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INITIALLY STRUCTURED CATEGORIES
AND CARTESIAN CLOSEDNESS

L. D. NEL

Introduction. In recent papers Horst Herrlich [4; 5] has demonstrated the
usefulness of topological categories for applications to a large variety of special
structures. A particularly striking result is his characterization of cartesian
closedness for topological categories (see [5]). Spaces satisfying a separation
axiom usually cannot form a topological category in Herrlich’s sense however
and some interesting special cases, e.g. Hausdorff k-spaces, remain excluded
from his theory despite having many analogous properties. It therefore seems
worthwhile to undertake a similar study in a wider setting. To this end we
relax one of the axioms for a topological category and show that in the resulting
initially structured categories a significant selection of results can still be
proved, including the characterization of cartesian closedness. \oreover
initially structured categories have useful hereditary properties not shared by
topological categories. We apply the categorical results to several special cases.
These include categories of convergence spaces, limit spaces and pseudo-
topological spaces (with or without separation axioms) and also some ‘‘non-
topological”” examples such as preordered, ordered and bornological spaces. The
category theory enables us to establish in a rather effortless way that each of
these categories have well-behaved function space structures i.e. is cartesian
closed. The same is true of their quotient-reflective or non-trivial finitely
productive coreflective subcategories.

1. Initially structured categories. This section is mainly but not exclu-
sively to prepare the way for the study of cartesian closedness in Section 2.
Some key facts to be established include the equivalence of the notions extremal
epi-sink and final epi-sink, the characterization of coreflective subcategories and
the closedness of initially structured categories under formation of certain
reflective and coreflective subcategories.

Frequent use will be made of the usual functorial version of Bourbaki's
initial structures, which can be formulated as follows. Let U : 3 — X be a functor

a; o
and (4 = A4,) i, asource in A. To say that («;) is U-initial means that for any

)i
source (B — A,)i; and any morphism f in X such that U«; o f = Ub; for all ¢
there is precisely one 9 morphism ¢ such that Uc = f and «; oc¢ = b; for all
1 € I. The dual concept will be called a U-final sink.
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We are now ready to formulate the central concept of this paper.

Definition: A category U is initially structured with forgetful functor U if
there exists a functor U : A — Set such that the following hold:

i
IS1. Any source (X = UA ), in Set has an (epi, mono-source)-factorization

x5 uB Y8 pa ..,
such that (g;) is U-initial.

[S2. U has small fibres, i.e. for every object X in Set there isat most a set of
pairwise non-isomorphic 2-objects 4 with U4 = X.

IS3. There is precisely one object P (up to isomorphism) such that UP is
terminal and separating in Set.

1.0 Examples.

(1) Every topological category in the sense of [5] is initially structured.
Indeed, if in IS1 we were to replace (epi, mono-source)-factorization by (iso,
any source)-factorization then the above definition would reduce to that of a
topological category. It will be shown below (see 1.13) that initially structured
categories are closed under formation of non-trivial coreflective and epiy-
reflective subcategories. Thus if such subcategories are formed iteratively from
the basic topological categories Born (bornological spaces), PNear (prenear
spaces, see [4]), Con (convergence spaces), PrOrd (preordered spaces) one
obtains a vast collection of examples. These include the usual categories of
Hausdorff topological spaces, k-spaces, uniform spaces, ordered spaces and
many others.

(2) If “initially structured’ is defined by IS1 and IS2 alone, then all results
through 1.14 would still hold and moreover in this case Set could be replaced by
Vec (the category of vector spaces over the real or complex numbers, with
linear maps as morphisms); more generally, Set could be replaced by any
category X which is balanced, complete, co-complete, well-powered, cowell-
powered, with every epimorphism regular and every monomorphism a section.
To make clear the possibility of such replacement we retain general terminology
and thus speak of epimorphism in Set rather than onto function. With Vec in
the role of Set the results have obvious applications to functional analysis, e.g.
to topological vector spaces, bornological vector spaces, ordered vector spaces.

For the remainder of the paper  will be an initially structured category with
forgetful functor U. Initiality and finality in any initially structured category
will always be with respect to the forgetful functor in question.

The statement IS1 is an equivalent way of saying that U is (epi, mono-
sources)-topological in the sense of [3]. Thus several useful properties of A and
U are known from [3]. We summarize some of them in the next theorem to
which frequent reference will be made, not always explicitly.

