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Universidade Federal do Rio de Janeiro, PO Box 68530,

21945-970 Rio de Janeiro, Brazil (collier@impa.br)

(Received 5 November 2001)

Abstract A module of a ring of differential operators D over a smooth surface has order 1 if it is
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1. Introduction

Holonomic modules have been the showpiece of the theory of rings of differential operators
for many years. Their connections with many other areas of mathematics, and the fact
that they are amenable to a complete classification, has secured them this place. However,
many modules that occur in nature are not holonomic; the most conspicuous are probably
those that correspond to a single partial differential equation.

In this paper we study the structure of the non-holonomic modules associated with
a first-order algebraic partial differential equation in dimension 2. These modules have
often been used in the construction of examples of simple non-holonomic modules (see
[2, 7, 8, 20]). This work has shown that there are two cases to consider, depending on
whether the symbol of the differential operator is singular or non-singular. In this paper
we deal only with the singular case.

The main results of the paper are easily summarized. Let X ⊆ Cn be an irreducible,
smooth affine complex algebraic surface, and let X̄ be its projective closure in Pn(C).
Suppose that d is a derivation of the coordinate ring O(X). Denote by D(X) the ring of
differential operators of X. We say that a D(X)-module M has order 1 if there exists a
derivation d and an element f of O(X) such that M ∼= D(X)/D(X)(d + f). The main
results of the paper are summarized in the following theorem.
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Theorem 1.1. Suppose that X̄ is an irreducible, smooth projective variety. If
Pic(X) = 0, then there exist

(1) infinitely many non-isomorphic GK-critical D(X)-modules of length k, for every
integer k � 1;

(2) infinitely many non-isomorphic indecomposable D(X)-modules of length 2, whose
simple subfactors have order 1.

Theorem 1.1 (1) is a generalization of Theorem 3.3 of [7] which draws heavily on ideas
from Bernstein and Lunts in [2, § 4] (see also [17]). However, all of these results apply
only to modules over the Weyl algebra, and even in this case they are of a more limited
scope than the results of § 3.

We prove the theorem by passing to the analytic category. As we will see, there are
considerable differences between germs of non-holonomic D-modules in the analytic and
algebraic categories. Thus, modules that are simple in the algebraic category cease to be
so when one passes to the analytic category.

2. Preliminary results

Throughout this section we assume that A is a Noetherian regular C-algebra, which is a
domain. The ring of differential operators D(A) is the subring of EndC(A) generated by
A and its C-derivations. As usual, the module of C-derivations of A will be denoted by
DerC(A).

The ring D(A) has a natural filtration {Ck}k�0 by the order of a differential oper-
ator, where C0 = A, C1 = A + DerC(A) and Ck = Ck

1 . The corresponding graded ring is
isomorphic to the symmetric algebra of DerC(A), which we denote by S(A). If Sk(A) is
the kth homogeneous component of S(A), the symbol map of order k is defined as the
composition

σk : Ck → Ck/Ck−1
∼−→ Sk(A),

where the first map is the canonical projection. An operator P ∈ D(A) has order k if
P ∈ Ck \ Ck−1, and the principal symbol of P is σ(P ) = σk(P ).

Let M be a finitely generated D(A)-module with generators u1, . . . , us. The assignment
Γk =

∑s
i=1 Ckui defines a filtration of M . Moreover, grΓ (M) is finitely generated as an

S(A)-module and the ideal

I(M) =
√

annS(A)(grΓ (M))

is independent of the choice of generators for M . The variety Ch(M) that corresponds
to I(M) in Spec(S(A)) is called the characteristic variety of M , and it is an invariant
of M .

The Poisson bracket of S(A) is defined on homogeneous elements f = σr(d) and
f ′ = σs(d′) by the formula

{f, f ′} = σr+s−1([d, d′]).
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When A is the coordinate ring of a smooth affine variety, the Poisson bracket defined
above coincides with the one determined by the standard symplectic structure of the
cotangent bundle. An ideal J of S(A) is closed with respect to the Poisson bracket if
{J, J} ⊆ J . In this case we say that the variety of Spec(S(A)) defined by J is involutive.
The characteristic variety of a finitely generated D(A)-module is always an involutive
variety, a fact that we will often use in this paper; for a proof see [10]. As a consequence
of this fact we have that the dimension of the characteristic variety of a finitely generated
D-module over an irreducible smooth complex variety X is always greater than or equal
to dim(X). Holonomic modules are those whose characteristic variety has dimension
equal to dim(X).

