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ASYMPTOTIC SHAPE OF FINITE PACKINGS

KÁROLY BÖRÖCZKY, JR., AND UWE SCHNELL

ABSTRACT. Let K be a convex body in Ed and denote by Cn the set of centroids of n
non-overlapping translates of K. For • Ù 0, assume that the parallel body conv Cn +•K
of conv Cn has minimal volume. The notion of parametric density (see [21]) provides a
bridge between finite and infinite packings (see [4] or [14]). It is known that there exists
a maximal •s(K) ½ 1Û(32d2) such that conv Cn is a segment for • Ú •s (see [5]). We
prove the existence of a minimal •c(K) � d + 1 such that if • Ù •c and n is large then
the shape of conv Cn can not be too far from the shape of K. For d = 2, we verify that
•s = •c. For d ½ 3, we present the first example of a convex body with known •s and
•c; namely, we have •s = •c = 1 for the parallelotope.

1. Introduction. Finite packings of circles have been investigated already at the
beginning of the century (see [18]). The attention turned towards packings in euclidean
d-space Ed, d ½ 3, after the Sausage Conjecture of László Fejes Tóth in 1975 (see [12]).
The conjecture states that for d ½ 5, the volume of the convex hull of n non-overlapping
balls in Ed is minimal when the centers are aligned (and the convex hull of the balls is a
“sausage”).

In this paper, we consider packings of copies of a convex body K by translates of K,
and we assume it without mentioning. The symbol Cn always denotes a set of centroids
of n non-overlapping translates of K. If dim(conv Cn) = 1 the arrangement Cn is called
a sausage. The sausage with minimal V(conv Cn +•K) is denoted by Sn. An extremely
fruitful notion concerning finite packings is the notion of parametric density (see [21]);
namely, the maximum of nV(K)ÛV(conv Cn +•K) for given n and • Ù 0. Note that the
case • = 1 is the classical problem. The solution of the Sausage Conjecture by U. Betke,
M. Henk and J. M. Wills (see [4] and [14]) is based on this notion. In addition, now we
have a tool to connect the specific properties of finite and infinite packings:

There exists a maximal •s(K) ½ 1Û(32d2) such that conv Cn is a segment for • Ú •s

(see [5]). On the other hand, for • Ù d + 1, the optimal density is the same as the infinite
packing density (see [4] or [14]). This paper concentrates on the shape of the optimal
packing for large •.

Denote by ∆(K) the average part of the space taken up by a copy of K in the densest
infinite translative packing of K, and so V(K)Û∆(K) is the packing density é(K) of K.
Assume that V(conv Cn +•K) is minimal, and hence the parametric density is maximal.
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ASYMPTOTIC SHAPE OF FINITE PACKINGS 17

Cluster like packings show that asymptotically V(conv Cn +•K) is always at most n∆(K),
and the critical radius •c is defined as the infimum of • such that V(conv Cn +•K) ¾
n∆(K) for large n. It satisfies 1

2 � •c � d+1 (and even•c � 2 if K is centrally symmetric)
(see Section 3).

Theorem A below gives a more exact formulation what the shape of the optimal
arrangement is for large • (see Propositions 3.1, 3.2 and 3.3 for proofs and more precise
statements).

For a convex body C, set rK(C) = maxfï j 9xÒ x + ïK ² Cg (the inradius) and
RK(C) = minfï j 9xÒ C ² x + ïKg (the circumradius with respect to K). Note that
maximizing the parametric density is equivalent with minimizing V(conv Cn +•K).

THEOREM A. Let d ½ 2 and • Ù •c(K) for some convex body K.
(i) rK(conv Cn) tends to infinity as n !1;
(ii) if • Ù d + 1 then there exists °(•) with lim•!1 °(•) = 1 such that if V(conv Cn +•K)

is minimal then RK(conv Cn)ÛrK(conv Cn) Ú °(•) for large n.