1.1 THEOREM.
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(1) U is fasthful.

f : .
(2) A source (A = D) s is the limit of a diagram D : I — A if and only if
Uf,

this source is initsal and (UA —— UD)) s ts the limit of UD.

f a
(8) For any sink (UD, =3 X) i1 there exists a sink (D, - A) and an epimor-
phism e withe o f, = Ua,for all i and such that for anyd : X — UB and any sink

b
(D — B) ey with d of; = Ub; for all 1 there exists a (unique) ¢ : A — B such
that Uc o e = d.

UB

(4) U is complete and cocomplete.

Note that the e in 1.1.3 is a monomorphism hence an isomorphism whenever
the available morphisms d form a mono-source.

S
1.2 LEMMA. Any sink (A= C) e, in A has a factorization

aq

(4,— 4 —C’ C)ier
such that (a,) is a final sink and Uc an isomorphism.

Proof. By 1.1.3 there exists a final sink (¢;) and an epimorphism e such that
e o Uf; = a; and also there exists ¢ such that Uc oe = Ul,. But then ¢ is a
monomorphism and since Set is balanced we conclude that e and Uc are
isomorphisms.

A morphism f in ¥ which forms an initial mono-source will be called an
embedding. Dually a morphism which forms a final epi-sink will be called a
quotient.

1.3 PROPOSITION.

1) f is a monomorphism in A if and only if Uf is a monomorphism in Set.
(2) f 1s an epimorphism in A whenever Uf is an epimorphism in Set.

(3) Every extremal monomorphism in A is an embedding.
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(4) Every product in A of embeddings is an embedding.
(5) If (gi of) 1s an initial mono-source, then f is an embedding.
(6) (g: of) is an initial source whenever (g,) is an initial source and f is initial.

f : . :
1.4 ProrositioN. If (4, = A) i1 is a final epi-sink in W then (Uf,) is an epi-
sink in Set.

Proof. Form the (epi-sink, extremal mono)-factorization (U4 ; 2’ X ﬁ UA4)
of (Uf,) in Set. Then m is a section, so there exists  such thatr om = 1. It
follows that m o7 o Uf; = Uf, and since (f) is final we have m or = Ud for
some d: A —A. But dof,=f;i =14 0f for all 7. Hence d = 1, and
m or = Ud = 1y,. We conclude that m is an isomorphism.

1.5 PrROPOSITION. 4 sink in A is an extremal epi-sink if and only if it is a final
epi-sink.

Proof. Factorize the given sink (f;) as (¢ o a;) with (¢;) final and Uc an
isomorphism (see 1.2). Then ¢ is a monomorphism (1.3). So if (f;) is an extremal
epi-sink, ¢ is an isomorphism and (f;) is final. Conversely, suppose (f;) is a final
epi-sink and (f;) = (m og;) a factorization with m a monomorphism. Then
(Uf ) is an epi-sink (see 1.4) and hence Um is an epimorphism in Set therefore
an isomorphism. By finality (Um)~! = Uk for some k which is clearly the
required inverse for m.

1.6 ProrosiTioN.
(1) If (f o gy) is a final epi-sink, then f is a quotient.
(2) (f o gy) is final whenever f is final and (g;) is final.
(8) For any A-morphism f the following are equivalent:
(a) f s a quotient,
(b) fis a regular epimorphism,
(¢) fis an extremal epimorphism.

Proof. 3 (a) implies (b) : If f is a quotient, then Uf is an epimorphism hence a
coequalizer in Set of (say) ¢, ¢/ : X — UA. By ISl we have factorizations
¢ =Udoe,c = Ud oewhereeisanepimorphism. It is easy to check that Uf
is then also the coequalizer of Ud, Ud'. Hence (see 1.1(3)) f is the coequalizer

of d, d'.

1.7 ProprosiTiON. I s well-powered, epiy-cowell-powered, and quotient-cowell-
powered.

Proof. This follows from the well-poweredness and co-wellpoweredness of Set
by 1S2, 1.3 and 1.6. Note: f is epi, (respectively isoy) means Uf is epi
(respectively iso).

