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§1. Introduction.

Mr D. E. Littlewood1 has recently discussed the properties of
the quadratic equation over the real quaternions and shown that the
solutions correspond to the common intersections of four quadrics in
four-space. Although complex quaternion solutions may arise, the
system of real quaternions to which the coefficients belong is a
division algebra. It is of interest, therefore, to discuss the solution
of the quadratic when the coefficients are drawn from a system
containing divisors of zero. The simplest such systems are those
defined by x = x0 + xxex + . . . . +a:n.1e,1_1, where the x's are real and
the units form a cyclic group under the product law

er e, = er+,, (r + s < n); er es = er+s.n, (r + s > n); e0 = 1.

In this system the commutative law of multiplication holds and
the divisors of zero are those numbers for which either

xo + xx + . . . . + xn_1 = 0, or xo = x1 = =xn_l,

called for convenience divisors of zero of the first and second kinds.
The associated divisor of zero, y, such that xy = 0 = yx is of the
opposite kind to x. Further the power of a divisor of zero or its
product with any number other than its associate is a divisor of zero
of the same kind.

The results for the more general number system in which the x's
are complex are quoted in § 5, the reason for treating the more
restricted problem in detail being the interest of its geometrical
analogue, which involves the intersections of n special quadrics in
n-space. For brevity, proofs are given for the case n = 3, the
treatment in the general case being similar. Letters a, b, c, x, .. ..
without suffixes denote algebraic elements, whose scalar components
are indicated by use of suffixes.

§2. The Leading Coefficient a Non-Divisor of Zero.
The equation will be written ax2 + 2bx + c = 0, where

a = ax + a2 i + a3 j , c = d + c2 i + cs j ,
b = &i + b2i + b3j, x = Xi + x2 i + xsj,

1 Proc. London Math. Soc. (2), 31 (1930), 40-46.
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and the three units 1, i, j , of the algebra satisfy the relations

p =j> f = *» y = i = ji-
The solutions are, by the usual process,

*, + a,» + x3j = ~ (&1 + 6 a' + *""> + («! + «»' + * J> (l)
«i + a2 * + a3j

where
(«! + u2i + usj)

2 = (&! + 62i + 63j)
2 — (oj + o2i + a3j) (d + c2i + c3j).

This last gives rise to the equations
u\ + 2w2 «3 = (&? — Oi Ci) + (262 &3 — »2 c8 — a3 c2), 1
u% + 2M3 MJ = (bl — a2 c2) + (26361 — a^C! — ĉ  C3), I (2)
u\ + 2«! U2 = (6̂  — a3e3) 4- (26i 62 — «i c2 — a2Cj), J

whence
(MX + w2 + «s)2 = (bi + b2 + bs)

2 — (ai + a2 + a3) (d + c2 + cs). (3)
There are eight solutions to (2) (not necessarily real), except

when the discriminant b'2 — ac = 0, or when c is a divisor of zero
(discussed in § 4). In the former case the right hand sides of (2)
all become zero, as do ult u-2, us, and the number of solutions reduces
to one.

§3. The Leading Coefficient a Divisor of Zero.
Suppose only a to be a divisor of zero.
The usual method of solution gives ax = — b + u, or

«i xi + «a x2 + a2 x3 = — 61 + Ui, I
a3 Xi + a2 x2 + ax xz = — ft2 + w2, I (4)
a-2 Xi + a1x2 + a3x3= — 63 -}- M3. J

We shall consider separately the different kinds of divisors of
zero.

If «i + a2 + a3 = 0, only two of equations (4) are independent,
requiring the consistency condition

bi + 62 + 63 = Mj + «2 + u3,

which is satisfied, as is seen from (3).
To get a third independent equation, multiply the quadratic by

(1 + i + j), the divisor of zero associated with a, giving

(l + »+j)(26a; + c) = 0.
It follows that (2bx + c) must be a divisor of zero of the first

kind and hence
2(&i + b2 + b3) (Xl + xz + x3) + (a + c2 + cs) = 0. (5)

This, with (4), gives a unique value to x for each value of u.
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The consistency condition reduces the values of u to four only,
which is therefore the number of roots of the quadratic in this case.