An important special case occurs when A is a regular local ring. If x1, . . . , xn is a
regular system of parameters of A, then Ω1(A) is generated by dx1, . . . ,dxn. Denoting
by ∂i the derivation of A that is dual to dxi, we have that D(A) is generated by A

and by ∂1, . . . , ∂n. Hence, S(A) is isomorphic to the polynomial ring A[ξ1, . . . , ξn], where
ξi = σ1(∂i). In particular, S(A) is a unique factorization domain. Note that if X is an
irreducible smooth affine complex variety and p ∈ X, then the reasoning above applies
to the local ring of X at p, which we denote by Op(X). In this case we refer to x1, . . . , xn

as the local coordinates of X at p.
Let d be a derivation of A. An ideal I of A is invariant under d if d(I) ⊆ I. If I is

a principal ideal generated by a ∈ A, then we say that a is invariant under d. A closed
subvariety Y of an affine variety X is invariant under d if its ideal in O(X) is invariant
under d.

Theorem 2.1. Suppose that A is a unique factorization domain. Let d be a derivation
of A and let a ∈ A be invariant under d. Assume that a is not invertible in A and
that σ1(d) is irreducible in S(A). Then, for all f ∈ A,

D(A)(d + f) � D(A)(d + f) + D(A)a � D(A).

In particular, D(A)(d + f) is not a maximal left ideal of D(A).

Proof. Suppose that

D(A)(d + f) + D(A)a = D(A),

and let us argue to a contradiction.
Choose an operator D1 of smallest possible order r, for which there exists D2 of order s

such that
D1a + D2(d + f) = 1. (2.1)

Note that both D1 and D2 must be non-zero, because d + f and a are non-invertible
elements of D(A). Moreover, r = s + 1, otherwise we would have that either

σr(D1)a = 0 or σs(D2)σ1(d) = 0,

which could hold only if D1 = 0 or D2 = 0.
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Taking symbols of order r = s + 1, we get

σr(D1)a + σs(D2)σ1(d) = 0.

But A is a regular domain, so DerC(A) is a projective A-module. Hence, S(A) is a unique
factorization domain by [18, Corollaire 1, p. 243]. Since σ1(d) is irreducible by hypothesis,
it follows that it divides σr(D1). Thus we can write

D1 = C(d + f) + D′
1 and D2 = −Ca + D′

2,

where C, D′
1 ∈ Cr−1 and D′

2 ∈ Cr−2. Let d(a) = ga, for some g ∈ A. It follows from (2.1)
that

1 = C[d + f, a] + D′
1a + D′

2(d + f) = (Cg + D′
1)a + D′

2(d + f).

But this contradicts the minimality of D1, because Cg + D′
1 ∈ Cr−1. �

Let d be a derivation of A and let f ∈ A. Write

MA(d, f) =
D(A)

D(A)(d + f)
.

For most of the remainder of this paper we will be studying the structure theory
of MA(d, f). Our first result is an immediate consequence of Theorem 2.1.

Corollary 2.2. Let d be a derivation of A and let f ∈ A. Assume that σ1(d) is
irreducible in S(A). If MA(d, f) is simple, then no non-unit of A is invariant under d.

From now on we will assume that d is a derivation with a non-empty singularity set
Sing(d), and that A is one of the following rings:

(1) the coordinate ring O(X) of an irreducible smooth affine complex surface;

(2) the localization Op(X) of O(X) at a point p ∈ X;

(3) the ring O2 = C{x1, x2} of convergent power series in two variables.

For the sake of simplicity we will write MX(d, f) instead of MO(X)(d, f).
Let d be a derivation of A which is singular at a closed point p ∈ Spec(A). Denote by

λ1 and λ2 the eigenvalues of the 1-jet jp(d) of d at p. We will refer to them simply as the
eigenvalues of d at p. Then

(1) λ1, λ2 are resonant if either λ1 = nλ2 or λ2 = nλ1, for some integer n � 2;

(2) λ1, λ2 belong to the Poincaré domain if λ1λ2 �= 0 and λ1/λ2 /∈ R−.

