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BLOCKING SETS AND SKEW SUBSPACES 
OF PROJECTIVE SPACE 

AIDEN A. BRUEN 

In what follows, a theorem on blocking sets is generalized to higher 
dimensions. The result is then used to study maximal partial spreads of 
odd-dimensional projective spaces. 

Notation. The number of elements in a set X is denoted by \X\. Those 
elements in a set A which are not in the set B are denoted by A — B. In 
a projective space 2 = PG(n, q) of dimension n over the field GF(q) of 
order g, Td(&d, Ad, etc.) will mean a subspace of dimension d. A hyper plane 
of 2 is a subspace of dimension n — 1, that is, of co-dimension one. 

A blocking set in a projective plane TT is a subset 5 of the points of IT 
such that each line of ir contains at least one point in .5 and at least one 
point not in 5. The following result is shown in [1], [2]. 

THEOREM 1. Let S be a blocking set in the plane T of order n. Then 
\S\ ^ n + -\fn + 1 . 7 / equality holds, then 5 is the set of points of a Baer 
subplane of T. 

We proceed to generalize this to higher dimensions. 

THEOREM 2. Let S be a set of points in 2 = PG(n, q),n ^ 2. Suppose that 
(1) Every hyper plane of 2 contains at least one point of S. 
( 2 ) 5 does not contain any line. 

Then \S\ ^ q + Vq~ + 1. If \S\ = q + \rq + 1, the points of S are the 
points of a Baer subplane of some plane in 2. 

Proof. The case n = 2 follows from Theorem 1, and we proceed by 
induction on n. Let us assume that |5| ^ q + A / ^ + 1- Now let u, v be 
any two points of 5. By hypothesis there exists a point x on the line 
joining u to v such that x is not in S. The lines of 2 through x form the 
Points of the Quotient Geometry 2X. By joining each to x, the points 5 
of 2 then yield a set of Points Sx in 2^. The dimension of 2X is n — 1. 
Each hyperplane a of 2 through x yields a Hyperplane ax in 2X. By 
hypothesis, ax contains at least one Point of Sx. Since x, u, v are collinear, 
we have 

\SX\ < \S\ è q+ Vq+ 1. 

Thus 15a:| < q + Vq ~\- 1. Then, by induction, some Line in 2X consists 
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entirely of Points of Sx. Translating back into 2, this means that some 
plane ir of 2 containing x also contains at least q + 1 points of S. Let 
A = An_i be any hyperplane of 2 containing w. Suppose that some 
subspace V = I\_2 of A of dimension n — 2 contains no point of S. Each 
member of the pencil of q + 1 hyperplanes of 2 that contain T contains 
at least one point of 5. Since A contains at least q + 1 points of S, we get 

|5| à 1- (q+ 1) + 2 - 1 = 2<? + 1. 
This contradicts the assumption that |S| ^ g + Vg~ + 1. Thus each 
hyperplane F of A contains at least one point of S. Since 5 Pi A contains 
no line we obtain by induction that 

\Sn A\^q + Vq + 1, 

with equality if and only if the points of S H A are the points of a Baer 
subplane of some plane w of A. Now |5 H A| ^ |5|, and \S\ ^ q + 
yfq + 1, by assumption. Since \S C\ A| ^ g + y/q + 1 it follows that 
S C\ A = 5, and we are done. 

We turn our attention to maximal partial spreads of 2 = PG(2t + 1, 
q), t ^ 1. A partial /-spread or, simply, a partial spread of 2 is a collection 
W of /-dimensional subspaces of S such that no two members of W have a 
point of 2 in common (i.e., any two members of W are skew). If each 
point of 2 lies on a (unique) member of W, then PP is called a spread of 
2. In that case |PT| = qt+1 + 1. A partial spread W is maximal provided 
that (1) and (2) below are both satisfied. 

(1) W is not a spread 
(2) W is not contained in any larger partial spread of 2. 

The integer d = qt+l + 1 — \W\ is then called the deficiency of W. 

THEOREM 3. Let Wbe a maximal partial t-spread of 2 = PG(2t + 1, q). 
Assume that q ^ 4. 77&e« |PF| ^ g + y/q -\- 1. 

Proof. Put PT = jîe/i, ze/2, . . . , w*}. By way of contradiction assume 
that 

\W\ = k <q+ y/q+ 1. 

Using this assumption on \W\, and counting incidences, it follows that 
there exists a hyperplane 12 = 122, of 2 containing none of the wt. In 12 
we now have k skew subspaces of the type wt C\ 12. Repeating the above 
argument we can find a hyperplane of 12 containing none of the wt r\ 122*. 
Proceeding like this wre obtain a subspace A = At+2 such that 
wtr\ A = lu where lt is a line of A. Now put R = {h, /2, . . . , lk\. No 
two lines liy lj meet if i ^ 7. Let P be any point on any line h of P . Sup
pose that u was a line on P , w $ P , such that each point of u is on a line 
of P . Similarly, let z; be any other transversal of P through P. Now 
\R - {Ml < g + Vg• Also g + (g - 1) > g + Vg if g ^ 3. It follows 
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that some two lines la, lp of R would have as transversals the two co-planar 
lines u and v. Then la and 1$ would intersect, a contradiction. Thus, for 
any point P on any line U of R, there is at most one transversal of R 
through P. So the total number of transversals to R is at most k = \W\. 
Let X denote those lines of A which are either lines of R or transversals 
to R. Then 

\X\ ^ 2k < 2(q + Vq+ 1). 

The number of hyperplanes of A that contain a given line is equal to 
q* + ql~l + . . . + 1. For q ^ 4 we have 

2(g + Vq + 1)(<Z* + q1-1 + . . . + 1) < qt+2 + qi+l + . . . + 1. 

The total number of hyperplanes of A is qt+2 + qt+2 + . . . + 1. From 
the above inequality we can therefore find a hyperplane T = T H i of 
A = At+2 such that F contains no line of X. Then WiC\ T = xu with xt 

being a point of T. By our choice of T the set S = {%i, x2, . . . , xk\ con
tains no line of T. Since IF is a maximal partial /-spread, each hyperplane 
of r contains at least one point of 5". An appeal to Theorem 2 shows that 
the assumption k < q + s/q + 1 leads to a contradiction. Thus k ^ q + 
V5~+ 1» a n d the proof is complete. 

Notation. Let TF be a maximal partial /-spread of 2 = PG(2t + 1, q) 
having deficiency d. Then we set /(d) = J(d — l)(d3 — d2 + d + 2). 

THEOREM 4. The following bounds hold: 
(i) q+ Vq + 1 ^ \W\forq ^ 4. 

(ii) \W\ g g^ 1 - V?. 
(iii) / / g Î5 wo/ a square, then f(d) ^ qt+l. 
(iv) Ift=l then q + Vq+ I < \W\. 

Proof. Part (i) has been shown in Theorem 3. Parts (ii) and (iii) follow-
exactly as in the proof of Theorem 5 in [3] which makes use of Bruck's 
embedding theorem. Part (iv) is shown in [4]. 

Remark. In Theorem 3.1 of his paper in Math. Zeit. (211-229, 1975) 
A. Beutelspacher obtained bounds which were stronger than those in 
Theorem 4 above. However, his proof is in error, as he points in a subse
quent paper in Math. Zeit., and his results have been retracted. 
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