BLOCKING SETS AND SKEW SUBSPACES OF PROJECTIVE SPACE

AIDEN A. BRUEN

In what follows, a theorem on blocking sets is generalized to higher dimensions. The result is then used to study maximal partial spreads of odd-dimensional projective spaces.

Notation. The number of elements in a set X is denoted by $|X|$. Those elements in a set A which are not in the set B are denoted by $A-B$. In a projective space $\Sigma=P G(n, q)$ of dimension n over the field $G F(q)$ of order $q, \Gamma_{d}\left(\Omega_{d}, \Lambda_{d}\right.$, etc.) will mean a subspace of dimension d. A hyperplane of Σ is a subspace of dimension $n-1$, that is, of co-dimension one.

A blocking set in a projective plane π is a subset S of the points of π such that each line of π contains at least one point in S and at least one point not in S. The following result is shown in [1], [2].

Theorem 1. Let S be a blocking set in the plane π of order n. Then $|S| \geqq n+\sqrt{n}+1$. If equality holds, then S is the set of points of a Baer subplane of π.

We proceed to generalize this to higher dimensions.
Theorem 2. Let S be a set of points in $\Sigma=P G(n, q), n \geqq 2$. Suppose that
(1) Every hyperplane of Σ contains at least one point of S.
(2) S does not contain any line.

Then $|S| \geqq q+\sqrt{q}+1$. If $|S|=q+\sqrt{q}+1$, the points of S are the points of a Baer subplane of some plane in Σ.

Proof. The case $n=2$ follows from Theorem 1, and we proceed by induction on n. Let us assume that $|S| \leqq q+\sqrt{q}+1$. Now let u, v be any two points of S. By hypothesis there exists a point x on the line joining u to v such that x is not in S. The lines of Σ through x form the Points of the Quotient Geometry Σ_{x}. By joining each to x, the points S of Σ then yield a set of Points S_{x} in Σ_{x}. The dimension of Σ_{x} is $n-1$. Each hyperplane σ of Σ through x yields a Hyperplane σ_{x} in Σ_{x}. By hypothesis, σ_{x} contains at least one Point of S_{x}. Since x, u, v are collinear, we have

$$
\left|S_{x}\right|<|S| \leqq q+\sqrt{q}+1
$$

Thus $\left|S_{x}\right|<q+\sqrt{q}+1$. Then, by induction, some Line in Σ_{x} consists

[^0]entirely of Points of S_{x}. Translating back into Σ, this means that some plane π of Σ containing x also contains at least $q+1$ points of S. Let $\Lambda=\Lambda_{n-1}$ be any hyperplane of Σ containing π. Suppose that some subspace $\Gamma=\Gamma_{n-2}$ of Λ of dimension $n-2$ contains no point of S. Each member of the pencil of $q+1$ hyperplanes of Σ that contain Γ contains at least one point of S. Since Λ contains at least $q+1$ points of S, we get
$$
|S| \geqq 1 \cdot(q+1)+q \cdot 1=2 q+1 .
$$

This contradicts the assumption that $|\mathrm{S}| \leqq q+\sqrt{q}+1$. Thus each hyperplane Γ of Λ contains at least one point of S. Since $S \cap \Lambda$ contains no line we obtain by induction that

$$
|S \cap \Lambda| \geqq q+\sqrt{q}+1
$$

with equality if and only if the points of $S \cap \Lambda$ are the points of a Baer subplane of some plane π of Λ. Now $|S \cap \Lambda| \leqq|S|$, and $|S| \leqq q+$ $\sqrt{q}+1$, by assumption. Since $|S \cap \Lambda| \geqq q+\sqrt{q}+1$ it follows that $S \cap \Lambda=S$, and we are done.

We turn our attention to maximal partial spreads of $\Sigma=P G(2 t+1$, $q), t \geqq 1$. A partial t-spread or, simply, a partial spread of Σ is a collection W of t-dimensional subspaces of Σ such that no two members of W have a point of Σ in common (i.e., any two members of W are skew). If each point of Σ lies on a (unique) member of W, then W is called a spread of Σ. In that case $|W|=q^{t+1}+1$. A partial spread W is maximal provided that (1) and (2) below are both satisfied.
(1) W is not a spread
(2) W is not contained in any larger partial spread of Σ.

The integer $d=q^{t+1}+1-|W|$ is then called the deficiency of W.
Theorem 3. Let W be a maximal partial t-spread of $\Sigma=P G(2 t+1, q)$. Assume that $q \geqq 4$. Then $|W| \geqq q+\sqrt{q}+1$.