The following theorem of Poincaré [1, Chapter 5, § 24, p. 187] explains the importance
of these conditions.

Theorem 2.3. Let d be a derivation of O2 and suppose that 0 is a singularity of d

whose eigenvalues are non-resonant and belong to the Poincaré domain. Then d is biholo-
morphically equivalent to its linear part λ1x1∂1 + λ2x2∂2.
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From now on we denote the ring of differential operators of O2 by D2. We will make
frequent use of the following corollary of Theorem 2.3.

Corollary 2.4. Let d be a derivation of O2 and suppose that 0 is a singularity of d

whose eigenvalues are non-resonant and belong to the Poincaré domain. Then there exists
an automorphism φ of D2 such that

φ(d) = λ1x1∂1 + λ2x2∂2.

Note that, as a consequence of Corollary 2.4, φ−1(x1) is invariant under d. Thus, by
Corollary 2.2, the module MO2(d, f) cannot be simple when 0 is a singularity of d whose
eigenvalues are non-resonant and belong to the Poincaré domain. Indeed, this holds even
when the singularity does not satisfy these conditions, as the next result shows. However,
it should be noted that the result of Camacho and Sad used in the proof of the corollary
breaks down for dimensions greater than 2 (see [11]).

Corollary 2.5. Let d = g1∂1 + g2∂2 be a derivation of O2, and assume that g1 and
g2 have no common factor in O2. There is no choice of f ∈ O2 for which MO2(d, f) is a
simple left D2-module.

Proof. It follows from a result of Camacho and Sad that there exists a non-unit
h ∈ O2 invariant under d (see [6]). Moreover, the hypothesis on g1 and g2 implies that
the symbol of d is irreducible in S(A). The result follows from Corollary 2.2. �

Suppose now that A is the coordinate ring of a smooth affine surface X. It follows from
Corollary 2.2 that for MX(d, f) to be simple d must have no invariant curves. The next
result gives sufficient conditions on X for the existence of such derivations. Let Sing0(d)
be the set of p ∈ Sing(d) for which the eigenvalues of jp(d) are linearly independent over
Q and belong to the Poincaré domain. In particular, such eigenvalues are non-resonant.
Set Sing1(d) = Sing(d) \ Sing0(d).

Proposition 2.6. Let k be a positive integer and let X be an algebraic irreducible
complex affine surface with Pic(X) = 0, whose projective closure X̄ is smooth. There
exist infinitely many derivations of O(X) whose singularity sets are pairwise distinct and
such that, if d is one of these derivations, then

(1) d has no invariant algebraic curves; and

(2) Sing0(d) has at least k points.

Proof. Choose m � 3 such that m2 + m + 1 > k. Let G be a generic foliation of
degree m of P2 (see [14, p. 157] for definitions). By [14, Théoréme 1.1, p. 158], G has
no algebraic invariant curves and the eigenvalues at each one of its singular points are
linearly independent over Q and belong to the Poincaré domain.

Now consider a finite projection π : X̄ → P2, and let F be the pull-back of G under π.
We can assume, without loss of generality, that the branch locus of π does not contain
any singular point of G. It follows from [16, Theorem 1] that F leaves no algebraic curve
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of X̄ invariant. Moreover, for every singularity p of G, π−1(p) is a singular point of F
whose eigenvalues are linearly independent over Q and belong to the Poincaré domain.
However, π−1 Sing(G) does not account for the whole singular set of F . Indeed, Sing1(d)
will always be non-empty.

Finally, since Pic(X) = 0 and F is a locally free OX̄ -module of rank one, it follows
that Γ (X, F) is generated by one derivation d. Therefore, d cannot have algebraic invari-
ant curves, and |Sing0(d)| � m2 + m + 1 � k. �

An example of a family of foliations without algebraic invariant curves and whose
eigenvalues satisfy the required properties can be found in [14, p. 157]. Of course the
affine space has trivial Picard group and its projective closure is smooth, but there are
many other surfaces with this property, as the next proposition shows.

Proposition 2.7. Suppose that S is a generic complete intersection of dimension 2
in Pn, for some n � 3. Let H be a hyperplane of Pn, and write X = S \ H. Then X is a
smooth irreducible affine surface whose Picard group is 0.