1.8 Prorosirion. A is an (€, Nt)-category where (&, M) is any of the following
pairs: (a) (epiy, embedding), (b) (epiy, nitial mono-sources), (c) (quotient,
mono), (d) (quotient, mono-sources), (e) (final epi-sink, mono).
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Proof. For (a) the result is immediate from IS1. Let (4 fl’ A ) be any
source in . By IS1 we have an (epi, mono-sources)-factorization Uf; = Um, oe
in Set, with (m;) initial. Hence ¢ = Ud for some d with f; = m; o d an (epiy,
initial mono-source)-factorization in 9. The (epiy, initial mono-sources)-
diagonalization property follows by initiality from the (epi, mono-sources)-
diagonalization property in Set. Thus (b) holds. By virtue of its properties ¥
is clearly an (extremal epi, mono)-category (see [2]) hence (c) follows by 1.6.
From the factorization f;, = m; od above we obtain a (quotient, mono-
sources)-factorization f; = (m; om) og by forming the (quotient, mono)-
factorization d = ¢ om and the (quotient, mono-sources)-diagonalization
property follows by finality from the (epi, mono-sources)-diagonalization
property in Set. Thus (d) holds. Again U has the (extremal epi-sink, mono)-
factorization property (see 35.6 in [2]) hence by 1.5 the (final epi-sink, mono)-
factorization property and the corresponding diagonalization property follows
as above by finality.

1.9 LEMMA. For any final epi-sink (f.) i, tn A there is a set J C I such that
(f ) jer 1s likewise a final epi-sink.

Proof. Form the (quotient, mono)-factorization of each f; and use the quo-
tient cowell-poweredness of U to get the required set-indexed sink.

1.10 LEMMA. A4 functor F : A — W between initially structured categories which
preserves colimits preserves final epi-sinks.

S

Proof. Let (4;—= A); be a final epi-sink in 9. Form a sect-indexed sink

(f]) jeg as in 1.9 and let
4,3 4.2 4

be its obvious factorization through the coproduct. Then ¢ is a quotient hence
a regular epimorphism. By assumption (Fs);),c, is a coproduct and Fg a
regular epimorphism. Since every colimit is an extremal epi-sink and thus a
final epi-sink we conclude that (Ff;)c; is a final epi-sink. Then so is (Ff;) ;.

A class € of -objects will be called non-trivial if for any object 4 in A there

fi
exists a sink (C; = A) 4, with all C;in € such that (Uf,) is an epi-sink in Set.
Note that € is non-trivial whenever P € € but this criterion does not apply
when Set is replaced by Vec (see 1.0.2). We call € closed under formation of

final epi-sinks if 4 isin € whenever there exists a final epi-sink (C; = A) jer with

1.11 THEOREM. For a non-trivial subcategory € of U the following statements
are equivalent.
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(a) € is coreflective in .

(b) € s 1soy-coreflective in .

(c) € is closed under formation of colimits.

(d) € s closed under formation of coproducts and quotients.
(e) G 1s closed under formation of final epi-sinks.

Proof. (c) = (d) = (e) is patterned after 1.10 and its proof. To prove (e) = (b)
we consider the sink (C; s A) 4; of all possible f; with the fixed codomain 4

and with domain C;in €. By 1.2 there exists a factorization (C; L B 2 A) ter
of (f;) such that (g;) is final and Ue, an isomorphism. Since € is non-trivial,
(f:) and (g,) are epi-sinks. Hence B is in € and e, is the required coreflection
(counit). (a) = (b) trivially and (b) = (c) holds for any coreflective subcategory.

1.12 COROLLARY. Let B be a non-trivial class of U-objects. The following state-
ments are equivalent for an A-object A.

(a) A 1s in the coreflective hull of B in U.

(b) 4 1s a quotient of a coproduct of B-objects.

(¢) There exists a final epi-sink from B-objects to A.

(d) The sink of all possible morphisms from B-objects to A is a final epi-sink.

Of course, several additional statements are known to be equivalent with
these in 1.11 and 1.12 respectively; this is by virtue of 2 being cocomplete,
well-powered and epiy-cowell-powered (see [2, section 37]).

1.13 THEOREM. Let B be a subcategory of N with embedding functor E : B — A.
Then B s tnitially structured with forgetful functor UE whenever one of the
following holds:

(a) B s a non-trivial coreflective subcategory of .

() B 1s an epiy-reflective subcategory of .

