SPHERICAL MODIFICATIONS AND THE STRONG CATEGORY OF MANIFOLDS

M. V. MIELKE
(Received 25 September 1968)

Using the notion of spherical modification and results from Morse theory a general technique is described for constructing manifolds whose strong category is small ($\leqq \mathbf{3}$) but whose homological structure is complex.

Unless stated otherwise an n-manifold is a compact, differentiable n dimensional manifold without boundary.

Let V_{1} be an n-manifold and suppose S^{i} is an i-sphere homeomorphically and smoothly imbedded in V_{1} with a trivial normal bundle. Then S^{i} has a neighborhood of the form $S^{i} \times D^{n-i}$ (D^{n-i} is an ($n-i$)-disc). Clearly the boundary of $S^{i} \times D^{n-i}=S^{i} \times S^{n-i-1}=$ the boundary of $D^{i+1} \times S^{n-i-1}$. Smoothly identifying the boundary of $D^{i+1} \times S^{n-i-1}$ with the boundary of (V_{1}-interior $\left(S^{i} \times D^{n-i}\right)$) results in a new manifold $V_{2} . V_{2}$ is said to be obtained from V_{1} by a spherical modification of type ($i, n-i-1$). (Cf. [8] page 504). The manifold V_{2} has a sphere S^{n-i-1} (the associated sphere to S^{i}) imbedded in it with trivial normal bundle; namely,

$$
\{0\} \times S^{n-i-1} \subset D^{i+1} \times S^{n-i-1} \subset V_{2}
$$

Clearly by reversing the procedure V_{1} can be obtained from V_{2} by a spherical modification of type ($n-i-1, i$) determined by the associated sphere to S^{i}. Such a modification will be called an inverse to the given one.

Let V_{2} be obtained from V_{1} by performing a finite sequence S of spherical modifications on V_{1}. Associated to S is a $n+1$-manifold W called the trace of S with boundary of $W=V_{1} \cup V_{2}$. The triple (W, V_{1}, V_{2}) is a manifold triad in the sense of [6] page 2 . A rearrangement theorem says that the modifications S can be rearranged so that all modifications of type ($i, n-i-1$) are performed before any of type $(i+1, n-i-2)$ and all modifications of type ($i, n-i-1$) can be assumed to be carried out on the same manifold. Further the trace of the rearranged sequence is the same as the trace of S. (Cf. [8] page 514 and [6] page 44).

Assuming that the sequence S of modifications leading from V_{1} to V_{2} is already 'rearranged' as above one has a sequence of manifolds $V_{1}=M_{0}$, $M_{1}, \cdots M_{i}, M_{i+1}, \cdots, M_{k}=V_{2}$ where M_{i+1} is obtained from M_{i} by modifications of type $(i, n-i-1)$ only. Suppose $b_{i+1}=$ the number of
($i, n-i-1$) type modifications in S. Let $\left\{S_{j}^{i}\right\}_{j=1, \cdots, b_{i+1}}$ be the spheres in M_{i} determining the $b_{i+1}(i, n-i-1)$ type modifications and let $\left\{S_{j}^{n-i-1}\right\}_{j=1,2, \cdots, b_{i+1}}$ be the associated spheres in M_{i+1}. For any integer $b \geqq 0$ let $F(b)$ be the free abelian group on b generators $(F(0)=0)$. Define $C_{i}=F\left(b_{i}\right)$ where the $\left\{S_{j}^{i-1}\right\}_{j=1, \cdots, b_{i}}$ can be taken as representatives for the generators. Then $C_{i-1}=F\left(b_{i-1}\right)$ is generated by $\left\{S_{k}^{i-2}\right\}_{k=1, \cdots, b_{i-1}}$. Define $d_{i}: C_{i} \rightarrow C_{i-1}$ by

$$
d_{i}\left(S_{j}^{i-1}\right)=\sum_{k=1}^{b_{i-1}} A_{j k} S_{k}^{i-2}
$$

where $A_{j k}=S_{j}^{i-1} . S_{k}^{n-i+1}=$ intersection number of S_{j}^{i-1} and S_{k}^{n-i+1}, where $S_{k}^{n-i+1}=$ associated sphere to S_{k}^{i-2} (note S_{j}^{i-1} and S_{k}^{n-i+1} are both spheres in $\left.M_{i-1}\right)$. It is not hard to see that $\left(C_{*}, d\right)=\left(C_{i}, d_{i}\right)$ is a chain complex.