REMARK. If K is centrally symmetric then °(•) can be defined even for • Ù 2.
Let • Ù 0. Then for large n, in the arrangement minimizing the surface-area of

conv Cn +•K (or any mean-projection of conv Cn +•K), the shape of conv Cn is asymp-
totically a ball (see [6] or [22] if • = 1, but the same proof works in fact for all positive
•). Here we can consider for • Ù •c(K) and the optimal CnÒ• the normalized shape
KnÒ• = n�1ÛdconvCnÒ•. By Theorem A and a Blaschke argument it follows that there are
convergent subsequences of KnÒ•. In general the shape of the limit body as well as its
uniqueness remains unknown. It can not be expected that for general convex body K the
asymptotical shape of the optimal packing is homothetic to K. It definitely does not hold
when • = 1 and K is a circle in the plane (see [19]). Here we can give the limit of all this
limit bodies for • ! 1. Theorem A together with V(conv Cn +•K) ¾ n∆(K) states that

lim
nÒ•!1

KnÒ• =
�é(K)

��1Ûd Ð K

In the paper [4], the authors state the so-called Strong Sausage Conjecture; namely,
if K is a ball and • Ú •c then the sausage minimizes V(conv Cn +•K). If d ½ 3 then one
can not expect a similar statement even for general centrally symmetric convex bodies
(see [1]).

At the end of Section 3, we consider the example of a parallelotope P. Until now, this
is the only known example of a convex body in Ed, d ½ 3, satisfying the Strong Sausage
Conjecture for general packings. In this case, •s(P) = •c(P) = 1, and if • Ù 1 then
the optimal shape is asymptotically homothetic to P. Note that for d ½ 3 and • Ù •c,
to determine even the asymptotic behavior of the optimal packing of a convex body K
different from the parallelotope seems to be out of reach at the moment.

We verify the Strong Sausage Conjecture for a planar convex domain K (see Sections 4
and 5). Denote by A(K) the area of K and by P(K) the area of the smallest parallelogram
containing K which satisfy A(K) � ∆(K) � P(K).

https://doi.org/10.4153/CJM-1998-002-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1998-002-5


18 KÁROLY BÖRÖCZKY, JR., AND UWE SCHNELL

THEOREM B. Assume that A(conv Cn +•K) is minimal for • Ù 0.
(i) conv Cn is a segment if either • � 3Û7 or • Ú ∆(K)ÛP(K) and n is large.

(ii) if • Ù ∆(K)ÛP(K) then RK(conv Cn)ÛrK(conv Cn) Ú °(•) for large n where
°(•) = 1 + 550Ûp• for • ½ 3.

REMARK. For centrally symmetric domains the sausage is always optimal if • Ú
∆(K)ÛP(K) (see [4]). The case of the circle is implicitly contained already in the paper [18]
of Thue.

Note that 3Û4 � ∆(K)ÛP(K) � 1. For non-centrally symmetric convex bodies, the
situation can be actually more complicated than for the symmetric ones. Assume that K
is a triangle, and hence ∆(K)ÛP(K) = 3Û4. Then for n = 3 and • Ù 1Û2, the sausage is
not optimal.

If the n translates of K are chosen from some lattice packing of K then we also call
the finite packing of K as lattice packing. The results above equally apply to finite lattice
packings. It is especially transparent in the planar case when the densest infinite lattice
packing is also the densest translative packing (see [11]). In Theorem A, the only changes
needed are that the lower bound for • is 15(d + 1) (and 3 if K is centrally symmetric).
The manuscript [1] considers asymptotic shapes of lattice packings in E3 and moreover
the asymptotic shape for lattice packings, • Ù •c, is described explicitely in [3] and [20].
The result is the Wulff-shape in crystallography.

2. Some basic inequalities. We prove various formulae involving rK(C) and RK(C).
These inequalities will be used in the subsequent sections. The following statement is a
version of Steinhagen’s theorem for general convex bodies:

LEMMA 2.1. Any convex body C is contained in a strip bounded by two parallel
hyperplanes which support a copy of d rK(C)K.

REMARK. The constant d is attained when K is a simplex and C = �K.

PROOF. We prove the statement by induction on d, where the case d = 1 readily
holds. We may assume that rK(C) = 1 and K ² C. For some 1 � m � d, there exist
x0Ò    Ò xm 2 bdK \ bdC such that the relative interior of the convex hull of the common
outer normal vectors at x0Ò    Ò xm contains the origin. Define L as the linear m-space
spanned by the m + 1 normal vectors, denote by C0 the projection of the region enclosed
by the supporting hyperplanes onto L and by K0 the projection of convfx0Ò    Ò xmg onto
L.