Proof. Given the source (X = UEB ) ier we apply 1S1 to get the factorization

Ug;

X — UAd =25 UEB;)«;

with e an epimorphism and (g;) a U-initial source. To prove IS1 in case (a)
consider the right adjoint R of E and coreflection ¢y : ERA — A and observe
that

(X (UeA) UERA U(g1064) UEB )1€I

is an (epi, mono-source)-factorization of (f,). By fullness of E we have
g, 0e, = some Eh,; and the U-initiality of (g;) together with the universal
property of e, forces (h;) to be UE-initial. To prove IS1 in case (b) we consider
the left adjoint R of E and unit of adjunction y : I — ER and observe that they
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give rise to a factorization (Ek, o n4) of the mono-source (g,). Hence Un, is a
monomorphism and thus an isomorphism. It is easy to check that (%,) is a
UE-initial mono-source and thus that UEk, o (Un, o e) will be a factorization
of (f,) as required by IS1. Verification of IS2 and IS3 is straightforward in both
cases.

It should be noted that the above proof in conjunction with 1.11 also shows
that if ¥ is topological then ¥ is topological whenever (a) holds. The corre-
sponding conclusion cannot be made when (b) holds.

We note for convenient reference the following fact which is a special case of
[3, 7.4].

1.14 LEMMA. A subcategory B is quotient-reflective in A if and only if an object A

. . . l . .
1s in B whenever there exists a mono-source (A — By) ¢ with all B, in B.

We now begin to exploit axiom IS3. It gives us an object P in % such that UP
is a set with precisely one member, UP = {p} (say).

1.15 PROPOSITION.

(1) Every f € UA(P, A) is an embedding.

(2) Every f € A(A4, P) is a quotient.

(38) The correspondence a — Ua s a natural bijection of (P, A) onto Set
(UP, UA). Hence P is a separator in 9.

(4) The correspondence t— Ut is a natural bijection of (A, P) onto Set
(UA, UP). Hence P is terminal in U.

(5) There exists a natural isomorphism ¢ : U — (P, —). In fact ¢ can be
defined so that for each a € UA we have Upy(a)(p) = a.

(6) Every projection p4 : A X P — A has (14, t,) as tnverse, where t, is the
unique morphism in (A4, P).

(7) U preserves coproducts.

1.16 PrROPOSITION. Every projection p4 : A X B — A 1s a quotient (UB # ).

Proof. Take any b : P — B and let ¢, denote the projection 4 X P — A.
By 1.15.6 g, is a quotient and by 1.1.2 we have

UPA 0] U(].A X b) = UPA o] (UIA X Ub) = UqA
Thus p,4 is a quotient by 1.6.1.

1.17 PrROPOSITION. For an A-object D the following statements are equivalent.
(@) Ug : A(D, A) — Set (UD, UA) is a bijection, where U,(f) = Uf.

d
(b) (P = D)eor.py ts a coproduct.

Objects D which enjoy these equivalent properties will be called discrete.
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2. Cartesian closedness. We are now going to characterize cartesian
closedness for initially structured categories U along the lines of Herrlich’s
characterization for topological categories.

Cartesian closedness gives a Set-like quality to U. To emphasize this aspect
and also because it seems technically more natural we will until further notice
replace the functor U by A(P, —). Since A(P, —) is naturally isomorphic to U
(see 1.15) all of Section 1 remains applicable. The use of A(P, —) emphasizes
the role of morphisms a : P — A4 as ‘““points” of the object 4.

2.1 THEOREM. The following statements are equivalent.

(a) A is cartesian closed i.e. it has finite products and for every A-object A the
Sfunctor A X — has a right adjoint (—)4.

(b) A X — preserves colimits for all A in .

(c) A X — preserves coproducts and quotients for all A in .

(d) 4 X — preserves final epi-sinks for all A in .

Proof. As in [5] the implications (a) = (b) = (c) are clear and (c) = (d)
follows by 1.10 and 1.6.
(d) = (a): The diagram

P > A >4 X P

(1) Cl ll X ¢

C—P X C—X—]PA X C'—;*B
a

(¢, 1)

in A is always commutative. The definition

gre(c) = fo(l Xc)o(l,1)
g
gives us an epi-sink (P, C) =5 A(A, B) (indexed by f, C). By 1.1.3 there is
3

a final epi-sink (C = B#) and an epimorphism k45 such that the diagram

AP, C) —EL 5 9(A4, B)
2) AP, f*) o
AP, BY

commutes for all f and C. But k4, is monic hence invertible since there exists a

Mq
mono-source A(A, B) — A (P, B) indexed by a € (P, 4) such that my0 g,c =
N(P, dq,,) for A-morphisms d,,,; (see 1.1.3) ; indeed we can take m, = A(a, B)
and d,; = f o (a X 1) o (¢, 1) (see Diagram 1). We can now form the commu-
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tative diagram

