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An injectivity theorem

Florin Ambro

ABSTRACT

We generalize the injectivity theorem of Esnault and Viehweg, and apply it to the
structure of log canonical type divisors.

Introduction

We are interested in the following lifting problem: given a Cartier divisor L on a complex variety
X and a closed subvariety Y C X, when is the restriction map

['(X,0x (L)) = I'(Y, Oy (L))
surjective? The standard method is to consider the short exact sequence
0—Zy(L) = Ox(L) = Oy (L) — 0,
which induces a long exact sequence in cohomology
0 — I'(X,Zy(L)) —» T'(X,0x (L)) = T'(Y,0y(L)) - HY(X,Zy(L)) % H'(X,O0x(L)) - - - .

The restriction is surjective if and only if « is injective. In particular, if H'(X,Zy (L)) = 0.

If X is a non-singular proper curve, Serre duality answers completely the lifting problem:
the restriction map is not surjective if and only if L ~ Kx +Y — D for some effective divisor D
such that D — Y is not effective. In particular, deg L < deg(Kx +Y). If deg L > deg(Kx +Y),
then H'(X,Zy (L)) = 0, and therefore lifting holds.

If X is a non-singular projective surface, only sufficient criteria for lifting are known
(see [Zar35]). If H is a general hyperplane section induced by a Veronese embedding of sufficiently
large degree (depending on L), then I'(X, Ox (L)) — I'(H,Og (L)) is an isomorphism (Enriques—
Severi-Zariski). If H is a hyperplane section of X, then H'(X,Ox(Kx + H)) = 0 (i > 0)
(Picard—Severi).

These classical results were extended by Serre [Serb5] as follows: if X is affine and F is a
quasi-coherent Ox-module, then H*(X, F) =0 (i > 0). If X is projective, H is ample and F is
a coherent O x-module, then H* (X, F(mH)) =0 (i > 0) for m sufficiently large.

Kodaira [Kod53] extended Picard-Severi’s result as follows: if X is a projective complex
manifold, and H is an ample divisor, then H (X,Ox(Kx + H)) = 0 (i > 0). This vanishing
remains true over a field of characteristic zero, but may fail in positive characteristic
(Raynaud [Ray78]). Kodaira’s vanishing is central in the classification theory of complex algebraic
varieties, but one has to weaken the positivity of H to apply it successfully: it still holds if H is
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F. AMBRO

only semiample and big (Mumford [Mum67], Ramanujam [Ram?72]), or if Kx + H is replaced by
[ Kx + HY| for a Q-divisor H which is nef and big, whose fractional part is supported by a normal
crossings divisor (Ramanujam [Ram74], Miyaoka [Miy79], Kawamata [Kaw82], Viehweg [Vie82]).
Recall that the round up of a real number x is [x| = min{n € Z;z < n}, and the round up of a
Q-divisor D =) pdgEis [D] =) gldg|E.

The first lifting criterion in the absence of bigness is due to Tankeev [Tan71]: if X is proper
non-singular and Y C X is the general member of a free linear system, then the restriction

is surjective. Kollar [Kol86] extended it to the following injectivity theorem: if H is a semiample
divisor and D € |mgH| for some mg > 1, then the homomorphism

Hq(X, Ox(KX +mH)) — Hq(X, Ox(KX +mH + D))

is injective for all m > 1,¢ > 0. Esnault and Viehweg [EV86, EV92] removed completely the
positivity assumption, to obtain the following injectivity result: let L be a Cartier divisor on X
such that L ~g Kx + >, b;E;, where ), E; is a normal crossings divisor and 0 < b; < 1 are
rational numbers. If D is an effective divisor supported by <b;<1 Li, then the homomorphism

HY(X,0x(L)) - HI(X,0x(L+ D))

is injective, for all ¢. The original result [EV92, Theorem 5.1] was stated in terms of roots of
sections of powers of line bundles, and restated in this logarithmic form in [Amb06, Corollary 3.2].
It was used in [Amb03, Amb06] to derive basic properties of log varieties and quasi-log varieties.