Theorem 1. Let $W=$ trace of S (performed on V_{1}) then

$$
H_{i}\left(W, V_{\mathbf{1}}\right) \cong H_{i}\left(C_{*}\right)
$$

all i (homology with integer coefficients).
Proof. [6] page 90.
TheOrem 2. Let M be an n dimensional, compact, connected manifold of the form $M=W \cup D^{n}$ where $W=$ trace of a finite sequence S of spherical modifications on $V_{1}=$ boundary of $D^{n}=S^{n-1}$ and D^{n} is attached to W by smoothly identifying (boundary $\left.D^{n}\right)$ to ((boundary W) $=V_{1}$). Then $H_{0}(M)=Z$ (integers) and for $i>0 H_{i}(M) \cong H_{i}\left(C_{*}\right)$ where C_{*} is obtained from S as described above.

Proof. Consider the sequence $H_{i}(M) \xrightarrow{f} H_{i}\left(M, D^{n}\right) \xrightarrow{g} H_{i}\left(W, V_{1}\right)$ where f is from the homology sequence of the pair $\left(M, D^{n}\right)$ and is thus an isomorphism for $i>0$ and g is induced by excision and homotopy and is thus an isomorphism for all i. Since M is connected $H_{0}(M)=Z$ and for $i>0$ the theorem follows from theorem 1 .

Corollary. If $d_{i}=0$ all $i>0$ then $H_{i}(M)=C_{i}=F\left(b_{i}\right)$ all $i>0$ where $b_{i}=$ number of $(i-1, n-i-1)$ type modifications in S.

Proof. Follows directly from theorem 2 and the definition of $H_{i}\left(C_{*}\right)$.
Before getting to the main result one further definition is needed. Let M be an n-manifold. Define $C(M)$ to be the minimum number of contractable in themselves, open sets needed to cover M. (See strong category [2] page 360.)

Theorem 3 is a statement of the main result although the technique of proof is of more interest than the theorem. (See remark following the proof of theorem 3.)

Note that if, for example, $b_{i}=0$ for $0<i \leqq 33$ and $n=\mathbf{1 0 0}$ then the $' C(M) \leqq 3$ ' portion of the theorem falls under the case mentioned in [1] page 201.

Theorem 3. Let $\left\{b_{i}\right\}_{i=0,1, \cdots, n}$ be a sequence of non-negative integers satisfying the following conditions: $b_{0}=1, b_{i}=b_{n-i}$ and if $n=2 m$ then $b_{m}=2 t$. Under these conditions there exists an orientable, connected n-manifold M with $H_{i}(M)=F\left(b_{i}\right)$ and $C(M) \leqq 3$.

Proof. Let $N=\sum_{i=1}^{m} b_{i}$ if $n=2 m+1$ and let $N=\sum_{i=1}^{m-1} b_{i}+t$ if $n=2 m$ and $b_{m}=2 t$. Let D_{1}^{n} be an n-disc and in the boundary of $D_{1}^{n}=S^{n-1}=V_{1}$ pick out N mutually disjoint $(n-1)$ discs. Call them $D\left(b_{i}, j\right)$ where $1 \leqq i \leqq m$ and $\mathrm{l} \leqq j \leqq b_{i}$ if $n=2 m+1$ if $n=2 m$, then for $\mathrm{l} \leqq i \leqq m-1, \mathrm{l} \leqq j \leqq b_{i}$ and for $i=m, \mathrm{l} \leqq j \leqq t$ (note that no discs are picked if $b_{i}=0$). In each disc $D\left(b_{i}, j\right)$ imbed an ($i-1$)-sphere S_{j}^{i-1} with trivial normal bundle. (e.g. $S^{i-1}=$ Boundary

$$
\left.D^{i} \subset D^{i} \subset D^{i} \times\{0\} \subset D^{i} \times D^{n-i-1}=D^{n-1}\right) .
$$

Performing on V_{1} spherical modifications determined by these N different spheres gives a manifold V with N mutually disjoint spheres $\left\{S_{j}^{n-i-1}\right\}$ (S_{j}^{n-i-1} is associated to S_{j}^{i-1}) imbedded in it. Performing on V, N spherical modifications inverse to those performed on V_{1} gives a manifold V_{2} which is again S^{n-1}. Finally, perform on V_{2} an $(n-1,-1)$ spherical modification determined by V_{2} itself. Let $W=$ trace of these $2 N+1$ modifications and let $M=D_{1}^{n} \cup W$ (M is clearly a compact, connected n-manifold).