AP, B)
4
AP, f)
kA B

1 X gy

(3) AP, A) X A(P, C) —> (P, A) X A4, B)

A

1 X hyp!
AL, 1 X f*)

AP, A) X AP, BY)

where we define k4 5(a, ) = r o a. Since (f*) ;¢ is a final epi-sink, so by assump-
tion is (1 X f*), ¢. Hence there is a unique A-morphism e4p with A(P, e p) =
kap o (1 X hap™) and e p 0 (1 X f*) =f for all f. If eyp 01 X f*) =
esp 0 (1 X g) then (see Diagram (3)) hap~'(f* 0¢) 0a = hyp~'(g 0¢) 0a for
alla : P— A,¢ : P— C whence f* oc = g oc for all ¢ and f* = g. We con-
clude that e, 5 is co-universal for B with respect to 4 X —.

2.2 COROLLARY. Suppose U is the coreflective hull of a class of objects K. Then A
s cartesian closed whenever one of the following holds for all A in A:

(a) A X — preserves colimits of R-valued diagrams in .

(b) A X — preserves coproducts of R-objects and quotients.

(c) A X — preserves final epi-sinks (K, ii C) icy with all K in R.

When 4 X — has a right adjoint the associated natural bi-jection of
A4 X C, B) onto A(C, B4) will be denoted by ¢cp(f) = f* where f* is
characterized by the commutative diagram

A4 X B4

e N

AXC———-»B

Henceforth 7, will denote the image of » under the isomorphism k45 : A(A4, B)
— A(P, BA).

The next theorem lists a number of nice properties of cartesian closed initially
structured categories. Most of them have been noted for topological categories
in [5]. We will sometimes denote B4 by [4, B].

2.3 THEOREM. When U is cartesian closed the following hold (=~ denotes
1somorphism).
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(1) The counit e, gives an internal evaluation for A in the sense that the diagram

p_®T) 4 pa

€an

B

commutes for alla : P— A, r : A — B.
(2) A has internal compositions i.e. there exist morphisms o, s 0 —, — o7
(r ¢ A(A, B),s € (B, O)) such that the following diagrams always commute

pmi (7’(‘3 ;) B4 % cr P—r—P——}BA P——SI:—)CB
SO — —or
l (sor)p (sor)p
(\ CA CA

3) A has an internal hom-functor i.e. for each patr of morphisms

r w
(B« A, E— F) there exists a morphism 0,, such that the following diagram
commutes for allu : B — E

pP—"t v

0
(wouor)p "

It

Moreover the assignment (r, w) — 0O, defines a functor (—): AP X A — A
such that A(P, —) o (=) is naturally isomorphic to A(—, —).

(4) The object B* is characterized by the properties N(P, B*) ~ A(A, B) and
for any cluss & of objects whose coreflective hull is all of A the epi-sink

(& Y1)

B7) fiaxksn.kef

is final.

(5) Finate products of quotients are quotients.

(6) ABXC ~ (47)¢

()[4, I, B ~ 11, (4, B

8) A X [Tier Bi~]lir 4 X By in particular A X D = Icop.yA when
D 1s discrete.

9) Mlswer 44 Bl =~ I, (4, Bl; in particular B? = I ,cqep.yB when D 1s

discrete.
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Proof. (1) Implicit in the proof of 2.1. (2) Put D = B4 X C?, E = B4,
F = CB, o = Ypc(g) where g is the composition
AxBAXcBeABxlFBXcB €pc C;

let s o —, — o7 respectively be the compositions

1E><SPBAch o) CA

g rp X 1p
— 5

BA (lEy tE) BA XP

cr oo by Bx P —2 "
(3) Apply 2 and calculate. (4) We note that for each C in U there is a final

i Yes(f)

g .
epi-sink (K; = C); with all K;in &; hence if C —— B“ is a final epi-sink,
then so is Y¢p(f) 0 g; and any larger sink. (5) Withf: 4 - Bandg:C—D
we have

fXg= (1 Xg o(fX1c).