The main result of this paper (Theorem 2.3) is that Esnault—Viehweg’s injectivity remains
true even if some components E; of D have b; = 1. In fact, it reduces to the special case when
all b; = 1, which has the following geometric interpretation.

THEOREM 0.1. Let X be a proper non-singular variety, defined over an algebraically closed
field of characteristic zero. Let ¥ be a normal crossings divisor on X, let U = X\X. Then the
restriction homomorphism

Hq(X, Ox(KX + E)) — Hq(U, OU(KU))

is injective, for all q.
Combined with Serre vanishing on affine varieties, it gives the following corollary.

COROLLARY 0.2. Let X be a proper non-singular variety, defined over an algebraically closed
field of characteristic zero. Let ¥ be a normal crossings divisor on X such that X\ is contained
in an affine open subset of X. Then

HU(X,0x(Kx +3)) =0

for ¢ > 0.

If X\¥ itself is affine, this vanishing is due to Esnault and Viehweg [EV92, p. 5]. It implies
the Kodaira vanishing theorem.

We outline the structure of this paper. After some preliminaries in §1, we prove the main
injectivity result in § 2. The proof is similar to that of Esnault—Viehweg, except that we do not use
duality. It is an immediate consequence of the Atiyah—Hodge lemma and Deligne’s degeneration of
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the logarithmic Hodge to de Rham spectral sequence. In § 3, we obtain some vanishing theorems
for sheaves of logarithmic forms of intermediate degree. The results are the same as in [EV92],
except that the complement of the boundary is only contained in an affine open subset, instead
of being itself affine. They suggest that injectivity may extend to forms of intermediate degree
(Question 7.1). In §4, we introduce the locus of totally canonical singularities and the non-log
canonical locus of a log variety. The latter has the same support as the subscheme structure
for the non-log canonical locus introduced in [Amb03], but the scheme structures usually differ
(see Remark 4.4). In §5, we partially extend the injectivity theorem to the category of log
varieties. The open subset to which we restrict is the locus of totally canonical singularities of
some log structure. We can only prove the injectivity for the first cohomology group. The idea
is to descend injectivity from a log resolution, and to make this work for higher cohomology
groups one needs vanishing theorems or at least the degeneration of the Leray spectral sequence
for a certain resolution. We do not pursue this here. In §6, we establish the lifting property of
IX,0x(L)) = T'(Y,Oy (L)) for a Cartier divisor L ~gr Kx + B, with Y the non-log canonical
locus of X (Theorem 6.2). We give two applications for this unexpected property. For a proper
generalized log Calabi—Yau variety, we show that the non-log canonical locus is connected and
intersects every log canonical (lc) center (Theorem 6.3). And we obtain an extension theorem
from a union of log canonical centers, in the log canonical case (Theorem 6.4). We expect this
extension to play a key role in the characterization of the restriction of log canonical rings to
lc centers. In §7 we list some questions that appeared naturally during this work.

1. Preliminaries

1.1 Directed limits

A directed family of abelian groups (Ay,)mez consists of homomorphisms of abelian groups
Omn: Am — Ay, for m < n, such that ¢, =ida,, and @up © Ymp = @mp for m <n < p. The
directed limit li{)nm Ay of (Am)mez is defined as the quotient of €, ., A modulo the subgroup
generated by x,, —@mn () for all m < n and x,, € A,,. The homomorphisms fi,, : Ay — h_n)ln A,
am > [am] are compatible with ¢y, and satisfy the following universal property: if B is an
abelian group and f,: A, — B are homomorphisms compatible with @.,,, then there exists a
unique homomorphism f: limm A,y — B such that f,, = f o uy, for all m. From the explicit
description of the directed limit, the following properties hold: h_r)nn A, = U,, tm(Ap), and

Ker(A,, — lim | An) = Upen Ker(Ay, — Ay). In particular, we obtain the following lemma.