Proof. Put $W=\left\{w_{1}, w_{2}, \ldots, w_{k}\right\}$. By way of contradiction assume that

$$
|W|=k<q+\sqrt{q}+1
$$

Using this assumption on $|W|$, and counting incidences, it follows that there exists a hyperplane $\Omega=\Omega_{2 t}$ of Σ containing none of the w_{i}. In Ω we now have k skew subspaces of the type $w_{i} \cap \Omega$. Repeating the above argument we can find a hyperplane of Ω containing none of the $w_{i} \cap \Omega_{2 t}$. Proceeding like this we obtain a subspace $\Lambda=\Lambda_{t+2}$ such that $w_{i} \cap \Lambda=l_{i}$, where l_{i} is a line of Λ. Now put $R=\left\{l_{1}, l_{2}, \ldots, l_{k}\right\}$. No two lines l_{i}, l_{j} meet if $i \neq j$. Let P be any point on any line l_{1} of R. Suppose that u was a line on $P, u \notin R$, such that each point of u is on a line of R. Similarly, let v be any other transversal of R through P. Now $\left|R-\left\{l_{1}\right\}\right|<q+\sqrt{q}$. Also $q+(q-1)>q+\sqrt{q}$ if $q \geqq 3$. It follows
that some two lines l_{α}, l_{β} of R would have as transversals the two co-planar lines u and v. Then l_{α} and l_{β} would intersect, a contradiction. Thus, for any point P on any line l_{i} of R, there is at most one transversal of R through P. So the total number of transversals to R is at most $k=|W|$. Let X denote those lines of Λ which are either lines of R or transversals to R. Then

$$
|X| \leqq 2 k<2(q+\sqrt{q}+1)
$$

The number of hyperplanes of Λ that contain a given line is equal to $q^{t}+q^{t-1}+\ldots+1$. For $q \geqq 4$ we have

$$
2(q+\sqrt{q}+1)\left(q^{t}+q^{t-1}+\ldots+1\right)<q^{t+2}+q^{t+1}+\ldots+1
$$

The total number of hyperplanes of Λ is $q^{t+2}+q^{t+2}+\ldots+1$. From the above inequality we can therefore find a hyperplane $\Gamma=\Gamma_{t+1}$ of $\Lambda=\Lambda_{t+2}$ such that Γ contains no line of X. Then $w_{i} \cap \Gamma=x_{i}$, with x_{i} being a point of Γ. By our choice of Γ the set $S=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ contains no line of Γ. Since W is a maximal partial t-spread, each hyperplane of Γ contains at least one point of S. An appeal to Theorem 2 shows that the assumption $k<q+\sqrt{q}+1$ leads to a contradiction. Thus $k \geqq q+$ $\sqrt{q}+1$, and the proof is complete.

Notation. Let W be a maximal partial t-spread of $\Sigma=P G(2 t+1, q)$ having deficiency d. Then we set $f(d)=\frac{1}{2}(d-1)\left(d^{3}-d^{2}+d+2\right)$.

Theorem 4. The following bounds hold:
(i) $q+\sqrt{q}+1 \leqq|W|$ for $q \geqq 4$.
(ii) $|W| \leqq q^{t+1}-\sqrt{q}$.
(iii) If q is not a square, then $f(d) \geqq q^{t+1}$.
(iv) If $t=1$ then $q+\sqrt{q}+1<|W|$.

Proof. Part (i) has been shown in Theorem 3. Parts (ii) and (iii) follow exactly as in the proof of Theorem 5 in [3] which makes use of Bruck's embedding theorem. Part (iv) is shown in [4].

Remark. In Theorem 3.1 of his paper in Math. Zeit. (211-229, 1975) A. Beutelspacher obtained bounds which were stronger than those in Theorem 4 above. However, his proof is in error, as he points in a subsequent paper in Math. Zeit., and his results have been retracted.

References

1. A. Bruen, Baer subplanes and blocking sets, Bull. Amer. Math. Soc. 76 (1970), 342-344.
2. ——Blocking sets in finite projective planes, SIAM. J. Appl. Math. 21 (1971), 380-392.
3. -Collineations and extensions of translation nets, Math. Z. 145 (1975), 243-249.
4. A. Bruen and J. A. Thas, Blocking sets, Geom. Ded. 6 (1977), 193-203.

University of Western Ontario,
London, Ontario

[^0]: Received August 8, 1978 and in revised form May 25, 1979.