(6) The right edjoint of B X C X — is the composition of the right adjoints of
C X —and B X —. (7) and (8) Right and left adjoints preserve products and

coproducts respectively. (9) Given the coproduct (4, 4 1T ier 44)jer we have
the 1 — 1 correspondence (7) xe; < [7 ] sc; between 11, A(4, B) and A([1:4 4 B)
where [r;] o e; = 7, for all j. We lift this correspondence to A-morphisms. Define
m:[[1:44 Bl — II,[4,, Blbym = (— oey). Thenm o [rdp = (rxp). To get
an inverse for m we need n such that n o (r,p) = [rp. It is enough to put
n = g* where g : [[:4: X II,[4,, Bl - B is so chosen that g o (a, (rs))

a; "
always has a factorization P = A4, — B for some a;, since in that case we can
conclude g* o (ryp) = 7p where r o e; = r; for all j. Now the composition

I 4, x T adn Bl —" T4, % TT 445 BY)

DX2d 1T 4, % 14, B)) L22), 5

will furnish such a morphism g if we can find an isomorphism % such that
h o (a, (rxp)) always factors through some (a;, (r;p)). The existence of such &
follows by finality from the fact that (P, —) preserves coproducts (see 1.15).

Indeed we can sharpen (8) above by saying there exists an isomorphism
h:CX]I:4:—]I:(C X 4

such that for every (c,a) : P — C X [[+ A;wehaveh o (¢c,a) = (1,¢,) o (c,a;)
for some j.

We proceed to show that cartesian closedness is inherited by certain kinds of
reflective and coreflective subcategories. These inheritance properties will be
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used frequently in section 3. We resume the use of U as forgetful functor in
preference to A(P, —).

2.4 ProrosItioN. If A s cartesian closed and B is a non-trivial coreflective
subcategory of A such that the embedding functor E : B — U preserves finile
products, then B is cartesian closed.

Proof. Note first that 8B is initially structured by 1.13. Let D : I — B be a

1 . . o, . , < i - . . o, »
diagram and (D; = C)4; its colimit in 8. Then (ED; — EC) i, is a colimit in
. Since I is cartesian closed,

(EB X ED. 22X 5B % BOY..,

is a colimit in 9 for each object B € 8. But EB X ED = E(B X D) by

assumption and since B is closed under colimits in 9 we conclude that

1%/,
B XD 22N B % O)ees

is a colimit in 8.

2.5 ProOPOSITION. If A s cartesian closed and B a quotient-reflective subcategory
of A, then B 1s cartesian closed.

Proof. Note first that 8 is initially structured by 1.13 and 1.6. Note also that
since A is a (quotient, mono-sources)-category (see 1.8), B has the characteristic
property of being closed under mono-sources (see 1.14), in particular, C € 8
whenever there is a monomorphism m : C — B and B € 8. Suppose now that

f gi m
(Bi—{’ C)ie; 18 a final epi-sink in B and let (EB; = A4 — EC); be the (final
epi-sink, mono)-factorization of (E£f;) in A, where E : 8 — A is the embedding
functor. Then 4 = ED and by fullness g; = Eg,/, m = Em’ for some D, g/, m’
in B. Since f; = m’ o g/ is an extremal epi-sink (see 1.5) the monomorphism m’
Ef,
is an isomorphism and we conclude that (EB; — EC) «, is a final epi-sink in (.
Since 9 is cartesian closed and E preserves products,
(1, 1 ‘i N
w6 x B, LLXI), 5 x o)),

is a final epi-sink in ¥ for any object B in B. The left adjoint R of E preserves
colimits, hence final epi-sinks (see 1.10). Hence (1 X f;) is a final epi-sink in B
as required.

The following result is useful in applications, particularly where the class £
of compact Hausdorff spaces are involved.

2.6 PROPOSITION. Suppose N is cartesian closed and B is the coreflective hull in
A of a nontrivial class & such that B contains all finite A-products of K-objects.
Then B 1s cartesian closed.
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Proof. In view of 2.4 it is enough to show that B is finitely productive. If B

f g
and B’ are B-objects, we have final epi-sinks (K 3 B) e and (K, o B’ jerr
with all K;, K;in 8. Then (f; X g;):,; is an epi-sink with the factorization

[1><(§j BXBI
\ /Xg
BX K/

Since U is cartesian closed (f; X 1) is a final epi-sink (with j fixed) and
(1 X g;) jer likewise. We conclude that (f; X g;);,; 1s a final epi-sink and hence
that B X B’ isin B (see 1.12).

3. Applications. In this section we apply the preceding theory to special
cases. The categories of Hausdorff k-spaces and sequential spaces are perhaps
the best known examples of cartesian closed initially structured categories. We
prefer to consider some less known examples where more new results will be
generated by our applications.

All special categories will have objects which are pairs (X, @) where X isaset
and a some structure on X. In all cases the forgetful functor U in question will
be the obvious one such that U(X, @) = X.