If m Ú d then applying the induction hypothesis to the m-simplices C0 and K0 yields
the lemma.

So assume that m = d and Fj is the facet of C0 containing xj, j = 0Ò    Ò d. Denote by
Hj the hyperplane through the centroids of the facets Fk of C0 different from Fj, and let
H+

j (H�
j ) be the halfspace containing (not containing) Fj. Since \d

j=0 int H+
j is contained

in int C0, we may assume that a vertex of K0 lies in H�
0 . Now the statement follows as

the distance of F0 from the opposite vertex of C0 is d times the distance of H0 and F0.
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A similar argument yields that

R�K(C) � d RK(C)Ò(1)

with equality if and only if K and C are homothetic simplices.
For any vector u 6= 0, denote by kukK twice the ratio of the length of u and the length

of the longest segment in K parallel to u, and set DK(C) to be the maximum of kx� ykK

for xÒ y 2 C. If K is the unit ball then DK(C) is the diameter of C. A simple application
of Helly’s theorem (reducing to the case when C is a simplex) and similar arguments as
for Lemma 2.1 yield that

RK(C) � d
2

DK(C)(2)

Here one has again equality when K is a simplex and C = �K.
The mixed volume Vi(CÒK), i = 0Ò    Ò d of H. Minkowski is defined by the formula

V(ãC + åK) =
dX

i=0

0
@d

i

1
AVi(CÒK)ãd�iåi

for ãÒ å ½ 0 (see e.g. [7] or [17]). Here Vi(CÒK) = Vd�i(KÒC) and V0(CÒK) = V(C).
The mixed volumes are continous, linear and monotonic in both variables, and they are
invariant under simultaneous volume preserving affine transformations of C and K.

Assume that C is a d-polytope and U denotes the set of outer unit normal vectors to
the facets of C. If jFuj is the (d�1)-area of the facet of C with normal vector u and hK(u)
is the value of the support function of K then

V1(CÒK) =
1
d

X
u2U

hK(u)jFuj(3)

In addition, the mixed volumes satisfy the celebrated Alexandrov-Fenchel inequality.
The case we need is that for 1 � i Ú j � d,

Vi(CÒK) j ½ Vj(CÒK)iV(C) j�i
In some particular cases, also the stability of the Alexandrov-Fenchel inequality is known.
Assume that V(C) = V(K) = 1 and the centroids C and K coincide. If the diameter of C
and K are at most D then their Hausdorff distance é(CÒK) satisfies (see [13])

é(CÒK) Ú 12d D
�
Vd�1(CÒK) � 1

� 1
d+1 (4)

In the planar case, Bonnesen’s inequality is more convenient for our purposes. Setting
A(CÒK) = V1(CÒK), we have (see [13])

A(CÒK)2 ½ A(C)A(K) + 1
4 A(K)2

�
RK(C) � rK(C)

�2(5)

For u 2 Sd�1, denote by ôK(u) the (d � 1)-area of the orthogonal projection of K
onto the hyperplane normal to u. If C is a segment with length jCj parallel to u then
Vd�1(CÒK) = 1

d jCjôK(u). We deduce that

DK(C) � 2d Vd�1(CÒK)ÛV(K)Ò(6)

which in turn yields by (2) that
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LEMMA 2.2. For any convex body C,

V(K)RK(C) � d2Vd�1(CÒK)
REMARK. If K is the unit ball Bd then the optimal constant is known; namely, instead

of d2, 2îd�1Û(dîd) where îd = V(Bd).
Using RK(C)rC(K) = 1 and interchanging the role of K and C, we also deduce

COROLLARY 2.3. For any convex body C,

d2V1(CÒK)rK(C) ½ V(C)
We also need an estimate for V(C) in terms of both of the in- and circumradius.