Proof. Since S is a generic complete intersection, it must be irreducible and smooth.
Thus so is X. We need only prove that Pic(X) = 0. But by [9, Théorème 1.2, p. 328],
the Picard group of S is the free abelian group generated by the hyperplane class in S.
It follows that the Picard group of X is 0 by [12, Proposition 6.5, p. 133]. �

For a concrete example of a surface non-isomorphic to An whose Picard group is zero,
see [19, § 4, p. 311]. We end with some results on analytic D-modules in dimension 1.
Denote by C{x} and D1, respectively, the ring of holomorphic functions in one variable
and its ring of differential operators, and let ∂ = d/dx. Although the next result is well
known, we sketch the proof for lack of an adequate reference.

Proposition 2.8. Let f ∈ C{x} and α, β ∈ C. Then

(1) D1/D1(x∂ + f) ∼= D1/D1(x∂ + f(0));

(2) D1/D1(x∂ + α) ∼= D1/D1(x∂ + β) if and only if α − β ∈ Z;

(3) D1/D1x∂ is an indecomposable D1-module;

(4) D1/D1(x∂ + α)k is indecomposable for all α /∈ Z and all integers k � 1;

(5) D1/D1(x∂ + α) is irreducible for all α /∈ Z.

Proof. If P ∈ D1 and I is any left ideal of D1, then P̄ will denote the class of P in
the factor module D1/I. Let f = xg + f(0) and choose G ∈ C{x} such that dG/dx = g.
The isomorphism in (1) maps 1̄ ∈ D1/D1(x∂ + f) to exp(−G) ∈ D1/D1(x∂ + f(0)).

The homomorphism

D1/D1(x∂ + α) → D1/D1(x∂ + α + n)
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is defined by mapping 1̄ to x̄n, if n is a positive integer; and 1̄ to ∂̄n, if n is a negative
integer. The converse follows from [5, Lemme 3, p. 318]; while (3) and (4) are proved
in [15, Proposition 1.14, p. 39] (see also [5]).

Now let M = D1/D1(x∂ + α), for some α /∈ Z. By [15, p. 37], the characteristic
cycle of M is TCnCn + T0Cn. But the characteristic cycle is additive over short exact
sequences in the holonomic category. Thus if Q is a proper quotient of M , then Ch(Q) =
TCnCn or Ch(Q) = T0Cn. In the first case, M has C{x} as a simple quotient by [3,
Theorem 7.1, p. 207]. This implies that there exists a germ of holomorphic function g in
the neighbourhood of the origin such that xdg/dx = −gα, which is clearly impossible
since α /∈ Z. In the second case, M has C[∂] as a simple quotient supported at the origin.
Let

∑r
i=0 ci∂

i, ci ∈ C, be the image of 1̄ ∈ M under the map from M to C[∂]. An easy
computation shows that

0 = (x∂ + α)
( r∑

i=0

ci∂
i

)
=

r∑
i=0

ci(α − i − 1)∂i.

Since α /∈ Z, this equation will hold only if ci = 0 for all 0 � i � r; which completes the
proof of (5). �

3. Module structure

In this section we study the module structure of MX(d, f) when X is an affine algebraic
surface. Some of the results we prove are generalizations and improvements of those
in [2, § 4], [7]. Throughout the section X will denote an affine, smooth, irreducible surface
over C whose Picard group is 0.

Proposition 3.1. Let d be a derivation that has no proper invariant algebraic sets
of dimension greater than zero and let f ∈ O(X). If Q is a proper quotient module
of D(X)/D(X)(d + f), then Q is a holonomic module supported either on the whole
of X or on a finite number of points of X.

Proof. The hypotheses imply that Q is isomorphic to D(X)/L for some left ideal L

which contains D(X)(d + f) properly. Taking symbols we have that

S(X)σ(d) � σ(L) � S(X).

But σ(d) has degree 1 in S(X). Thus it can only be factorized in the form σ(d) = gξ,
where g ∈ O(X) and ξ is an irreducible element of S1(X). Now g ∈ C, otherwise g = 0
would be a curve invariant under d, which is excluded by hypothesis. Hence, σ(d) is
irreducible in S(X). Since S(X) is a unique factorization domain by [18, Corollaire 1,
p. 243], it follows that σ(d) generates a prime ideal of S(X). In particular,

∅ �= Z(σ(L)) � Z(σ(d)).