For $n=2 m+1$ if $1 \leqq i \leqq m$ then $m+1 \leqq n-i \leqq n-1$. Hence the number of ($i-1, n-i-1$) modifications $=$ number of ($n-i-1, i-1$) modifications $=b_{i}=b_{n-i}(1 \leqq i \leqq n-1)$. For $n=2 m$ a slight change occurs; namely, the number of ($m-1, m-1$) modifications performed on $V_{1}=t$, and the number of ($m-1, m-1$) modifications performed on $V=t$, so the total number of ($m-1, m-1$) modifications $=2 t=b_{m}$. In both cases there is only one ($n-\mathbf{1}, \mathbf{1}$) modification performed thus $C_{i}=F\left(b_{i}\right) 1 \leqq i \leqq n$ for any n.

Consider now $d_{i}: C_{i} \rightarrow C_{i-1}$. To compute d_{i} it is necessary to find the intersection numbers $S_{j}^{i-1} \cdot S_{k}^{n-i}$ where S_{j}^{i-1} is a generator of C_{i} and S_{k}^{n-i} is associated to a generator S_{k}^{i-2} of C_{i-1}. If $n=2 m$ then $i-1 \neq n-i$ and thus by the construction of $W, S_{j}^{i-1} \cap S_{k}^{n-i}=\emptyset$ for $2 \leqq i \leqq n-1$. However if $n=2 m+1$ then $i-1=n-i$ for $i=m+1$. In this case, then, the associated spheres to generators of C_{m} are the generators of C_{m+1}.

Let S_{k}^{m-1} be a generator of C_{m} and let S_{k}^{m} (a generator of C_{m+1}) be associated to S_{k}^{m-1}. Now S_{k}^{m} is identified with $\{0\} \times S^{m} \subset D^{m} \times S^{m}$ introduced when $S^{m-1} \times D^{m+1}$ is replaced by $D^{m} \times S^{m}$ under the modification. Let $P \neq 0$ be a point in D^{m} and let \bar{S}_{k}^{m} be the sphere $\{P\} \times S^{m} \subset D^{m} \times S^{m}$. Then $S_{k}^{m} \cap \bar{S}_{k}^{m}=\emptyset$ and performing the modification with respect to \bar{S}_{k}^{m} gives the
same result as using S_{k}^{m} since \bar{S}_{k}^{m} and S_{k}^{m} are isotopic. (Cf. [9] 776). Thus for n odd or even its clear that if $\mathbf{2} \leqq i \leqq n-\mathbf{1}$ then $d_{i}=\mathbf{0}$.

Further suppose all of the ($0, n-2$) modifications performed on V_{1} to be orientable (i.e. V is orientable). This corresponds to identifying (boundary $S^{0} \times D^{n-1}$) to (boundary $\dot{D^{1}} \times S^{n-2}$) in such a way that the orientations on one component of the boundary are the same while those on the other component are opposite. Hence when the $(n-1,-1)$ modification is performed on V_{2} the intersection number is $S^{n-1} \cdot S_{j}^{0}=1-1=0$ where S_{j}^{0} in V_{2} is associated to S_{j}^{n-2} in V and S_{j}^{n-2} is associated to the o-sphere determined by $D\left(b_{1}, j\right)$. Also for W its clear that $C_{0}=0$ and thus $d_{i}=0$ for $i=1, \cdots, n$ and by the corollary to theorem $2 H_{i}(M)=H_{i}\left(C_{*}\right)=F\left(b_{i}\right)$. This proves the first part of theorem 3.