3.1 Categories of ordered spaces. A preordered space is a pair (X, =) where X
is a set and = a reflexive transitive relation on X. PrOrd will denote the
category of preordered spaces and order preserving functions.

(3.1.1) PrOrd is a topological category.

(3.1.2) A source (A ']ii’ A ) ey m PrOrd is initial if and only if x < y holds
in A precisely when fi(x) < fi(y) holds in A, for all v € I. In particular,
(a,b) = (d/,b") holds in the product space A X B if and only if a < o' and
b <0 holds in A and B respectively.

(3.1.3) An epi-sink (B, f—l> C) iy 1n PrOrd s final if and only if ¢ < ¢’ holds
in C precisely when there exists an (f;)-chain from ¢ to ¢, i.e. a finite chain
c=w, £ w ... = w, = suchthat for each b = 0, 1,...(n — 1) there
15 a patr by = b’ in some By such that f(by) = wi and fiy (b)) = w1

(3.1.4) PrOrd s cartesian closed.

Ji
Proof. Let A be any object and (B; = C) i; any final epi-sink in PrOrd. Our
aim is to show that

1Xf,

(AXB AXC):EI
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is a final epi-sink. Suppose (¢, ¢) = (a/,¢’) holdsin A X C. Thena < a’,c £ ¢
holds in 4, C respectively. Hence there is an (f;)-chain from ¢ to ¢/, say

Wy = ¢, Wy, - .., w, = c. But then (a, wo), (e, w1), . .. (a, w,_1), (', w,) isa
(1 X f;)-chain from (a,¢) to (a’,¢’). On the other hand, if zy,...,2, is a
(1 X fy)-chain from (a,c) to (a/,c’) then clearly 20 <2 < ... <2, and

(a,¢) = (¢, ¢"). Applying 3.1.3 we conclude that (1 X f;), which is clearly an
epi-sink, is final.

Ord will denote the subcategory of PrOrd determined by those objects

(X, =) for whichx £ yandy < x imply x = y. If (4 = A ;) ier is @ mono-

source with all 4;in Ord, then clearly 4 is in Ord. By applying 1.14, 1.13 and
2.5 we have the following result.

(3.1.5) Ord s quotient reflective in PrOrd, hence Ord is an initially structured
cartesian closed category.

3.2 Categories of convergence structures. Let X be a set and ¢ a function whose
value at each x in X is a set gx of filters on X ‘“‘convergent to x’’ such that

(1) & € gx where % is the ultrafilter with base {x}, and

(2)F € qxand ¥ D.F implies F € gx.

Then (X, ¢) is called a:

convergence space if and only if # M x € gx whenever # € gx;

limit space if and only if # N 9 ¢ gx whenever# , 9 ¢ gx;

pseudotopological if and only if # € gx whenever & € gx holds for every
ultrafilter ¥ D % ;

pretopological space if and only if A, € gx where A4/, is the intersection of all
filters in gx.

A pretopological space is topological when .4, always has a member V such
that V € A, for each ¥y € V. For background we refer to [1] and [7] where
references to further basic papers will be found. The above spaces are the objects
of the categories Con, Lim, PsT, PrT and Top to be discussed ; the morphisms
in each case are all continuous functions f, i.e. those carrying filters convergent
to x to filters convergent to f(x). The following are easy to check and essentially
well-known.

(3.2.1) Con, Lim, PsT, PrT and Top are topological categories. Each is a
bireflective subcategory of every category preceding it in this list.

We proceed to examine these categories for cartesian closedness.

(3.2.2) A source (4 L’ A }) ser 15 initial in Con, Lim, PsT, PrT and Top if
and only if ¥ € qx holds in A = (X, q) precisely when f(F ) € q.f(x) holds in
A, = (X4, q0) foralli € I. In particular, F converges lo (x, y) in a product space
A X B if and only if the projections poF , ppF converge to x, y respectively.
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The characterization of final epi-sinks for various categories of convergence
structures in this section generalize the characterizations for quotient maps
given in [7].

f . . . . .
(3.2.3) An epi-sink (X q;) = (X, ¢9)(¢ € I)1n Con 1s final 1if and only if for
eachy € X F € qyimplies that there exists fyand & such that F D (&) & € g
and f(x) = y.

Proof. 1t is straightforward to verify that the refinements of filters f,(&")
described above form a convergence structure and moreover that this is the
finest such structure for which all functions f; will be continuous.

(3.2.4) Con s cartesian closed.

