
Can. J. Math., Vol. XXV, No. 2, 1973, pp. 252-260 

ON UNSYMMETRIC DIRICHLET FORMS 

JOANNE ELLIOTT 

1. Introduction. Let F be a linear, but not necessarily closed, subspace of 
L2[X, dm], where (X,Së,m) is a c-finite measure space with Se the Borel 
subsets of the locally compact space X. If u and v are measureable functions, 
then v is called a normalized contraction of u if \v(x)\ ^ \u(x)\ and 
\v(x) — v{y)\ S \u(x) — u(y)\. Assume that F is stable under normalized 
contractions, that is, if u Ç F and v is a normalized contraction of u, then 
v G F. Then a symmetric, positive semidefinite quadratic form S on F X F 
is called a symmetric Dirichlet form if and only if 

(i) $ (v, v) %. $ (u, u) 

whenever v is a normalized contraction of u ; 
(ii) for some (and therefore all) X > 0, F is a Hilbert space under the inner 

product 
A ( / , g ) = <?(f,g) + \(f,g) 

where (•, •) denotes the L2 inner product. 
Each such Dirichlet form gives rise to a symmetric submarkovian pseudo-

resolvent {Gy, X > 0} on L2, that is, a family of symmetric, continuous, linear 
transformations on L2 to L2 such that 0 ^ u ^ 1 a.e. implies 0 ^ \G\U ^ 1 
a.e. and 

(1.1) Gx-G,= (fi- X)GXG, (X, M > 0). 

The GVs satisfy the equation 

(1.2) A ( / , G x g ) = (f,g). 

Conversely, each symmetric submarkovian pseudo-resolvent {G\ : X > 0} 
on L2 is associated with a symmetric Dirichlet form by the formulas 

(1.3) <f( / ,g) = l imX( / , g -XGxg) ) 
X->oo 

(1.4) F = { / € X : s u p X ( / , / - X G x / ) < c » i . 
X>0 

The pair (F, c^) is called a Dirichlet space relative to L2\X, dm]. 
The concept of a Dirichlet space is due to Beurling and Deny [1]. Their 

definition is more general than the one given above, since they do not assume 
their spaces contained in an L2 space. The Dirichlet spaces relative to L2 were 
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used by Fukushima [2] to classify all the symmetric conservative Brownian 
motion processes on a bounded closed domain in Kn. 

Since unsymmetric submarkovian resolvents frequently arise in the applica
tions, it is important to extend the notion of Dirichlet form so as to be able 
to handle the more general situation. One such extension has been given by 
H. Kunita [3]. He has used this extension to generalize Fukushima's results 
to the classification of unsymmetric multidimensional diffusion processes. 

Let us briefly outline some of his results which are pertinent to the present 
paper. Let B be a Hilbert lattice which is contained in an enlarged lattice B\. 
It is assumed that there exists a positive element e £ B\ such that 

/ € 5=> ( / A e) 6 B . 

Consider a bilinear form S (not necessarily symmetric) defined on a set 
F X F where F is a linear subspace of B such that: 

Bl : $ is bounded from below, i.e. there exists fi0 ^ 0 such that 

< ^ ( / , / ) + 0 o ( / , / ) ^ o (jeF); 

B2: |<f(/ f*)| £ K\& ( / , / ) + Po(fJ)Y/2[^ (g, g) + 0o(g, g)Y'* 
for all/, g G F; 

B3: F is dense in B and complete relative to each of the norms 

K ( / , / ) + « ( / , / )]1/2 («>0o); 

B4: JF is a vector sublattice of 5 such that 

and 

#(U-ce)+,fAce) ^ 0 

for all c 6 R + and all f £ F. A bilinear form satisfying B1-B4 is called a 
Dirichlet bilinear form. 

To see why this new definition extends the notion of symmetric Dirichlet 
form, we must first specify what "submarkovian" means in this context. 

Definition. A linear operator T : B —» B is called submarkovian if and only if 

The following theorem is proved in Kunita's paper [3]: 

THEOREM 1.1. If B is a Hilbert lattice, then to any bilinear form satisfying 
B1-B3 there is associated a unique semigroup {Tt : t > 0} such that \\Tt\\ ^ 
exp(j8oO» whose generator A satisfies 

*U,g) = -(f,Ag) ( / € * • ) • 

The semigroup is submarkovian (meaning that each Tt is) if and only if B4 is 
satisfied. 
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The semigroup [Tt) is called the semigroup associated with $. A sub-
markovian resolvent family {G\ : X > 0} is also associated with <o and 
satisfies 

(1.5) Gxf = fe~uTtfdt. 