LEMMA 1.1. Let (Ay)mez be a directed system of abelian groups.
(1) We have that A,, — 1i1_>nn A, is injective if and only if A,, — A, is injective for all n > m.

(2) Let (Bp)mez be another directed family of abelian groups, let fp,: Ay, — B, be a
sequence of compatible homomorphisms. They induce a homomorphism f : h_r)nm A, — h_rr)lm B,,.
If f,, is injective for m > my, then f is injective.

1.2 Homomorphisms induced in cohomology
For standard notation and results, see Grothendieck [Gro61, 12.1.7, 12.2.5]. Let f: X' — X and
7m: X — S be morphisms of ringed spaces. Denote 7’ = 7wo f: X' — S.

Let F be an Ox-module, and 7' an O y/-module. A homomorphism of O x-modules u: F —
f+«F" induces functorial homomorphisms of Og-modules

Riu: Rim, F — Rixl(F) (¢ =0).
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Grothendieck-Leray constructed a spectral sequence
EY = RPr (Rf, F') = RPHI7 (F').

LEMMA 1.2. The homomorphism R'z.(f.F') — R7/(F'), induced by id: f. F' — f.F', is
injective.

Proof. The exact sequence of terms of low degree of the Grothendieck—Leray spectral
sequence is

0 = R'm.(f.F) = RYL(F) = m (R f.F') = R*n.(f.F) — Rl (F),
and R'm,(f+F') — R'7’(F') is exactly the homomorphism induced by the identity of f,F’. O

The other maps RPm,(f«.F') — RPwi.(F') (p > 2), appearing in the spectral sequence as the
edge maps Eg’o — HP may not be injective.

Example 1.3. Let f: X — Y be the blow-up at a point of a proper smooth complex surface Y,
let E be the exceptional divisor. Then the map

H*(Y, {,Ox(Kx + E)) » H*(X,0x(Kx + E))

is not injective. In particular, the Leray spectral sequence for f and Ox(Kx + F) does not
degenerate. Indeed, consider the following commutative diagram.

H*(X,0x(Kx)) —— H*(X,Ox(Kx + E))

- d

H2(Y, £,0x (Kx)) —— H*(Y, £.Ox(Kx + E))

We have R'f.Ox(Kx) = 0 for i = 1,2. Therefore o is an isomorphism, from the Leray
spectral sequence. The natural map f.Ox(Kx) — f«Ox(Kx + F) is an isomorphism. Therefore
B is an isomorphism. By Serre duality, the dual of v is the inclusion I'( X, Ox (—F)) — I'(X, Ox).
Since X is proper, I'(X,Ox) = C. Therefore I'(X, Ox(—F)) = 0. We obtain 7" = 0. Therefore
v =0.

Since «, 3 are isomorphisms and v = 0, we deduce § = 0. But H*(Y, f,.Ox(Kx + E)) is
non-zero, being isomorphic to H?(X, Ox(Kx)), which is dual to I'(X,Ox) = C. Therefore § is
not injective.

1.3 Weil divisors
Let X be a normal algebraic variety defined over k, an algebraically closed field. A prime on X
is a reduced irreducible cycle of codimension one. An R-Weil divisor D on X is a formal sum

D =) dpE,
E

where the sum runs after all primes on X, and dg are real numbers such that {E : dg # 0} has
at most finitely many elements. It can be viewed as an R-valued function defined on all primes,
with finite support. By restricting the values to Q or Z, we obtain the notion of Q-Weil divisor
and Weil divisor, respectively.

Let f € k(X) be a rational function. For a prime E on X, let ¢ be a local parameter at the
generic point of E. We define vg(f) as the supremum of all m € Z such that ft~™ is regular
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at the generic point of E. If f = 0, then vg(f) = +oo. Else, vg(f) is a well-defined integer. We
have vg(fg) = ve(f) + ve(g) and vg(f + g) = min(vg(f),ve(g)).