This implies that Z(σ(L)) has dimension smaller than 3. But Z(σ(L)) is involutive, so
it is a Lagrangian variety. Thus Q = D(X)/L must be a holonomic module.
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Since d + f ∈ L and
√

σ(L) is involutive, it follows that I =
√

σ(L) ∩ O(X) is invariant
under d. But the support of Q is equal to the set of zeros of I in X. Thus it is invariant
under d. Therefore, by the hypothesis on d, the support of Q is either X or a subset
of Sing(d). �

Lemma 3.2. Let Y be an irreducible smooth affine variety over C, and let M be a
holonomic simple left D(Y )-module whose support is Y . If the characteristic variety of M

is not the zero section T ∗
Y Y , then it must have an irreducible component supported at a

hypersurface of Y .

Proof. Since M is a holonomic module that has Y as its support, the characteristic
variety of M must contain the zero section T ∗

Y Y . Suppose that the other irreducible
components of Ch(M) are supported on varieties of codimension greater than 2. Let W

be the union of the supports of these components. We wish to arrive at a contradiction.
Let M be the sheaf of DY -modules that corresponds to M . Put U = Y \ W and

DU ⊗DY
M = H.

Hence, Ch(H) = T ∗
UU . By [4, Chapter VI, Proposition 1.7], H is a locally free coherent

sheaf of modules over OU . Thus there exists a morphism of OU -modules H ↪→ Om
U , for

some positive integer m.
Let i : U ↪→ Y be the canonical embedding. Since Y is affine and W has codimension

at least 2 in Y , it follows that Γ (U,OU ) ∼= Γ (Y,OY ) (see [13, Theorem 2.15, p. 124]).
Therefore, the sheaf-theoretic direct image i�(OU ) is isomorphic to OY . Since the direct
image functor is left exact, we have an injective map

i�H ↪→ Om
Y .

However, i is an open embedding, so the sheaf-theoretic direct image coincides with the
D-module-theoretic direct image (see [4, Chapter VI, § 5.2]).

It follows that the DY -module i�(H) is coherent over OY . Therefore, i�H is locally free
over OY by [4, Chapter VI, Proposition 1.7]. Thus Ch(i�H) = T ∗

Y Y . Now consider the
natural morphism φ : M → i�H. Since M is irreducible, φ must be injective. Therefore,

Ch(M) = Ch(M) ⊆ Ch(i�H) = T ∗
Y Y.

Hence, Ch(M) = T ∗
Y Y , a contradiction; and the proof is complete. �

Let d be a derivation of O(X). We denote by Λp(d) the lattice of C generated by the
eigenvalues of the 1-jet jp(d).

Lemma 3.3. Let d be a derivation of O(X) and let f ∈ O(X). Suppose that S is
a finite subset of X for which S ∩ Sing1(d) = ∅. The module MX(d, f) has a factor Q

supported at S if and only if

(1) S ⊆ Sing(d);

(2) f(p) = tr(jp(d)) for all p ∈ S.

Moreover, under these hypotheses, Q has length |S|.
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Proof. Suppose that MX(d, f) has a factor module Q supported at a finite set S of
points. (1) is clear. By [4, Theorem 10.6, p. 296], Q is completely reducible, and each
direct summand is supported at a point p ∈ S. Thus, we may consider one point of S

at a time. Let Qp be the localization of Q at p ∈ S. Without loss of generality we may
assume that p is the origin.

Passing to the analytic category and denoting by D2 the ring of germs of differential
operators at p, we have

D2 ⊗ MX(d, f) ∼=
D2

D2(d + f)
. (3.1)

By Corollary 2.4 there exists an automorphism φ of D2 such that d′ = φ−1(d) = λ1x1∂1+
λ2x2∂2. Twisting both sides of (3.1) with φ we get

M ′ = (D2 ⊗ MX(d, f))φ
∼=

D2

D2(d′ + f ′)
,

where f ′ = φ−1(f) and f(0) = f ′(0). Thus M ′ has (D2 ⊗ Qp)φ for a factor module. Since
φ preserves the origin, it follows that this last module is supported on the origin. Hence,
by [15, Lemma 2.1, p. 41],

(D2 ⊗ Qp)φ
∼= Br

p,

where Bp is the unique simple D2-module supported at the origin p. The result will follow
if we show that f(p) is the sum of the eigenvalues of d at p and that r = 1.