To see that $C(M) \leqq 3$ consider the following: By [7] page 14 (the trace of the modification corresponding to $D\left(b_{i}, j\right)$ on $\left.V_{1}\right) \cup D_{1}^{n}=D_{1}^{n}$ with an n-disc $C\left(b_{i}, j\right)$ attached to the boundary of $D_{1}^{n}=V_{1}$. Actually $C\left(b_{i}, j\right) \cap V_{1}=S_{j}^{i-1} \times D^{n-i}\left(=\right.$ tubular neighborhood of S_{j}^{i-1} used to determine the spherical modification.) Thus $D_{1}^{n} \cup$ (trace of the N different spherical modifications on V_{1}) $=D_{1}^{n} \cup C_{1}$ where C_{1} is a set of N mutually disjoint n-discs $C\left(b_{i}, j\right)$. Repeating the above argument on V using the N inverse modifications to those done on V_{1} one obtains that $D_{1}^{n} \cup C_{1} \cup$ (trace of the N inverse modifications) $=D_{1}^{n} \cup C_{1} \cup C_{2}$ where C_{2} is a set of N mutually disjoint n-discs $C\left(b_{n-i}, j\right)$. Further, when performing the inverse modification to the one determined by $D\left(b_{i}, j\right)$ a tubular neighborhood of small enough 'radius' can be used so that

$$
C\left(b_{n-i}, j\right) \cap C\left(b_{i}, j\right)=D^{i} \times S^{n-i-1} \subset D^{i} \times S^{n-i-1} \subset V
$$

where $D^{i} \times S^{n-i-1}$ is the set introduced into V by the modification and where \bar{D}^{i} is an i-disc C interior D^{i}. Changing the 'radius' does not effect the modification in any significant way (Cf. [9] page 776). Thus all the discs in C_{2} can be taken disjoint from D_{1}^{n}. Finally, performing the ($n-1,-1$) spherical modification determined by V_{2} corresponds to attaching an n-disc D_{2}^{n} to $D_{1}^{n} \cup C_{1} \cup C_{2}$ by identifying the boundary of D_{2}^{n} to V_{2}. Thus $M=\left(D_{1}^{n} \cup C_{2}\right) \cup C_{1} \cup D_{2}^{n}$ where $\left(D_{1}^{n} \cup C_{2}\right), C_{1}$, and D_{2}^{n} each consist of finitely many mutually disjoint n-discs.

If ($D_{1}, D_{2}, \cdots, D_{k}$) is a set of mutually disjoint n-discs in a connected n-manifold (which M is) then D_{1} can be joined to D_{2} by a smooth arc α so that $\alpha \cap \bigcup_{i=1}^{k} D_{i}=$ two points, one in boundary D_{1} and one in boundary D_{2}. A tubular neighborhood T of α can be picked so that $T \cap D_{i}=$ an $n-1$ disc in boundary $D_{i}(i=1,2)$ and T misses D_{3}, \cdots, D_{k}. Thus D_{1} and D_{2} can be joined to form a set E_{2} which is contractable in itself. Repeat this construction on ($E_{2}, D_{3}, \cdots, D_{k}$) starting with E_{2} and D_{3} to form E_{3}. Finally one obtains a set E_{k} which is contractable in itself.

Hence M can be covered by 3 such contractable sets and if each of them is expanded slightly M can be covered by their interiors and it follows that $C(M) \leqq 3$. This completes the proof of theorem 3.

Remark. The theorem only asserts the existence of a manifold of a certain type. A manifold satisfying theorem 3 can be constructed in a simple manner as indicated below. The more involved construction given in the proof of the theorem gives a general technique for constructing manifolds with $C(M) \leqq 3$ as there are few restrictions placed on the spherical modifications involved. For example, by changing the (0,0) modification one can obtain the 2 -torus, the klein bottle or the projective plane.

For $n=2 m+1$ one can obtain a manifold satisfying theorem 3 as follows: Let $N=\sum_{i=1}^{m} b_{i}$ and denote by M_{i}, b_{i} copies of $S^{i} \times S^{n-i}$. Define M to be the connected sum of $M^{\prime}=\bigcup_{i=1}^{N} M_{i}$ (i.e. fix a component C of M^{\prime} and connect all other components of M^{\prime} to C by ($0, n-1$)-modifications. It is not difficult to prove directly that M satisfies the theorem and is in fact a special case of the construction given in the proof of theorem 3. A similar argument holds for n even.