For non-zero f € k(X) define (f) = >, vr(f)E, where the sum runs after all primes on X.
The sum has finite support, so (f) is a Weil divisor. A Weil divisor D on X is linearly trivial,
denoted D ~ 0, if there exists 0 # f € k(X) such that D = (f).

DEFINITION 1.4. Let D be an R-Weil divisor on X. We call D:

e R-linearly trivial, denoted D ~p 0, if there exist finitely many r; € R and 0 # f; € k(X)
such that D =", ri(fi);

e Q-linearly trivial, denoted D ~q 0, if there exist finitely many r; € Q and 0 # f; € k(X)
such that D = ). 7 (fi).

LEMMA 1.5 [Sho93, p. 97]. Let Eu,..., E; be distinct prime divisors on X, and D a Q-Weil
divisor on X . If not empty, the set {(z1,...,z;) € Rl : Zﬁzl x;E; ~r D} is an affine subspace of
R! defined over Q.

Proof. Case D = 0: the set Vp = {z ¢ R’ : Zizl 2;E; ~g 0} is an R-vector subspace of R'. Let
x € Vp. This means that there exist finitely many non-zero rational functions f, € k(X)* and
finitely many real numbers r, € R such that

l
Z szz = Z’I“a(fa).
=1 «

This equality of divisors is equivalent to the system of linear equations

l
multg <Z l’lEz> = Z Ta mU-ltE(fa)a
=1 [e*

one equation for each prime divisor E' which may appear in the support of f,, for some . We have
multp(fa) € Z. If we fix the f,, this means that the r,, are the solutions of a linear system defined
over Q, and the corresponding values = belong to an R-vector subspace of R! defined over Q.

The above argument shows that V[ is a union of vector subspaces defined over Q. Let
v1,..., U, be a basis for Vy over R. Each v, belongs to some subspace of Vj defined over Q. That
is, there exist (wgp)p in VpNQ' such that v, € > Rwgp. It follows that the elements wgp, € VoNn@Q!
generate V) as an R-vector space. Therefore Vj is defined over Q.

Case D arbitrary: suppose V = {z € R’ : 22:1 x;E; ~g D} is non-empty. Let € V. Then
22:1 xiE; = D+, ro( fo) for finitely many rq, f, as above. Since D has rational coefficients, the
same argument used above shows that once the f, are fixed, there exists another representation
Zi:l 2By =D+, rh(fa), With 2}, 7, € Q. In particular, 2’ € V N QL. We have V = 2/ + 4.
Since Vj is defined over Q, we conclude that V' is an affine subspace of R! defined over Q. O

If D ~q 0, then D has rational coefficients. If D has rational coefficients, then D ~gq 0 if and
only if D ~g 0 (by Lemma 1.5).

Let D be an R-divisor on X. Denote D=' = Y, | E, D*' = %, , dgE, D =
> dp<0dEE, D>0 = > dp>0drE. The round up (down) of D is defined as [D] = 3 p[dg|E
(|ID] => gldr]E), where for z € R we denote |z] = max{n € Z:n < z} and [z| = min{n €
Z : x < n}. The fractional part of D is defined as {D} = ) z{dg}E, where for z € R we denote
{z} =2 —|z].

DEFINITION 1.6. Let D be an R-Weil divisor on X. We call D R-Cartier (Q-Cartier, Cartier) if
there exists an open covering X = J, U; such that D|y, ~gr 0 (D|y, ~q 0, D|y, ~ 0) for all .
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1.4 Complements of effective Cartier divisors
LEMMA 1.7. Let D be an effective Cartier divisor on a Noetherian scheme X . Let U = X \Supp D
and consider the open embedding w: U C X. Then:

(1) w is an affine morphism;
(2) let F be a quasi-coherent O x-module. The natural inclusions F(mD) C F(nD), for m < n,
form a directed family of Ox-modules (F(mD))mez; and
lim 7(mD) = w«(Fv);

(3) letw: X — S be amorphism and F a quasi-coherent Ox-module. Thenlim R, JF(mD) =
RI(m|)«(Flu) for all g.