If ax = a.2 = as, only one of equations (4) is independent, requiring
the consistency conditions

h — ux = b2 — u-2 = 63 — u3 = A,

which are satisfied when A is determined from (2) by

3A2 - 2A (&x + 62 + 63) - a, (cx + c2 + c3) = 0.

Proceeding as above to multiply the quadratic by (Ci + C%i + C sj),
where C1 + C2 + C3 = 0, the C's being otherwise independent, it follows
that (26x + c) must have the form C (1 + * +j), whence

(61 xi + b3 x2 + b2 x3) + cx = (b3 Xi + 62 x2 + 61 x3) + c2

= (&2 *1 + 6l »2 + &3 XB) + C3, (6)

giving with (4), three independent linear equations.
The consistency conditions, however, reduce the number of values

of u, and hence the number of solutions, to two.
The case a1+a2+a3=0, bl=bi=b3, C\ = c2=c3, gives x1+xi-{-x3—0,

while ax = a2 = o3, bx + 62 + b3 = 0, Cj + c2 + c3 = 0 gives xj = x2 = *3,
so that in each case the only solution is a; a divisor of zero. (See § 4.)

§ 4. Other Cases.

If a is a divisor of zero, then, as before

2bx + c = Ca or 26a; = (Ca — c),

where C is real and arbitrary.

If b is also a divisor of zero, then in the same way

c - Ca = C'b or c = Ca + C'b,

where C, C, are real and arbitrary.
If a and b are divisors of zero of the same kind, then unless c is

a divisor of zero of that kind, there is no solution. On the other
hand, if a and 6 are of opposite kinds there is no restriction on c.

We note that if a, b, c, are divisors of zero of the first kind,
equation (5) vanishes identically and the solutions given by (4)
contain an arbitrary constant, while if a, b, c, are of the second kind,
equations (6) become identities and (4) gives solutions containing
two arbitrary constants.

The cases in which the solution is a divisor of zero appear quite
simply. For if a; is a divisor of zero, then

x (ax + 26) + c = 0,
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shows that c must be one also, while if c is a divisor of zero, then
either x or (ax + 26) is one of the same kind.1

If a and c are divisors of zero of the same kind and b is not, then
x must be, while if b and c are then either a or a; is.

The solutions in these cases can be found as in §§ 2 and 3.
§ 5. Extensions.

The results for the cyclic system with n units can be enunciated
from the preceding. If a is not a divisor of zero, there are 2"
solutions unless the discriminant vanishes when there is only one, or
unless c is a divisor of zero. In the latter case x may be a divisor of
zero of the same kind and there are 2""1 or 2 other solutions
according as this is of the first or second kind. If a is a divisor of
zero then there are 2"-1 or 2 solutions according as it is of the
first or second kind. If a, b are divisors of zero of the same kind
then unless c is also, there is no solution. If a, b, c, are divisors
of zero of the first kind then the 2""1 solutions each involve an
arbitrary constant, while if of the second kind the 2 solutions
each involve (n — 1) arbitrary constants.

When the coefficients xr in the number system are taken over
the complex numbers, the problem becomes at once more general
and more simple. I t is robbed of those eccentricities arising from
the coefficients of the quadratic being in a restricted system while the
roots belong to the wider system.

The divisors of zero in the new system are those numbers
x0 + x1e1 + . . . . + xn_1en_l in which x0 + x^ u> + • • • • + xn.lojn~1 = 0,
where co is any root of xn — 1 = 0. There are thus 2n — 2 divisors of
zero, obtained according as one or more of these relations are
satisfied by the coefficients of the number. As a result, the following
modifications in the number of solutions occur. According as a
is a divisor of zero satisfying 1, 2, . . . . (n— 1) relations, there are
2*"1, 2n"2 , . . . .or 2 solutions, and when b and c are also divisors
of zero of the same type there are 1, 2 , . . . . o r (w —1) arbitrary
constants involved. These constants, as happens also in regard
to the results of § 4 for this system, are complex.