LEMMA 2.4. For any convex body C,

1
d2

V(K)rd�1
K (C)RK(C) � V(C) � d2V(K)rK(C)Rd�1

K (C)

PROOF. Let u 2 Sd�1. As our problem is affine invariant, we may assume that the
width wK(u) of K parallel to u is equal the length of the longest segment contained in K
parallel to u, and hence

V(K) ½ 1
d

wK(u)ôK(u)(7)

This estimate yields the upper bound for V(C) by Lemma 2.1. We deduce the lower
bound by the relation RK(C)rC(K) = 1 and interchanging the role of K and C.

By John’s theorem (see [15]), any convex body K contains a unique ellipsiod E of
maximum volume (the so-called Löwner ellipsoid), and assuming that the origin is the
center of E, we have K ² d E. If K is centrally symmetric then even K ² p

dE, and
the extremal bodies are the simplex and the parallelotope, respectively. K. Ball proved
(see [2]) that these bodies also minimize the ratio V(E)ÛV(K) among convex bodies
or centrally symmetric convex bodies, respectively. These properties of the Löwner
ellipsoid yield by Stirling’s formula

LEMMA 2.5. Assume that V(K) = 1 and the Löwner ellipsoid of K is a ball centered
at the origin. Then

1
e

Bd ² K ² d
p

dBd
The left hand side is asymptotically tight but probably d

p
d can be replaced by O(d).

More precisely,

CONJECTURE 2.6. Assume that V(K) = 1 and the Löwner ellipsoid of K is a ball. Then
the diameter of K is maximal if K is the regular simplex.

Finally, we show that given the area of the Löwner ellips, the triangle and the square
have some extremal properties also with respect to packings.

PROPOSITION 2.7. Given the area of the Löwner ellips of K, the domain maximizing
∆(K) and P(K) is the triangle, and among centrally symmetric domains that is the
parallelogram.
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REMARK. Assume that K is centrally symmetric. Then some lattice packing of K
is densest among any packings of K (allowing rotation), and hence the parallelogram
maximizes ∆(K) even in the case of general packings.

PROOF. Assume that B2 is the Löwner ellips of K. Then A(K) is maximal if K is
the regular triangle by the result of K. Ball above. Now Fáry’s theorem (see [9]) states
that ∆(K)ÛA(K) � 3Û2 with equality if and only if K is a triangle. On the other hand,
P(K)ÛA(K) � 2 (see [7]), with equality if and only if K is a triangle.

Assume that K is centrally symmetric. There exist some x1Ò x2Ò x3 such that šxj 2
bdK\bdB2, j = 1Ò 2Ò 3, and any two consecutive of the six points has acute or right angle
(allowing x1 = x2). Denote by H the hexagon (possibly square) whose sides are tangent
to B2 in šxj. We conclude that ∆(K) � A(H) as H tiles the plane, and A(H) is readily
maximal when H is the square. The statement for P(K) can be similarly proved.

3. Packings with • Ù •c. Observe that the body Pn =
�
n∆(K)ÛV(K)

�1Ûd
K contains

the centroids of n non-overlapping translates of K (see [6]) and for • Ù 0,

V(Pn + •K) = n∆(K) +
dX

i=1

0
@d

i

1
A�n∆(K)

� d�i
d V(K)

i
d •i(8)

Let conv Cn minimize V(conv Cn +•K). We deduce by (8) that asymptotically
V(conv Cn +•K) is at most n∆(K).

Denote by Z(K) the minimal volume of a cylinder containing K. It is well known that
V(K) ½ 1

d Z(K) (see [7]). Then the sausage arrangement corresponding to Z(K) shows
that V(conv Cn +•K) � n•d�1Z(K), which in turn yields that •c ½ (1Ûd)1Û(d�1). On the
other hand, we have (see [4])

V(conv Cn +•K) ½ n∆(K) for • ½ d + 1Ò(9)

and even for • ½ 2 if K is centrally symmetric. These estimates yield that •c � d + 1
(and •c � 2 if C is centrally symmetric). For d = 2, we determine the exact value of •c

in the next section.
Assume that • Ù •c, and set •0 = 1

2 (•+ •c) and Qn = conv Cn +•0K. Then there exists
some positive function û(n) with limn!1 û(n) = 0 and V(Qn) ½ �

1 � û(n)
�
n∆(K). It

follows by Minkowski’s formula that for ¢ = • � •0,

V(conv Cn +•K) = V(Qn + ¢K) Ù
�
1 � û(n)

�
n∆(K) + d V1(QnÒK)¢

Comparing this to (8) yields the existence of some constants c1 and c2 independent of n
satisfying

V1(QnÒK) � c1n
d�1

d + c2û(n)n
Since for large n, V(Qn) Ù 1

2 ∆(K) n, Corollary 2.3 yields

PROPOSITION 3.1. If • Ù •c then rK(conv Cn) tends to infinity.
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Now we give more precise information about the shape of conv Cn if • Ù d + 1 and n
is large. Let 0 Ú ¢ Ú • � d � 1. Minkowski’s formula, (9) and the Alexandrov-Fenchel
inequality yield that

V
�
conv Cn +(d + 1)K + ¢K

� Ù n∆(K) + d ∆(K)
d�1

d V(K)1Ûd n
d�1

d ¢
Therefore Qn = conv Cn +(d + 1 + ¢)K satisfies that if

n Ù 1

¢ d
d�1

• d2
d�1 then V(Qn) ½ n∆(K) + •dV(K)(10)

In particular, we deduce by (8) and V
�
Qn + (• � d � 1 � ¢)K

� � V(Pn + •K) that

d�1X
i=1

0
@d

i

1
AVi(QnÒK)(• � d � 1 � ¢)i Ú

d�1X
i=1

0
@d

i

1
AV(Qn)

d�i
d V(K)

i
d •i(11)

The Alexandrov-Fenchel inequality yields that if

Vd�1(QnÒK) ½
 •
• � d � 1 � ¢

!d�1

V(Qn)
1
d V(K)

d�1
d

then for any i � d � 2,

Vi(QnÒK) ½
 •
• � d � 1� ¢

!i

V(Qn)
d�i

d V(K)
i
d

holds. It follows by (11) that

Vd�1(QnÒK) Ú
 •
• � d � 1 � ¢

!d�1

V(Qn)
1
d V(K)

d�1
d (12)

PROPOSITION 3.2. Let • Ù d + 1 and n be large. If V(conv Cn +•K) is minimal then

RK(conv Cn)
rK(conv Cn)

Ú d2d+3
 

2•
• � d � 1

!d2



REMARK. Closer look at the proof shows that n Ù •d
�
d•Û(•�d�1)

�d3

is sufficient.
If K is centrally symmetric then d + 1 can be replaced with 2.

PROOF. We may assume V(Qn) � 2n∆(K) by (8). Set ¢ = minf 1
2 (• � d � 1),1g, and

hence Lemma 2.2 and (12) yield that

RK(Qn) Ú d2
 

2•
• � d � 1

!d�1  2∆(K)
V(K)

!1Ûd

n1Ûd

Since by Lemma 2.4, we have

rK(Qn) Ù 1
2 d2d

 
2•

• � d � 1

!�(d�1)2  ∆(K)
V(K)

!1Ûd

n1ÛdÒ

the inequality RK(conv Cn)ÛrK(conv Cn) Ú 2 RK(Qn)ÛrK(Qn) yields the proposition.
Finally we show that if • is large then the asymptotic shape of the optimal conv Cn as

n tends to infinity is close to being homothetic to K.
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PROPOSITION 3.3. Let • Ù d7d and n Ù •2d. If V(conv Cn +•K) is minimal then

RK(conv Cn)
rK(conv Cn)

Ú 1 +
100 d35

•1Û(d+1)


PROOF. As the problem is affine invariant, we may assume that V(K) = 1 and the
Löwner ellipsoid of K is a ball centered at the origin. In addition, set ¢ = 1 and let Q̃n be
the body homothetic to Qn with V(Q̃n) = 1 and sharing a common centroid with K. With
these normalizations, we deduce by (12) that

Vd�1(Q̃nÒK) Ú
 •
• � d � 2

!d�1

Ò(13)

which in turn yields by Lemma 2.5 and (6) that

DBd (Q̃n) Ú d5Û2
 •
• � d � 2

!d�1



Substituting these estimates into (4) shows that

é(Q̃nÒK) Ú 12d7Û2
 •
• � d � 2

!d�1
0
@ •

• � d � 2

!d�1

� 1

1
A1Û(d+1)



The desired inequality finally follows as RK(Q̃n) � 1 + e é(Q̃nÒK) and rK(Q̃n) ½
1 � e é(Q̃nÒK).