In theorem 3 if $n=2 m$ then b_{m} is assumed to be even. This assumption can easily be removed in certain cases. Let $b_{m}=2 t+1$ and suppose there exists an ($m-1, n-m-1$) spherical modification ϕ on S^{n-1} which again yields S^{n-1}. Then as in the proof of theorem 3 perform the $N\left(=\sum_{i=1}^{m-1} b_{i}+t\right\}$ spherical modifications on V_{1} together with one more; namely ϕ, to obtain V. Then performing the N inverse modifications on V one obtains $V_{2}=S^{n-1}$. (No inverse modification is needed to 'cancel' ϕ.) Thus the number of ($m-1, n-m-1$) type modifications $=2 t+1=b_{m}$. Its easy to see that the rest of the proof goes through as before.

If $n=2,4,8,16$ such spherical modifications as ϕ exist, the trace of ϕ being the real projective plane with two 2 -discs removed if $n=2$, the complex projective plane with two 4 -discs removed if $n=4$, the quaternionic projective plane with two 8 -discs removed if $n=8$, and the Cayley projective plane with two 16 -discs removed if $n=16$. (Cf. [4] page 708). However for $n=2$ the (0,0) modification is non-orientable but for $n=4,8$ and 16 one has:

Corollary 1. If $n=4,8,16$ the restriction that b_{m} be even in theorem $\mathbf{3}$ can be removed.

Corollary 2. If $b_{1} \neq 0$ and $n \geqq 2$ in theorem 3 then $C(M)=3$.
Proof. This follows from [2] page 258 theorem 29.3.
Let f be a Morse function on an n-manifold $M(f: M \rightarrow R$ (reals) with a finite number of critical points all of which are non-degenerate). To each critical point of t is attached an index i (an integer $0 \leqq i \leqq n$) (Cf. [7]
page 5). Define $\mu(M)$ to be the minimum number of different indices appearing in f as f ranges over all Morse functions on M. It is well known that $C(M) \leqq \mu(M) \leqq n+1$ (Cf. [3] or [5]). Further if the number of points with index i for a Morse function f on M is zero then $H_{i}(M)=0$ (Cf. [7] page 20). Hence if $b_{i}>0, i=0, \cdots, n$ in theorem 3 then the manifold M constructed there has the property that $C(M) \leqq 3$ and $\mu(M)=n+1$. Thus $\mu(M)-C(M) \geqq n-2$ and, in view of corollary $2, n-2$ is the maximum difference if $b_{1} \neq 0$ and $n \geqq 2$.

Corollary 3. If $n \geqq 2$ then there exists an n-manifold M (actually there exists infinitely many non-diffeomorphic such n-manifolds) such that $\mu(M)-C(M)=n-2$ and if $n=1$ then clearly $\mu\left(S^{1}\right)-C\left(S^{1}\right)=0$ where S^{1} is the 1 -sphere.

References

[1] M. K. Fort, Jr. (editor) Topology of 3-Manifolds, (Prentice Hall, Englewood Cliffs, N.J., 1962).
[2] R. H. Fox, 'On the Lusternik-Schnirelmann category', Annals of Math. 42 (1941) 333-370.
[3] Lusternik \& Schnirelmann, Topological methods in the calculus of variations, (Moscow 1930).
[4] M. V. Mielke, 'Generalized modifications and cobounding manifolds', Jour. Math. and Mech., 15 (1966) 683-710.
[5] M. V. Mielke, 'Spherical modifications and coverings by cells', to appear Duke Math. J. March (1969).
[6] J. W. Milnor, 'Lectures on the h-cobordism theorem', (Princeton Mathematical Notes, 1965).
[7] J. W. Milnor, 'Morse Theory' (Annals of Math. Studies No. 51, Princeton 1963).
[8] A. H. Wallace, 'Modifications and cobounding manifolds', Canadian J. Math., 12 (1960) 503-528.
[9] A. H. Wallace, 'Modifications and cobounding manifolds II,' Journal of Math. \& Mech. 10 (1961) 773-809.

Univ. of Miami
Coral Gables, Fla.