1 When a is not a divisor of zero and cx + c2 + cs = 0, then u1 + u2 + u3 =
+ (&! + b2 + b3). From (1) this gives x or (ax + 26) a divisor of zero of the first kind.
Four values of u correspond to each case, giving only four solutions other than x a
divisor of zero. On the other hand if Cj = c2 = c3, then for i<j = b1 — X, u.z = b2 — \
ua = 63 — X equations (2) each give 3X2 - 2X(61 + b2 '+ b3) + cx (ox + a2 + as) = 0,
whence xx = x2 = xs. Similarly u1 = X — blt u,2 — X — b2, us = X - 6S gives (ax + 2fc)
a divisor of zero and produces only two values of x.
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§ 6. Geometrical Aspect—Central Quadrics.
We shall now give a geometrical analysis of §§ 2-4 in which x is

represented by the point (xx, x2, x3) in three-space.
Identification of the separate component's of the quadratic gives

the set of associated quadrics

(7)

The discriminating cubic is the same in each case with the roots
Ai = ax + a2 + a3, X2, A3 = ± («? -\- a\ -\- a\ — a2a3 — a3 a1 — ax a2)*, (S)
giving hyperboloids.

If a is not a divisor of zero, none of \ u A2, A3 are zero and the
quadrics have the common centre satisfying

Referred to parallel axes through the common centre, the equations
of the quadrics take the form

(9)

ax (x\ -|
n (ft -1

a3 {xl H
where

h 2x2x3) -

h 2x0X3) -

h 2^x3) -

(- a2 (x^ + 2x
(- a3 (x2 + 2x
1- ax (xl + 2x;

3xx) + ax {xl + 2xj
3X1) + a2 (x\ + 2.T!

xo) + (Sj/Z)) = 0,
to) + (S2/D) = 0,
x2) + (S3/D) = 0,

CL\ C&3 (^2

a3 a2 ax

a2 ax a3

, Sx = uxu2u3a3 a2 O]

Ĉ 2 fit] (X3

, S-2 =
CI3 C^2 Cb\

&2 (X\ &<$

, s3 = u3uxu2
O3 (Z2 &1

a2 «i a3

U2, U3, being the right hand sides of (2), in order.
The principal directions of the three quadrics are given by

a; lr

ajlr

ak lr

a., mr

akmr

k nr = Ar lr

iUr = Armr, I (10)
<Z; mr -f- Oj nr = Ar nr,

where
(i,j, * ) = ( 1 , 3, 2 ) f o r r = 1

= (2,1,3) r = 2
= (3,2,1) r = 3 .

It will be seen that by the cyclic interchange of (I, m, n) the
three sets of relations permute into one another. If OX, OY, OZ, are
the coordinate axes of (9), it follows that the principal axes of
the three quadrics have the same orientation with respect to the
trihedrals OXYZ, OYZX, OZXY, respectively. If the direction
cosines of the principal axes of the first quadric are

(llt m,, Wj), (l2, m2, n2), (l3, m3, n3),
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the angle between a corresponding pair from the second and third
quadrics is cos"1 (mrnr + nrlr + lrmr). From (10) we get

(lr + mr + nr) (fflj + a2 + a3 — 3A) = 0, or lr + mr + nr = 0. (11)

Consequently mr nr + nrlr -\- lrmr = — i , and the angle is 120° in the
case of every corresponding pair of axes chosen from any pair of
the quadrics.

Hence the principal axes of the three quadrics pass into one
another on rotation through 120° about the line x1 = x2 — x3.

The quadrics clearly intersect in eight points real or imaginary,
as is seen by solving (9) for x\ + 2x2 x3, x\ + 2xs xu x\+ 2x± x2.