Proof. Let X = |J, Vo be an affine open covering such that D = (f,)a, for non-zero divisors
fo € T(Va, Ov,) such that fof5" € T(Va V3, 0%) for all a, 5.
The set w= (V) = U NV, = D(f,) is affine, so (1) holds. Statement (2) is local, equivalent
to the known property
L(D(fa),F) =T(Va, Fy, = li_I)nF(Va,}"(mD)) = F<Va, li_I)n]:(mD))
For (3), directed limits commute with cohomology on quasi-compact topological spaces.
Therefore
lim R, F(mD) — R, <1113>1 f(mD)) = R, (w«(Flv)).

Since w is affine, the Leray spectral sequence for w degenerates to isomorphisms
Rim(w.(Flu)) = R (m|v)«(Flv)-
Therefore (3) holds. O

1.5 Convention on algebraic varieties
Throughout this paper, a variety is a reduced scheme of finite type over an algebraically closed
field k of characteristic zero.

1.6 Explicit Deligne—Du Bois complex for normal crossing varieties
Let X be a variety with at most normal crossing singularities. That is, for every point P € X,
there exist n > 1, I C {1,...,n}, and an isomorphism of complete local k-algebras
E[[Ti,....Tn]] ~ A
— = > Oxp.
(ier o)

Let 7: X — X be the normahzatlon For p > 0, define the Ox-module Q , to be the image

of the natural map Q Y We have induced differentials d: Qp Nk Qg;llc, and Q'

becomes a differential complex of (6 x-modules. We call the hypercohomology group H" (X, Q;( /k)
the rth de Rham cohomology group of X/k, and denote it by
Hpr(X/k).

If the base field is understood, we usually drop it from notation. Let X4 be the simplicial algebraic
variety induced by 7 (see [Del74]). Its components are X, = (X /X)?", and the simplicial maps
are naturally induced. We have a natural augmentation

€: Xo — X.
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We have Xg = X, X; = Xo xx X0, €0 = 7 and &g, 61: X1 — X are the natural projections. For
p = 0, let Qf’;(. be the simplicial Ox,-module with components Qf’;(n (n > 0). The Ox-module
(%) is defined as the kernel of the homomorphism

* * P P
61 - 60. EO*QX() — El*QXl.

By [DJ74, Lemme 2], € is a smooth resolution, and Rie*(Qg(.) =0fori>0,p=0.

LEMMA 1.8. For every p, Qg( = e (%)

Proof. Since wo §y = w o §1, we obtain an inclusion Qg( C e*(Qg(.). The opposite inclusion may
be checked locally, in an étale neighborhood of each point. Therefore we may suppose

X <sz = 0) c A%tL,
i=1

Then X has ¢ irreducible components Xi,...,X,, each of them isomorphic to A% The
normalization X is the disjoint union of the Xj. Therefore I'(X,e.(Q%)) consists of c-uples

(wi,...,we) where w; € F(Xi,Qg(i) satisfy the cycle condition w;|x;nx; = wj|x,nx, for every
i< .

By induction on ¢, we show that I'(X, e,(€2%)) is the image of the homomorphism (AT,
Qidﬂ) — (X, QZ))—() The case ¢ = 1 is clear. Suppose ¢ > 2. Let a = (wy,...,w.) be an element

of D(X, e.(%)). There exists w € T(A*, OF ) such that w. = w|x,. Then we may replace a
by a — w|x, so that

a= (wiy...,We—1,0).

The cycle conditions for pairs i < ¢ give w; = z.1;, for some 7; € F(Xi,Qg(i). The other
cycle conditions are equivalent to the fact that (n1,...,7.-1) € T(X',e(Q%,)), where X' :
(TIZ1 2z = 0) € A%, By induction, there exists 7 € LA™, QF,,,) such that n; = n|x, for
1<i<e—1. Then a = z.|x.

