measure. Henceforth μ is a σ -finite measure on the ring \mathcal{R} . Applying the extension theorem for the bounded case, we show in this section that the σ -finite measure μ extends uniquely to a σ -finite measure on the generated σ -ring \mathcal{R}_{σ} . Let \mathcal{R}_{σ} be the subring of \mathcal{R} consisting of the sets of \mathcal{R} of finite measure. Because μ is σ -finite the σ -ring generated by \mathcal{R}_{σ} is \mathcal{R}_{σ} . Therefore to extend μ uniquely to a measure on \mathcal{R}_{σ} it will suffice to do the same for its restriction to \mathcal{R}_{σ} . So we assume henceforth, without loss of generality, that the original measure μ on \mathcal{R} is finite.

Between \bigwedge and \bigwedge_{σ} we interpolate the ring \bigwedge ' consisting of all members of \bigwedge_{σ} contained in some member of \bigwedge . In other words, $R'\in \bigwedge'$ if and only if $R'\in \bigwedge_{\sigma}$ and $R'\subseteq R$ for some $R\in \bigwedge$ (depending on R'). Let \bigwedge_{1} be a given ring (of subsets of X) and let E be a given set (subset of X). The "trace" of \bigwedge_{1} on E, denoted $\bigwedge_{1} \cap E$, is the ring of sets of the form $R_{1} \cap E$, where $R_{1} \in \bigwedge_{1}$. Since a member of \bigwedge_{σ} is contained in $R\in \bigwedge$ if and only if it belongs to the trace $\bigwedge_{\sigma} \cap R$, we have

$$\mathcal{R}' = \bigcup_{\mathbf{R} \in \mathcal{R}} (\mathcal{R}_{\sigma} \cap \mathbf{R}), \ \mathbf{R} \subseteq \mathcal{R}' \subseteq \mathcal{R}'_{\sigma}$$

Our procedure will be to first extend μ uniquely to a finite measure μ' on \mathcal{K}' , then to extend μ' uniquely to a σ -finite measure on \mathcal{K}_{σ} .

First, we extend μ uniquely to a finite measure μ' on $\ensuremath{\mathcal{R}}'$. For arbitrary $R\in\ensuremath{\mathcal{R}}$, the restriction of μ to $\ensuremath{\mathcal{K}}' \cap R$ is bounded, and the σ -ring generated by $\ensuremath{\mathcal{K}} \cap R$ is (5)

$$(\mathcal{R} \cap R)_{\sigma} = \mathcal{R}_{\sigma} \cap R$$
.

⁽⁵⁾ The left member is merely the notation for the generated σ -ring. Its identity with the right member is proved as theorem E, sec. 5 [3].

The extension theorem for the bounded case asserts that this restriction extends uniquely to a finite measure μ_R on $\mathcal{K}_\sigma \cap R$. We will combine the measures μ_R , $R \in \mathcal{K}$ to form a single measure μ' on \mathcal{K}' . We observe that if $R_1 \subseteq R_2$ $(R_1,R_2 \in \mathcal{K})$ then μ_R and the restriction of μ_R_2 to $\mathcal{K}_\sigma \cap R_1$ must coincide on their common domain, since they are both measure extensions of the restriction of μ to $\mathcal{K}_\sigma \cap R_1$ (uniqueness of measure extension in the bounded case). Hence, for any two members R_1 , R_2 of \mathcal{K}_γ , μ_R_1 , μ_R_2 coincide on $\mathcal{K}_\sigma \cap (R_1 \cap R_2)$. Therefore a function μ' is well defined on \mathcal{K}_γ'' by the formula

$$\mu^{\tau}\left(R^{\tau}\right)=\mu_{R}^{-}(R^{\tau})\;,\;\;\text{where}\;\;R\;\;\text{is such that}\;\;R^{\tau}\subseteq R\;\varepsilon\;\text{${\cal K}$}^{\tau}\left(R^{\tau}\;\varepsilon\;\text{${\cal K}^{\tau}$}^{\tau}\right)\;.$$

It is already obvious that μ' is a finite measure on \bigwedge ' which extends every μ_R , and so also extends μ . But any measure on \bigwedge ' which extends μ must also extend every μ_R (R $\varepsilon\bigwedge$) (uniqueness of measure extension in the bounded case), so μ' is the only possible measure extension of μ to \bigwedge '.