The proofs were based on the inequality V(conv Cn +•K) ½ n∆(K) for • ½ d + 1
(and for • ½ 2 if K is centrally symmetric). Denote by ∆Z(K) the minimal determinant
of a packing lattice of K and assume that Cn is a set of n points of such a lattice. Then
V(conv Cn +•K) ½ n∆Z(K) for • ½ 15(d + 1) and even for • ½ 3 if K is centrally sym-
metric (see [6]), which in turn yields the corresponding statements for lattice packings.
If K is a ball then even the condition • ½ p

21Û2 = 22913 is sufficient (see [14]).

EXAMPLE. Let conv Cn be the convex hull of the centers of n non-overlapping trans-
lates of the parallelotope P such that V(conv Cn +•P) is minimal for some • Ù 0. Then
Theorem 1.1 in [4] and V(conv Cn +P) ½ V(Sn + P) show that conv Cn = Sn if • Ú 1. If
• Ù 1 then

�
1 � O(n�1Û(4d2 ))

� Ð P ² conv Cn

n1Ûd
²
�
1 + O(n�1Û(4d))

� Ð PÒ

and actually conv Cn = (m � 1)P assuming that n = md. The proof is based on some
inequalities for mixed volumes involving P, like the Alexandrov–Fenchel inequality.

4. Planar packings for small •. We prove the statements of Theorem B in several
steps. In this section, K is a convex domain and • Ú ∆(K)ÛP(K).

The perimeter of a convex polytope Q with respect to the norm k Ð kK is denoted
by UK(Q). If Q = convfxÒ yg then UK(Q) = 2kx � ykK. Set KŁ = 1

2 (K � K). Then
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P(K) = P(KŁ) and k Ð kK = k Ð kKŁ . Since for any discrete set Λ, Λ + K is a packing if
and only if Λ + KŁ is a packing, we also have ∆(K) = ∆(KŁ). The celebrated inequality
of Oler states (see [16])

A(conv Cn)
∆(K)

+
UK(conv Cn)

4
+ 1 ½ n(14)

For the sausage Sn one has

A(convSn + •K) = (n � 1)P(K)• + A(K)•2(15)

We deduce by (14) and Minkowski’s formula that A(conv Cn +•K) � A(convSn + •K)
yields the inequality

4
 

1
• �

P(K)
∆(K)

!
A(conv Cn) � P(K)UK(conv Cn) � 8A(conv CnÒK)(16)

LEMMA 4.1.

A(conv Cn) ½ A(conv CnÒ �K) � A(conv CnÒK)Ò
with equality if and only if conv Cn is a segment or n = 3 and conv Cn = K.

PROOF. The core of the proof is the claim that if the vertices of the triangle T induce
a packing of three translates of K then

A(T) ½ A(TÒ �K) � A(TÒK)(17)

First we consider the case that K is a triangle. Let u 2 E2 be with K \ (u + K) = ;. We
prove that the convex hull of K and K + u contains a parallelogram P which contains
a translate of K. We can assume that K and K + u have a common point x (a vertex
of K). Let f be the opposite face of x. Then P = f + u yields a parallelogram with the
above properties. Since P is symmetric it also contains a translate of �K and it follows
A(TÒ �K) � A(TÒT + K) = A(T) + A(TÒK).

Applying this to the three face vectors of T we obtain three translates of �K in T + K.
If two of them are not identical then T + K even contains the sum l + (�K) where l is a
line segment and it follows A(TÒT + K) ½ A

�
TÒ l + (�K)

�
Ù A(TÒ �K). Hence equality

can only occur if these three translates coincide. So each side of �K has to be a side of
one of the translates of K and this is only the case if K = T.