This resolvent then has the property that 

||XGx|| ^ expOSoO 

and (1.2) and (1.3) hold. 
Thus each Dirichlet form in the sense of Kunita's definition gives rise to a 

submarkovian pseudo-resolvent exactly as in the symmetric case. However, 
the converse is not true, i.e. there are submarkovian pseudo-resolvents whose 
corresponding bilinear forms fail to satisfy B2 and B3. (See section 6 of the 
present note for an example.) The 1-1 correspondence between symmetric 
submarkovian pseudo-resolvents and Dirichlet forms that exists in the 
symmetric case does not hold here. 

In this note we give a more general definition of Dirichlet form which 
recaptures the 1-1 correspondence between submarkovian resolvents and 
Dirichlet forms. We also extend Theorem 1 to the case where B is a more 
general Banach lattice than a Hilbert lattice. 

We prefer to work with the pseudo-resolvents rather than the semigroups. 
The following theorem (see [3] for a proof) allows us to pass from the pseudo-
resolvent to the semigroup: 

THEOREM 1.2. Let \Ga : a > /30} be a submarkovian pseudo-resolvent such that 

(a - po)m\\Ga\\
m Sk fora> 0O. 

Then there exists a unique submarkovian semigroup \Tt : t > 0} in L — the 
smallest strongly closed vector lattice including R(Ga) = range Ga, such that for 
each f £ L the function t —> Ttf is right continuous relative to the w*-topology of 
L = the completion of L in the weak topology of L, and (1.5) holds for allf 6 L. 
(Note: In the statement of the theorem we regard L as being embedded in the 
bidual L**. The ^*-topology on L then means the topology induced by the 
w*-topology on L**.) 

Our general definition is given in section 3. In sections 4 and 5 we prove 
that to each of our Dirichlet forms there corresponds a submarkovian pseudo-
resolvent, and conversely. In section 6 we discuss an example of a resolvent 
whose corresponding Dirichlet form does not satisfy B2 of Kunita's definition. 
We also indicate in section 6 a type of application which will be exploited 
more fully in a subsequent paper. 

2. Preliminaries. Let B be a Banach lattice and B* its dual. That is, B is a 
complete normed vector lattice such that 

\y\ ^ W = > | M I ^ ||*||. 
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We shall denote the duality between B and B* by (•, •)• If u Ç. B let 

(2.1) Ju = {«' 6 B* : (« ' ,«) = \\u\\l = \\u%,}. 

Using the usual notation u+ = u V 0 and w~ = — (u A 0) we have 

(2.2) ([*']-, * ) ^ 0 ( K - B , * ' a W ) . 

We usually express conditions such as (2.2) in the notationally simpler form 

(2.3) ([7*]-, <f>) ^ 0. 

We also use the fact that 

(2-4) || |*| || = |H| è ||*+||. 

Assumptions about the lattice B. Although we do not assume that B is a 
Hilbert lattice, we shall need some conditions on B. We shall always assume, 
as in [3], that B is contained in a larger lattice Bi in which there exists a positive 
element e (T*0) with the property that 

(2.5) u G B -> (e A u) G 5 . 

Here B (Z Bi only as a vector lattice. We assume no topology on 2?i. A sub-
mar kovian mapping is then defined as in the definition of section 1. 

Notation. If c is a real number we shall write c to denote the element ce £ B\. 
Any element w £ B can be written as 

(2.6) w = (w - c)+ + (w A c), 

so (2.5) implies 

(2.7) w e B -> (w - c)+ Ç 5 (c è 0). 

Finally, we assume that B has the following property: 

(2.8) v ^ c --+ (7[(w - c)+], » - (w A c)) g 0 (w e B,c ^ 0). 

Note that this implies 

(2.9) v g C -> (/[(w - c)+], v - w) g 0 ( w ^ , c H ) . 

Furthermore, (2.8) implies 

(2.10) v g c and (/[(w - c)+], » - w) = 0 

=> (w - c)+ = 0 ( w ^ , c è 0). 

In particular, if c = 0 we get 

(2.11) (/[w+], «0 = 0 => z£;+ = 0 (w 6 £ ) . 

3. Dirichlet forms. In what follows B is a Banach lattice satisfying the 
conditions of section 1. Let F be a linear subspace of B such that F (the norm 
closure of F) is a sublattice of 5 satisfying 

(3.1) <t> G F=> (0 A e) e F. 
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Let F* = [J(F)] = the linear space generated by J{F). We assume that 

(3.2) [^ ç F* and ty, 0) = 0, for 0 G F] =» [^ = 0]. 

Definition 3.1. A Dirichlet form S* on F* X i7 is a bilinear form satisfying 
(3.3), (3.4), and (3.6) below: 

(3.3) £ (70, 0) ^ 0 ( * € / 0 ; 

(3.4) <? (7{(0 - c)+} , 0 ) ^ 0 ( c ^ 0, * e F). 