However, x1 is invariant under d′, and the origin is contained in x1 = 0, so that Br
p is

also a quotient of

N =
D2

D2(λ1x1∂1 + λ2x2∂2 + f ′) + D2x1
=

D2

D2(λ2x2∂2 + f ′ − λ1) + D2x1
.

Let i : C → C2 be the embedding defined by i(x2) = (0, x2). It follows from Kashiwara’s
equivalence (in the analytic category) that

N ∼= i+

(
D1

D1(λ2x2∂2 + f ′(0, x2) − λ1)

)
,

where D1 is the ring of differential operators of the ring of germs of holomorphic functions
on x2. Taking into account that f(0, 0) = f ′(0, 0), we have, by Proposition 2.8, that

N ∼= i+

(
D1

D1(x2∂2 + (f(0, 0) − λ1)/λ2)

)
.

Since we are assuming that N has Br
p as a factor module, it follows from Proposition 2.8

that (f(0, 0) − λ1)/λ2 must be an integer. Thus f(0, 0) = λ1 + nλ2, for some integer n.
Replacing x1 with x2 in the argument above, we conclude that f(0, 0) = mλ1 + λ2, for
some integer m. Since λ1 and λ2 are linearly independent over Q by hypothesis, it follows
that f(0) = λ1 + λ2. But, in this case,

N ∼= i+

(
D1

D1x2∂2

)
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by Proposition 2.8. In particular, N cannot have a holonomic quotient supported at 0 of
length greater than 1. Hence, r = 1.

Conversely, suppose that (1) and (2) hold and that p ∈ S. We may assume, without
loss of generality, that p = (0, 0) and that x1, x2 are local coordinates at the origin. If
d = g1∂1 + g2∂2 in these coordinates, then

g1∂1 + g2∂2 + f = ∂1g1 + ∂2g2 −
(

∂g1

∂x1
+

∂g2

∂x2

)
+ f.

Thus, in C[∂1, ∂2] we have that

(d + f) · 1 = − tr(jp(d)) + f(0, 0) = 0

by (2). Hence, MX(d, f) has a holonomic quotient supported at the origin, and the proof
is complete. �

If we drop the hypotheses on the derivation, we can still prove a lemma like 3.3 by
strengthening the hypothesis on f . Since this is a simple generalization of [7, Lemma 2.1,
p. 263], we omit the proof.

Lemma 3.4. Let d be a derivation of O(X) and let f ∈ O(X). If the module MX(d, f)
has a factor Q supported at a point p ∈ X, then

(1) p ∈ Sing(d);

(2) f(p) ∈ Λp(d) for all p ∈ S.

Theorem 3.5. Let d be a derivation of O(X), and let f ∈ O(X). Assume that

(1) d has no invariant elements in O(X);

(2) S is a subset of Sing0(d);

(3) Sing(d) \ S �= ∅;

(4) f(p) /∈ Λp(d) for all p ∈ Sing(d) \ S.

The module MX(d, f) is simple if and only if f(p) �= tr(jp(d)) for all p ∈ S.

Proof. If f(p) = tr(jp(d)) for some p ∈ S ⊆ Sing0(d), then MX(d, f) has a non-
zero factor supported at p by Lemma 3.3. In order to prove the converse, suppose
that f(p) �= tr(jp(d)) for all p ∈ S.

Assume, by contradiction, that D(X)/D(X)(d + f) admits a simple proper quotient
module H. By Proposition 3.1, H must be a holonomic module whose support is either
the whole of X or a finite set of points of X. We analyse these two cases separately.
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First case: the support of H is X

By Lemma 3.2, Ch(H) must be equal to the zero section. Hence, H is finitely gen-
erated and locally free over O(X) by [4, Chapter VI, Proposition 1.7]. Now choose a
singular point p ∈ Sing(d) \ S of d and let x1 and x2 be local coordinates at p. Without
loss of generality we may assume that p is the origin and that the 1-jet of d at p is
(λ1x1)∂1 + (λ2x2 + cx1)∂2 for some complex number c. Let D2 be the ring of germs of
analytic differential operators in a neighbourhood of the origin. Thus, D2 ⊗ H is a quo-
tient of D2/D2(d + f). Since H is finitely generated over O(X), it follows that D2 ⊗ H

is finitely generated over the ring O2 of germs of holomorphic functions at the origin.
Thus, by [3, Theorem 7.1, p. 207] there exists a map of D2-modules

D2

D2(d + f)
→ O2.