For general K we define x by�K ² x+RT(�K)T, and hence each side of x+RT(�K)T
contains a point of �K. Denoting by �H the convex hull of these points, (3) yields that
A(TÒ �K) = A(TÒ �H) = A

�
TÒRT(�K)T

�
= RT(�K)A(T). Since the vertices of T yield a

packing for the triangle H it follows A(TÒ �K) = A(TÒ �H) � A(T) + A(TÒH) � A(T) +
A(TÒK). In the equality case we have H = T and from A(TÒT+K) = A(TÒ �K) = A(TÒ �H)
it follows K = H = T.

Now triangulate conv Cn using only the centroids of the corresponding n translates of
K. Adding up the corresponding inequalities for each triangle in the triangulation yields
the required inequality. Equality can occur only if conv Cn is a segment or each triangle
in the triangulation is congruent to K; namely, if n = 3 and K = conv Cn.

PROPOSITION 4.2. If • � 3Û7 and A(conv Cn +•K) is minimal then Cn = Sn.
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PROOF. Assume that A(conv Cn +•K) is minimal. Since by (3) (see also [4]), for any
convex, compact set C the inequality

P(KŁ)UKŁ (C) � 8A(CÒKŁ)(18)

holds, we deduce by (16) and some simple considerations that
 

1
• �

P(K)
∆(K)

!
A(conv Cn) � A(conv CnÒ �K) � A(conv CnÒK)

Since P(K)Û∆(K) � 4Û3 (see [4]), • � 3Û7 and Lemma 4.1 yield that either conv Cn

is a segment or • = 3Û7, n = 3 and K = conv Cn. In the later case A(conv Cn +•K) Ù
A(convSn + •K), which in turn implies the proposition.

If K is a triangle and C3 = K then V(C3 + •K) Ú V(S3 + •K) for • Ù 1Û2. It follows
that one can not improve too much on the bound 3Û7 of Proposition 4.2. In addition,
the next Proposition shows that if • Ú 3Û4 and n is large then the sausage arrangement
is optimal. Thus non-symmetric convex bodies may behave more irregularly than the
centrally symmetric ones.

PROPOSITION 4.3. Let • Ú ∆(K)ÛP(K) and n Ù 2000
�
∆(K)ÛP(K)�•��2

. With these
conditions, A(conv Cn +•K) is minimal if and only if Cn = Sn.

PROOF. Since our problem is affine invariant, we may assume that B = B2 is the
Löwner ellips of KŁ. Assume that A(conv Cn +•K) is minimal. There exist two parallel
supporting lines l1 and l2 of conv Cn with distance at most 3rB(conv Cn) (see [8]), and
let s ² conv Cn be the a segment whose orthogonal projection to l1 is the same as the
projection of conv Cn. Then conv Cn ² s + 3rB(conv Cn)B and

P(K)UK(s) � 8A(sÒK)Ò(19)

which in turn yields by (16) that

4
 

1
• �

P(K)
∆(K)

!
A(conv Cn) � 3P(K)UK(B)rB(conv Cn)

Here P(K) = P(KŁ) � 4 by Lemma 2.7 and UK(B) = UKŁ (B) � 2ô, and hence
 ∆(K)

P(K)
� •

!
A(conv Cn) Ú 6ô rB(conv Cn)(20)

Assume that conv Cn is two dimensional and let õn ² conv Cn be the set of centroids
of the corresponding n translates of K. Since õn + B is also a packing, any segment of
length

p
2 along l1 contains the projection of at most 3rB(conv Cn)Ûp2 + 1 points of õn.

We deduce that (sÛp2)
�
3rB(conv Cn)Ûp2 + 1

� ½ n, which in turn yields the estimate

A(conv Cn) Ù s rB(conv Cn) ½ 2n rB(conv Cn)

3rB(conv Cn) +
p

2
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Substituting this into (20) results in

2
 

∆(K)
P(K)

� •
!

n Ú 6ô
�
3rB(conv Cn) +

p
2
�
(21)

On the other hand, A(conv Cn) � n∆(KŁ) (see [6]) and A(KŁ)Û∆(KŁ) ½ 08926 (see [10])
yield that

rB(conv Cn) �
p

2rKŁ(conv Cn) �
p

2

vuut∆(KŁ)
A(KŁ)

p
n Ú 15pnÒ

and hence

2
 ∆(K)

P(K)
� •

!
n Ú 6ô

 
9
2

p
n +

p
2
!