For each a > 0 define 

(3.5) <^«GM) = «?(*,*) + « ( * , * ) • 

Given a > 0 

(3.6) [lim <fa(ife, 0) = 0, for all 0 G J7] -> [Hm ( ^ , / ) = 0, for a l l / 6 F]. 

If S>
a{\f/1 <t>) = 0 for all <f> £ F, and some ^ T^ 0, then (3.6) implies that 

Ws / ) = 0 for all f £ F, which is impossible by (3.2). On the other hand, 
given 0 G F, 0 ^ 0, we have 70 G ^*. Choosing 0' G 70 we then get from 
(3.3) 

<^(0 ' ,0 ) ^ * (* ' ,* ) = « | | 0 | | 2 ^ 0 . 

Thus for each a > 0, the form $a($, 0) defines a separated duality between 
F and F*. Let the corresponding weak topologies be denoted by aa{F, F*) 
and <ra(F*, 70, respectively, on F and F*. By similar arguments, we see that 
the bilinear form (•, •) also defines a separated duality between F and F*. 
Let us denote the corresponding weak topologies for this duality by w(F, F*) 
and w(F*, F). Then condition (3.6) states simply that the <ra(F*, F) topology 
is stronger than the w(F*, F) topology on i7*. 

It is to be noted, in comparing our definition with that of Kunita, that we 
have normalized for simplicity so that /50 = 0. 

4. The existence of submarkovian resolvents. In this section we assume 
we are given a Dirichlet form ^ o n a set T7* X F (Z B* X B, as defined in the 
previous section. 

THEOREM 4.1. Given f G F and X > 0, there exists a unique G\f G F such that 
the family of linear mappings f —» G\f (X > 0) is a submarkovian resolvent 
satisfying 

(i) | | X G x / | | ^ | | / | | ( / € F ) ; 
(ii) for f G F, \f/ G F* we have 

(4.1) A ( * , G x / ) = (*,/) 

and f —> G\f is thus a continuous mapping from F with the w(F, F*) topology 
to F with the a\(F, F*) topology; 
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(iii) S% = G\F is cr\(F, F*)-dense in F for each X > 0; 

(iv) (fit, 0) = lim X(i/s 0 - XGx4>) = lim <fx(i/s <f>) 

/or a// pflw (if, <t>) £ F* X Gx(M). 

Proof. By condition (3.6), for each f £ F and X > 0 the linear functional 
^ —* 0/s/ ) is a continuous linear functional on F* with the <r\(F*, F) topology. 
Hence, given f £ F and X > 0 there exists a unique G\f £ -F such that (4.2) 
holds. The linearity and the resolvent equation follow in standard fashion 
from the uniqueness of the representation of the linear functional \f/ —> (^ , / ) . 
Putting ^ = IGxf]' € J[Gxf] in (4.2) gives 

(4.2) l|XGx/||2 £ ([Gx/]',/), 

from which (i) follows. Note that (4.1) also implies the continuity of the 
mapping/—» G\f from F with the w(F, F*) topology to F with the a\(F, F*) 
topology. 

To prove (iii), note that if 3% were not a\(F, 7**)-dense in F then there 
would exist a x// € F* such that ^ ^ 0 and (^, 0) = 0 for all <t> £ F. But 
this is impossible by (3.2). 

Let us next show that Gx is submarkovian. This will follow immediately if 
we can prove 

[0 ^ c] => [XGX0 ^ c] 

by taking in turn c = 0 and c = e. If 0 ^ c, then from (3.2) 

0 ^ <f (J[(XGx* - c)+], XGX0) = X(/[(XGx« - c)+], 0 - XGx0). 

On the other hand, (2.9) implies that the right side vanishes. By (2.10) we 
must have (XGx<£ — c ) + = 0. Hence, \G\<j> g c. _ 

Finally, let us prove (iv). If <t> = G>rç for some /x > 0 and 77 G S%, we have 

<^Ws 0) = (fal — vGtf). 

On the other hand, 

X0£> GMr? — XGXG>?) = X(^, Gx?? — MGMGXT?). 

Thus as X —> 00 this expression tends to ê (\p, 0), since rj £ £%. 

5. The unsymmetric Dirichlet form associated with a given resolvent. 
In this section we assume we are given a Banach lattice B satisfying the 
conditions of section 1, and a submarkovian resolvent Gx on a closed sublattice 
F of B with & = range Gx dense in F, and ||XGx3>|| ^ ||y|| for all y Ç F. We 
put F = ^ and assume that (3.1) and (3.2) are satisfied. Then F* = [7(F)] = 
the linear space generated by J(Y) in B*. Let 

(5.1) #Hfa4>) = X(iA,0- XGX0) 
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for all 4, e F* and <*> € Y. Define 

(5.2) S(f, <t>) = lim \(t,4>- XGxtf.) 
X->oo 

whenever the limit exists. 