In other words, there exists a germ of holomorphic function h ∈ O2 such that (d +
f)h = 0. Let

∑
i+j=k aijx

i
1x

j
2 be the non-zero homogeneous component of smallest degree

of the Taylor series of h at the origin. Comparing coefficients in xi
1x

j
2 on both sides

of d(h) = −fh, we have that

iλ1ai,j + (j + 1)cai−1,j+1 + jλ2ai,j = −f(0)ai,j .

Choosing the smallest i for which ai,j �= 0 we obtain

iλ1 + jλ2 = −f(0) /∈ Λp(d),

a contradiction. We conclude that H cannot have the zero section as its characteristic
variety.

Second case: Ch(H) is not supported at X

Since H is simple, it follows from the first case that it must be supported at a point
p ∈ X. Furthermore, this point must be stable under d; so it has to be a singular point
of d. Thus Ch(H) = T ∗

p C2. There are two cases to consider. If p ∈ Sing(d)\S, then we have
a contradiction by Lemma 3.4; while if p ∈ S, the contradiction follows from Lemma 3.3.
In any case we conclude that D(X)/D(X)(d + f) has no proper factor modules. �

Since the characteristic variety is an invariant of the module, it follows that if
MX(d, f) ∼= MX(d′, f ′), then d = cd′, for some non-zero constant c. However, even for
a fixed characteristic variety there exist infinitely many non-isomorphic modules of the
form MX(d, f), as the next proposition shows.

Proposition 3.6. Let d be a derivation of O(X) and let c1 and c2 be complex numbers.
Suppose that

(1) the eigenvalues of d at some point p ∈ Sing0(d) are linearly independent over Q;

(2) c1, c2 and c1 − c2 do not belong to Λp(d).

Then MX(d, c1) �∼= MX(d, c2).
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Proof. Without loss of generality we may assume that p is the origin. Localizing at p,
and tensoring with D2 we conclude that

D2

D2(d + c1)
∼=

D2

D2(d + c2)
. (3.2)

By Corollary 2.4 there exists an automorphism φ of D2 such that

d′ = φ(d) = λ1x1∂1 + λ2x2∂2.

Twisting both sides of (3.2) with φ−1 we conclude that

D2

D2(d′ + c′
1)

∼=
D2

D2(d′ + c′
2)

.

Now let i be the embedding i(x1) = (x1, 0). Taking the inverse image of D2/D2(d′ +ci)
under i we obtain

D2

(x2D2 + D2(d′ + ci))
∼=

∑
k�0

D1

D1(x1∂1 + (ci + kλ2)/λ1)
∂k
2 ,

which is isomorphic to an infinite direct sum of the modules

U i
k =

D1

D1(x1∂1 + (ci + kλ2)/λ1)
,

for k � 0. But the hypotheses on c1 and c2 imply that each U i
k is a simple D1-module by

Proposition 2.8. Thus

i∗
(

D2

D2(d′ + c′
1)

)
∼= i∗

(
D2

D2(d′ + c′
2)

)
,

are semisimple modules. Therefore, there exists an integer r � 0 such that U1
0

∼= U2
r .

Hence, by Proposition 2.8,
c1 − c2 − rλ2 ∈ Zλ1.

It follows that c1 − c2 ∈ Λp(d), which contradicts (2). �

We may now turn to GK-critical modules.

Theorem 3.7. Let d be a derivation of O(X) and let f ∈ O(X). Assume that

(1) d has no invariant curves in X;

(2) S is a subset of Sing0(d) with k points;

(3) Sing(d) \ S �= ∅; and

(4) f(p) /∈ Λp(d) for all p ∈ Sing(d) \ S.