The map I'(A4F!, Q) = (X, Q%) factors through the surjection (AT, Q) = T(X,
Q% ). Therefore its image is the same as the image of I'(X, Q%) — T'(X, Q%). O

It follows that Q% — Re.(Q%,) is a quasi-isomorphism. From [Del74, Gro66] (see [DuB81,
Théoréme 4.5]), we deduce the following result.

THEOREM 1.9. The filtered complex (QB(, F), where F' is the naive filtration, induces a spectral
sequence in hypercohomology

EY = HI(X,0%) = HPT(X, Q%) = HLH(X/K).
If X is proper, this spectral sequence degenerates at F.

Note Qg( =0Ox.lf d=dim X, then Qg( = W*QdX, which is a locally free Ox-module if and only
if X has no singularities. If X is non-singular, the natural surjections Q% — QX are isomorphisms,
for all p. So our definition of de Rham cohomology for varieties with at most normal crossing
singularities is consistent with Grothendieck’s definition [Gro66] for non-singular varieties.
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1.7 Differential forms with logarithmic poles
Let (X, X) be a log smooth pair, that is X is a non-singular variety and ¥ is an effective divisor
with at most normal crossing singularities. Denote U = X\X. Let w: U — X be the inclusion.
Then w,(€;) is the complex of rational differentials on X which are regular on U. We identify
it with the union of Q% ® Ox(mX), after all m > 0.

Let p > 0. The sheaf of germs of differential p-forms on X with at most logarithmic poles
along ¥, denoted QF (log X) (see [Del69]), is the sheaf whose sections on an open subset V of X
are

D(V, Q% (log X)) = {w € T(V, 2% ® Ox (%)) : dw € T(V, 05 @ Ox (D))}

It follows that {Q% (log ¥), dP}, becomes a subcomplex of w,(€F)). It is called the logarithmic
de Rham complez of (X,Y), denoted by Q% (log X).

Let n = dimX. Then Q% (logX) = 0 if p ¢ [0,n]. And Q%(logX) = Q% ® Ox(X) =
Ox(Kx + X), where Kx is the canonical divisor of X.

LEMMA 1.10. Let 0 < p < n. Then QX (log¥) is a coherent locally free extension of Qf; to X.
Moreover, 2% (log ¥) = Ox, APQ% (log X) = QF (log ), and the wedge product induces a perfect
pairing

O (logX) ®o, Uy P(logx) — Q% (log X).

Proof. The Ox-module QF (log ¥) is coherent, being a subsheaf of Q% @ Ox (X). The statements
may be checked near a fixed point, after passing to completion. Therefore it suffices to verify the
statements at the point P = 0 for X = A} and ¥ = (J[,c; 2). As in [EV92, Properties 2.2] for
example, it can be checked that in this case Q];( (log X)p is the free Ox p-module with basis

{rlw”:fg{L.”JQJIp:p}

icJnl %

where for I = {iy < --- <i,}, dz denotes dz;; A--- Adz;,. And [];c52 = 1. All the statements
follow in this case. U

THEOREM 1.11 [AH55, Del69, EV92, Gro66]. The inclusion Q% (log¥) C w. () is a quasi-
isomorphism.

Proof. We claim that Q% (logX) ® Ox (D) is a subcomplex of w, (), for every divisor D
supported by X. Indeed, the sheaves in question are locally free, so it suffices to check the
statement over the open subset X\SingY, whose complement has codimension at least two
in X. Therefore we may suppose X is non-singular. After passing to completion at a fixed point,
it suffices to check the claim at P =0 for X = A} and ¥ = (z). This follows from the formula
d
A1) =m- 2@z (mel).
z
We obtain an increasing filtration of w,(£27;) by sub-complexes
Km=Q%(log¥) @ Ox(mX) (m >=0).