THEOREM 5.1. The bilinear form of (5.2) is a Dirichlet form on F* X F. 

Proof. We check the defining properties in Definition 3.1. First, let us 
verify that Sa is defined on F* X F for each a. If 0 £ F, then 0 = Gary for 
some rj £ & = Y. We have for \p G ^*: 

(5.3) <f«(*, 0) = lim X(*, GaV - XGxGtf) + «(*, GaV) 
X->oo 

= lim (^, \GxV — XGx • «£«??) + a{\p, Garf) = (^, 17). 
X->oo 

Condition (3.3) holds since if <f> Ç J 0 

(5.4) (<*>', 0 - XGx<*>) = H0II2 - (*', XGX0) è H0II2 - | | * | | ||XGX0|| ^ 0. 

To verify condition (3.4) we note that 

(5.5) Sx(/[(0 - c)+], 0) = #HM* ~ c)+], (0 - c)+) 

+ ^ ( / [ ( * - c ) + U A c ) , 

where <?x is the form defined in (5.1). The first term is positive by (5.4), and 
the second by the submarkovian property of G\ combined with (2.8). Finally, 
we showed in (5.3) that 

(5.6) <?a(f,Gari) = GM) , 

so that (3.6) holds. 

Standard Dirichlet triples. In Definition 3.1 the domain of a Dirichlet form S 
is a set F* X F where F contains the range M of the corresponding resolvent. 
In the case that 3% = F the restriction of $ to F* X 3? is also a Dirichlet 
form and is associated with the same resolvent. In order to avoid this slight 
degree of arbitratiness in the domain we make the following definition: 

Definition 5.1. Suppose <$ is a Dirichlet form on F* X F. Then (<o , F*, F) 
is called a standard Dirichlet triple if F is the range of the corresponding 
resolvent on the lattice F. 

We then have as a corollary to Theorems 4.1 and 5.1: 

COROLLARY 5.1. There is a 1-1 correspondence between standard Dirichlet 
triples (<¥, F*, F) and submarkovian resolvents G\ defined on a closed sublattice F 
of B such that: 

(i) F = range Gx; 
(ii) X||Gx0|| ûMlforallt G F; 

(iii) the lattice F satisfies (3.1) and (3.2). 
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6. Some examples. The first example we give is a Dirichlet form by our 
definition, but does not satisfy the conditions of Kunita's definition. 

(a) Translations in L2. Let the Banach lattice B be L2 ( — 00, 00 ) using the 
ordinary Lebesgue measure on the line. Let \Tt : / ^ 0} be the translation 
semigroup 

Ttfix) = f(x + t) 

and G\ its resolvent satisfying (1.5). Clearly L2 is contained in the larger 
lattice of measurable functions on ( — 00, 00), a n d / Ç L2 implies/ A 1 Ç L2, 
so we put e = the equivalence class of functions equal to 1 a.e. on the line. 
It is well-known that @k = range G\ is dense in B and, in fact, contains all 
the C1 functions with compact support on ( — 00, 00). We shall therefore put 
F = g% and F* = B*. The form <? is then defined by (5.2) on F* X F = 
B* X Siy and (<f, B*, 3%) is a standard Dirichlet triple as defined in Defini
tion 5.1. Now let us ask if S is a Dirichlet form on S& X 3% by Kunita's 
definition. Let </> £ C1( — 00, 00 ) with compact support. Then, 

/»oo 

<f (*,*) = - I M'dtf = 0. 
«J-00 

However, it is clear the if/ can be chosen so that \p Ç_ 3% and 

/*oo 

<̂ (i/s *) = - J Wdx ^ 0. 

Thus, condition B2 of Kunita's definition fails to hold here. The above argu
ment shows, in fact, that there exists no extension of S to a larger subset 
D(B) X D{B) D & X St of B X B such that condition B2 of Kunita's 
definition holds. In this example we have £0 = 0. 

The second example involves a type of application that will be exploited 
more fully in a subsequent article ; the details are too lengthy to present here. 

(b) Let B = L2(X, dm), where (X, m) is a measure space. Each Dirichlet 
form $ arises as a limit of the form 

(6.1) lim X f \fr(x)[<l>(x) - \Gx<t>(x)]drn = S (^,0), 

where {G\ : X > 0} is a submarkovian resolvent family. However, Dirichlet 
forms may also arise naturally as limits of the type 

(6.2) lim I yfr(x)[4>(x) -Sx4>(x)]jx(x)dm. 
x_*x, Jx 

where the 5\'s are submarkovian operators, but not necessarily pseudo-
resolvents. Although the general theory of Dirichlet forms shows that the limit 
can be rewritten in the form (6.1), it often occurs originally in the form (6.2). 
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