If f(p) = tr(jp(d)) for all p ∈ S, then MX(d, f) is GK-critical of length k + 1.
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Proof. Let g = 0 be a hypersurface of Cn which contains S but not Sing(d) \ S. If
Q is a quotient of MX(d, f), then Qg is a quotient of MY (d, f), where Y = X \ Z(g).
Since Pic(X) = 0, we have by [12, Proposition 6.5, p. 133] that Pic(Y ) = 0. Applying
Theorem 3.5 to the D(Y )-module MY (d, f) we conclude that Qg = 0. Hence, the support
of Q is contained in g = 0. By Proposition 3.1 this implies that Q is supported at a finite
number of points. It follows from Lemma 3.3 that Q has length at most k.

Now let N be a submodule of MX(d, f) maximal, subject to the condition that
MX(d, f)/N has length k. If N ′ is a non-zero submodule of N , then MX(d, f)/N is
a quotient of MX(d, f)/N ′. However, MX(d, f)/N has maximum possible length. Hence,
N ′ = N . Therefore, N is simple and MX(d, f) has length k + 1. �

Theorem 1.1 (1) is an immediate consequence of the following corollary, which is itself
a combination of Proposition 2.6 and Theorem 3.7.

Corollary 3.8. Let k be a positive integer, and assume that X is an algebraic irre-
ducible complex affine surface with Pic(X) = 0 whose projective closure X̄ is smooth.
There exist infinitely many derivations of X and coordinate functions f ∈ O(X) such
that MX(d, f) is GK-critical of length k.

We have shown that there exist indecomposable GK-critical modules of finite length
whose characteristic variety is the hypersurface σ(d) = 0, where d is a derivation of O(X)
without invariant algebraic curves. Thus, it is natural to ask if there exists an indecom-
posable module with this same characteristic variety that is not critical. The answer is
yes, as the next theorem shows.

Theorem 3.9. Let d be a derivation of O(X) and let c be a complex number. Assume
that

(1) d has no invariant curves in X;

(2) c /∈ Λp(d) for some p ∈ Sing(d).

The module D(X)/D(X)(d + c)2 is indecomposable of length 2 but not GK-critical.

Proof. The module N = D(X)/D(X)(d + c)2 has a composition series of the form

0 �
D(X)(d + c)
D(X)(d + c)2

�
D(X)

D(X)(d + c)2

whose subfactors are isomorphic to MX(d, c). Hence, this is a module of length 2 that is
neither simple nor GK-critical; and we must prove that it is indecomposable. Moreover,
all simple factor modules of N are isomorphic to MX(d, c).

Suppose, by contradiction, that N = Q1 ⊕ Q2, where Q1 and Q2 are simple D(X)-
modules. Since Q1 and Q2 are quotients of N , we know that

Q1 ∼= Q2 ∼= MX(d, c).
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Let p be the singularity singled out in (2). Tensoring by D2 on a neighbourhood of p, we
have that

D2 ⊗ N ∼= (D2 ⊗ Q1) ⊕ (D2 ⊗ Q2).

Note that for j = 1, 2,
D2 ⊗ Qj

∼= D2 ⊗ MX(d, c) �= 0,

so that D2⊗N cannot be indecomposable. However, by Corollary 2.4 there exists an auto-
morphism φ of D2 such that the corresponding twisted module (D2 ⊗ N)φ is isomorphic
to

D2/(D2(d′ + c))2,

where d′ = λ1x1∂1 + λ2x2∂2.
Now let i be the embedding i(x1) = (x1, 0). The inverse image of (D2 ⊗ N)φ under i

is isomorphic to

D2

x2D2 + D2(d′ + c)2
∼=

∑
k�0

(
D1

D1(x1∂1 + (c + kλ2)/λ1)2

)
∂k
2 .

Similarly, the inverse image of (D2 ⊗ Qj)φ under i is isomorphic to

∑
k�0

(
D1

D1(x1∂1 + (c + kλ2)/λ1)

)
∂k
2 .

Hence, i∗((D2 ⊗ (Q1 ⊕ Q2))φ) is semisimple. In particular,

D1

D1(x1∂1 + (c + kλ2)/λ1)2

cannot be indecomposable. But this contradicts Proposition 2.8, since c /∈ Λp(d). It
follows that D(X)/D(X)(d + c)2 is indecomposable, as required. �

This completes the proof of Theorem 1.1. Finally, passing to an affine open set of X,
we can prove all the above results for the local ring Op(X), and a derivation d with an
isolated singularity at p.
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