That they are similar quadrics appears from the canonical forms

A1z
2 + A2t/

2 + A3z2+ ( £ r / D ) = 0 , (r = I, 2, 3). (12)

The condition that the discriminant of the quadratic should
vanish is, from (2), f/n = Z72 = Vs = 0, giving from (9) and (12),
S1 = $2 == S3 = 0, so that in this case the quadrics become equal
cones symmetrically set with a common vertex at their only point of
intersection.

If Ci + c2 + c3 = 0 the common intersections of the quadrics lie
in fours in the planes

Xi + x2 + x3 = 0, (a! + a2 + a3) (afj + x2 + xs) + 2 (6j + b2 + bs) = 0.

If Ci = c2 = c3, the quadrics are identical except for position
and touch in the four points common to the quadrics and the lines

X\ = x2 = x3, («! Xi + a3x2 + a2xs) + 26j = (a2xx +alx2-\- a3x3) + 2b-,
= (a3 x1 + a2 x2 + a1 x3) + 2b3.

§7. The Paraboloids.

If al + a2 + a3 = 0, then X1 = 0, while A2, A3 4= 0- Hence the
three quadrics become hyperbolic paraboloids having the principal
direction corresponding to Ai = 0, (1: 1: 1) in common. As with the
central quadrics the other corresponding principal directions are set
at 120°. In the case of the direction corresponding to Xx = 0, this is
not true (as with the central quadrics) for lx -f m, + w2 = V3 and (11)
is satisfied in virtue of (ax + a2 -\- a3 — 3Aj) = 0.

Hence the axes of the three paraboloids are parallel but not
coincident and the surfaces thus intersect in four points, real or
imaginary.

That they are similar follows from the canonical forms

A2 {x\ - x\) + 2 ^/Srx3 = 0,(r= 1, 2 , 3 ) .
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(262

(2h
&3) +
6 3 )4
63) 4

— 63 — 62

-bx — b.
-b.2-bx

- 3 (bx xx H
- 3 (62«! -

:) = 0,
0 = 0,

) = o,
h 63 a;2 + 62

\-bxx2 + b3.
f 62x2 + bx

X3 + Ci) —

^3 + c2) =
X3 ~r c3) =

0,
0,
0,
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They have a common vertex only when the six equations

3 (ax xx + a3x2 + a2 x3)
3 (a3Zi + a.2x2 + ax x3)
3 (a2 «i + «i x-2 + a3 z3)
(z! + z2 + x3) (bx + 62

(a;i + x2 + a;3) (6i + b2

(xi + x2 + a;3) (6i + 62 )

are satisfied simultaneously.
For this it is necessary and sufficient that bx + b2 + 63 = 0,

Cj + c2 + c3 = 0, in addition to ax -\- a2 -{- a3 = 0. In this case the Sr

are all zero as is also D, and we get three pairs of planes, each of
canonical form x\ — x\ = 0, having a common line of intersection
parallel to xx = x2 = x3. The bisectors of each pair of planes are in-
clined to one another at 120°.

If ax + a2 + az '•= 0, b1 = b2= b3, cx = c2 = c3, then the paraboloids
have Xi — x2 = x3 as a common generator.

§8. The Cylinders.

If ai = o2 = a3 the surfaces (7) become

ax (xx + x2 + x3f + 2bx zx + 263 x2 + 262 xs + cx = 0, etc.,

or, in canonical form,

where

3«! * = 6, + 62 + 63.
These are parabolic cylinders having the common axial plane

3d! (xi + x2 + x3) + (bi + b2 + b3) = 0,
and having the tangent planes at the vertex generators intersecting
at 120°, these last meeting in a common line only if 3ax &

2=C!+c2+C3.
The surfaces have only two points in common.

If further bx = b2 = b3 then the surfaces degenerate into parallel
sets of parallel planes. These coincide in one plane only if c1=c2 — c3.

If al=a2 = a3, bx + b2 + b3 = 0, cx + c2 + c3 = 0, the points of
intersection of the cylinders lie in the plane xx + x2 + x3 = 0, and the
axial planes have, as above, a common line of intersection.
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