Now we deduce by some elementary calculations that if n Ù 2000
�
∆(K)ÛP(K) � •��2

then conv Cn must be a segment.

5. Planar packings for • Ù •c. The results of this section correspond to the ones
from Section 2. The difference is that having Bonnesen’s and Oler’s inequality at hand
allows much more precise statements.

PROPOSITION 5.1. Let • Ù P(K)Û∆(K) and A(conv Cn +•K) be minimal. Then for

n ½ 104•2Û
�
• � P(K)Û∆(K)

�2
, we have the estimate

RK(conv Cn)
rK(conv Cn)

� 400•2�• � ∆(K)
P(K)

�2 

PROOF. It follows by Lemma 2.1 that there exists a segment s ² conv Cn such that
conv Cn ² s + 4rK(conv Cn)K. We deduce by (8) that

A(conv Cn) + 2•A(conv CnÒK) � ∆(K)n + 2•p∆(K)A(K)
p

nÒ
which in turn yields by (14) and (19) that

2
 
• � ∆(K)

P(K)

!
A(conv CnÒK) � 2•p∆(K)A(K)

p
n

+∆(K)UK(K)rK(conv Cn) + ∆(K)
Note that rK(conv Cn) �

q
∆(K)ÛA(K)

p
n as A(conv Cn) � n∆(K) (see [6]), UK(K) =

UKŁ (KŁ) � 8 (see [11]) and 2
3 � A(K)Û∆(K) � 1 by Fáry’s theorem. We deduce for

Qn = conv Cn + 3
2 K after some elementary calculations that

2
 
• � ∆(K)

P(K)

!
A(QnÒK)

∆(K)
� 2•pn + 8

vut3
2

p
n + 3•(22)

Assume that the origin is the centroid of K. Then KŁ ² 3
2 K, and hence

1
4

P(K)UK(conv Cn) � 3A(conv CnÒK)
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by (18). We deduce using Oler’s inequality that

A(Qn) = A
 

conv Cn +
3
2

K
!
½ n∆(K)(23)

On the other hand,

A(QnÒK) ½ A(Qn)
4rK(Qn)

½ n∆(K)
4rK(Qn)

holds by Corollary 2.3, and combining this with (22) yields that

rK(Qn) ½ • � ∆(K)
P(K)

32•
p

n(24)

In particular, if n ½ 104•2Û�• � P(K)Û∆(K)
�2

then rK(conv Cn) ½ 1
2 rK(Qn). Finally,

Lemma 2.4 yields the proposition as V(conv Cn) � n∆(K).
The proof of the next proposition is basically the same as for Proposition 3.3, only

rather applies the stability formula of Bonnesen.

PROPOSITION 5.2. Let • ½ 3 and A(conv Cn +•K) be minimal. Then for n ½ 2500•2,
we have the estimate

RK(conv Cn)
rK(conv Cn)

� 1 +
550p• 

PROOF. Set Qn = conv Cn + 3
2 K. Since A

�
Qn + (•� 3

2 )K
� � A(Pn + •K) and A(Qn) ½

n∆(K), we deduce by (8) that

2A(QnÒK) Ð
 
• � 3

2

!
� 2•pA(K)∆(K) Ð pn +

 
3• � 9

4

!
A(K)

Using Bonnesen’s inequality (5), and the estimates A(Qn) ½ n∆(K) and 2
3 �

A(K)Û∆(K) � 1, results in

1 +
1
6n

�
RK(Qn)� rK(Qn)

�2 �
0
@ •
• � 3

2

1
A2  

1 +
3

2
p

n

!2



For n ½ 2500•2 and • ½ 3, the right hand side is at most 1 + 5Û•. On the other hand,p
n � 96rK(conv Cn) by (24), and hence RK(Qn)� rK(Qn) = RK(conv Cn)� rK(conv Cn)

yields the proposition by some simple calculations.
The results of Sections 4 and 5 yield that •c = P(K)Û∆(K) = •s, and

COROLLARY 5.3. The Strong Sausage Conjecture holds for any planar convex do-
main.
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