Proof. Let (X4, q4) = (Y, @) ic; be any final epi-sink and (Z, ) any object
in Con. Suppose .% converges to (z,v) in (Z X V,r X q) =(Z,r) X (Y, q).
By 3.2.2p4(#) € gqvand by 3.2.3 pp(Z ) D fi(&) where & € gaxandf(x) = y.
But then p,(%) X & € (r X q)(z, %), (1 X f)(z, %) = (3,9) and F D (1 X

Ff)Pz(F) X &). By 3.2.3 (1 X f,) is a final epi-sink and thus the result follows
by 2.1.

Next we consider the subcategory HCon of Con as prototype of many
others that may be defined by a separation axiom. Objects of HCon are the
Hausdorff convergence spaces (i.e. those in which limits are unique). If

f

(4 = H ;) ic; is a mono-source in Con with all H; in HCon, then clearly 4 is in
HCon. By 1.14, 1.13 and 2.5 we have the following.

(3.2.5) HCon s quotient reflective in Con. Hence HCon s « cartesian closed
inatially structured category.

fi .
(3.2.6) An epi-sink (X, q.) = (X, @)@ € I)n Lim s final 1f and only if for
eachy € X & € gy implies that
F D fin(ED) N fin(ED) oo N fim (677

for some finite set of filters &\, ... & " such that &* € qux* and fyp (%) = vy
fork =12 ...n.

The proof of the next result may be patterned after that of 3.2.4.
(3.2.7) Lim 1s cartesian closed.

This was already established in [1] by a different method. As in the case of
3.2.5 we have also for HLim (Hausdorff limit spaces) the following.

(3.2.8) HLim s quotieni-reflective in Lim. Hence HLim s « cariesian closed
inatially structured category.
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. Ji : : .
(3.2.9) An epi-sink (X, q¢;) = (X, q)(2 € I) in PST is final if and only if for
each y ¢ X and each ultrafilter % on X, F € qyimplies # = f(&) for some
ultrafilter & such that & € g and fi(x) = v.

The proof of the next result may again be patterned after that of 3.2.4
(p2(#) X & has to be replaced by an ultrafilter containing it).

(3.2.10) PST is cartesian closed.

For HPST (Hausdorff pseudotopological spaces) we have the following
analogue of 3.2.5.

(3.2.11) HPST s quotient reflective in PST. Thus HPsT s a cartesian closed
wmitially structured category.

As a consequence of the preceding results we also have at once the following
fact.

(3.2.12) Every finitely productive non-trivial coreflective subcategory of Con,
HCon, Lim, HLim, PsT, HPsT, is an initially structured cartesian closed
category. So is in particular the coreflective hull of all compact Hausdorfl spuces in
each category or (if sequential spaces are desired) the coreflective hull of the space N*
(= one-point compuctification of the discrete space of natural numbers).

Thus in particular the category of locally compact Hausdorff convergence
spaces studied in [8] is cartesian closed. It is well known that Top is not
cartesian closed.

3.3 The category of bornological spaces. A bornological space (see [6;9]) is a
pair (X, #) where X is a set and & a family of “bounded’” subsets of X such
that

(1) A, B € & implies A UB ¢ ¥,

2)Be X and A C Bimply 4 € &, and

(3) B finite implies B ¢ Z.

A function between bornological spaces is called bounded if and only if it
carries bounded sets onto bounded sets. Born will denote the category of
bornological spaces with bounded functions. The utility of this category for
functional analysis has become apparent through [6] and |9].

(3.3.1) Born is a topological category.

(3.3.2) A source (X, D) = (X, B )@@ € 1) in Born s initial if and only if
B € Z holds whenever fi(B) € &, for all i € 1.

fi A :
(3.3.3) An epi-sink (X, B;) — (X, B)(« € I) in Born is final if and only if
every B € & is contained in a finite union of sets f;(M) with M € & ,.
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(3.3.4) Born s cartesian closed.

S
Proof. Let (X4, Z ;) = (X, Z#)(i € I) be an epi-sink and (Z, €) an object in
Born. Suppose 4 C Z X X is bounded in the product structure 4 X %
(see 3.3.2). Then by 3.3.2 and 3.3.3

px(A) Cfin(M) I ..o\ fi (M)

where M* € &, for each k. Then p,(4) X M* ¢ € X % 4 and
A C Uk (1 X faw) (p2(4) X MF).

Thus (1 X f,) is a final epi-sink and we can apply 2.1.
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