We now extend μ^1 uniquely to a σ -finite measure on \bigwedge_{σ}^2 . Every member of \bigwedge_{σ}^2 may be expressed as a disjoint, finite or countable, union of members of \bigwedge_{σ}^2 . Consider two such representations of the same set $E\in \bigwedge_{\sigma}^2$:

$$E = \sum S_n = \sum T_m$$
 $(S_n, T_m \in \mathcal{L}^{\dagger})$.

Since μ' is a measure on \bigwedge^{1} ,

Therefore a function μ_{σ} is well defined on \mathcal{K}_{σ} by the formula $\mu_{\sigma}(E) = \sum \mu'(S_n)$, where $E = \sum S_n(S_n \in \mathcal{K}')$ is any representation

The function μ_{σ} extends μ' , it is finitely additive and, if it is shown to be a measure, it will be σ -finite. But any measure on \mathcal{R}_{σ} extending μ' must satisfy the defining equation for μ_{σ} , so μ_{σ} is the only possible such extension. It remains only to prove the countable additivity fof μ_{σ} . Suppose that

$$\mathbf{E} = \begin{array}{ccc} & & & \\ & \Sigma & \mathbf{E} & & \\ & & \mathbf{n} & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

Each term of the union has a representation of the form (6)

$$\mathbf{E}_{\mathbf{n}} = \begin{array}{c} \mathbf{\infty} \\ \mathbf{E}_{\mathbf{n}} = \mathbf{\Sigma} \\ \mathbf{S}_{\mathbf{n}} \\ \mathbf{m} = 1 \end{array} \quad \mathbf{S}_{\mathbf{n}} \mathbf{m} \quad \mathbf{S}_{\mathbf{n}} \in \mathcal{R}') .$$

In the special case where $\mathbf{E} \in \mathcal{R}^{\dagger}$ we have

$$\mu_{\sigma}\left(\mathbf{E}\right) = \mu'\left(\mathbf{E}\right) = \mu'\left(\Sigma \quad \Sigma \quad S \quad \mathbf{S} \quad \mathbf{nm}\right) = \sum_{\mathbf{n}=1}^{\infty} \sum_{\mathbf{m}=1}^{\infty} \mu'\left(\mathbf{S} \quad \mathbf{nm}\right) = \sum_{\mathbf{n}=1}^{\infty} \mu_{\sigma}\left(\mathbf{E} \quad \mathbf{nm}\right) \quad \mathbf{n} = 1 \quad$$

In the general case we may express $E: E = \sum_{n=1}^{\infty} S_n (S_n \in \mathbb{R}^1)$.

We apply the special case, taking account of the definition μ_σ , and noting that $S_n \cap E_m \in \mathcal{K}'$:

$$\mu_{\sigma}\left(E\right) = \sum_{n=1}^{\infty} \mu^{r}\left(S_{n}\right) = \sum_{n=1}^{\infty} \mu^{r}\left(S_{n} \cap \sum_{m=1}^{\infty} E_{m}\right) = \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \mu^{r}\left(S_{n} \cap E_{m}\right)$$

$$= \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} \mu^{r} \left(S_{n} \cap E_{m} \right) = \sum_{m=1}^{\infty} \mu_{\sigma} \left(E_{m} \right) .$$

This establishes the countable additivity of $\,\mu_{\sigma}^{}\,$, $\,$ and so completes our proof of the extension theorem.

⁽⁶⁾ By adjoining, if necessary, an infinity of terms equal to the empty set, we may suppose all representations to be countably infinite.

REFERENCES

- 1. J. Albuquerque, Ensembles de Borel, Portugaha Math. (1944).
- 2. E. Borel, Leçons sur la théorie des fonctions. Collection de monographies sur la théorie des fonctions publiées sous la direction de Emile Borel (4e éd Paris, Gauthier-Villars 19!
- 3. P. R. Halmos, Measure Theory (New York, 1950).
- 4. L. LeBlanc et G.E. Fox, On the Extension of Measure by the Method of Borel. Can. Jour. of Math. vol. 8, pp. 516-523, 1956.
- 5. N. Lusin, Leçons sur les ensembles analytiques et leurs applications. Collection de monographies sur la théorie des fonctions publiées sous la direction de Emile Borel (Paris, 1930).
- 6. R. Neves, Sôbre a construçae algebrica da teoria geral da Melida. Instituto Para a alta cultura, Gendro de estudas matematicas, Publ. no. 13, 22 pp. (1945).

Université de Montréal