We claim that the quotient complex Iy, /KC;,—1 is acyclic, for every m > 0. Since ICp = Q% (log X)
and |J,,,50 Km = w«(Q7;), this implies that the quotient complex w.(€27;)/Q% (log ¥) is acyclic,
or equivalently Q% (log¥) C w.(2};) is a quasi-isomorphism.

To prove that KC,,, /IC,—1 (m > 0) is acyclic, note that we may work locally near a fixed point,
and we may also pass to completion (since the components of the two complexes are coherent).
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Therefore it suffices to verify the claim at P = 0 for X = A} and ¥ = (J],c; 2). If we denote
H; = (z;), the claim in this case follows from the stronger statement of [EV92, Lemma 2.10]:
the inclusion Q% (log ¥) ® Ox (D) C Q% (log¥) ® Ox (D + H;) is a quasi-isomorphism, for every
effective divisor D supported by ¥ and every j € J. O

THEOREM 1.12 [Del71]. The filtered complex (Q% (logX), F'), where F' is the naive filtration,
induces a spectral sequence in hypercohomology

B = HO(X, %% (log %)) = HPH(X, Q% (log ).
If X is proper, this spectral sequence degenerates at F.

Proof. If k = C, the claim follows from [Del71] and GAGA. By the Lefschetz principle, the claim
extends to the case when k is a field of characteristic zero. O

LEMMA 1.13. For each p > 0, we have a short exact sequence
0— Iy, ® Q% (log X) — Q% — OF — 0.
Proof. Let m: ¥ — X be the normalization. We claim that we have an exact sequence
0— Iy @ Q% (log X) — Q% — .08,

where the second arrow is induced by the inclusion Q% (logX) C QF ® Ox(X), and the third
arrow is the restriction homomorphism w — wls. Indeed, denote K = Ker(Q — m.0Q%). We
have to show that Zs; ® QX (log ¥) = K. This is a local statement which can be checked locally
near each point, and since the sheaves are coherent, we may also pass to completion. Therefore
it suffices to check the equality at P = 0 in the special case X = A}, ¥ = (][;c; zj). From the
explicit description of local bases for the logarithmic sheaves, the claim holds in this case.
Finally, we compute the image of the restriction. The restriction factors through the surjection
Q% — QF. Therefore the image coincides with the image of Qf, — m,.Q%, which by definition
is Q.. O

1.8 The cyclic covering trick
Let X be an irreducible normal variety, let 7" be a Q-Weil divisor on X such that T" ~q 0. Let
r > 1 be minimal such that 7" ~ 0. Choose a rational function ¢ € k(X)* such that (¢) = rT.
Denote by

7 X' =X
the normalization of X in the field extension k(X) C k(X)(y/¢). The normal variety X' is
irreducible, since r is minimal. Choose v € k(X’)* such that ¢" = 7"*¢. One computes

r—1
T.0x = P Ox (liT )",
=0

The finite morphism 7’ is Galois, with Galois group cyclic of order r. Moreover, 7’ is étale over
X\Supp{T'}.

Suppose now that (X, X) is a log smooth pair structure on X, and the fractional part {7}
is supported by X. Then 7/ is flat, X’ has at most quotient singularities (in the étale topology),
and X'\7' 'Y is non-singular. Let p: Y — X’ be an embedded resolution of singularities
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of (X',7/7'%). If we denote 7 = 7/ o p, then 7-1(X) = Sy is a normal crossings divisor and
p: Y\Xy = X'\’ ~!Y is an isomorphism. We obtain the following commutative diagram.

X' <ty

1

X
LEMMA 1.14 [Amb13, EV82]. We have R}, (log Xy ) = 0 for ¢ > 0, and

7.0 (log Xy ) = Q% (log Tx) @ .Ox/

7
L

~ P 0% (log Xx) @ Ox([iT)).

7=l

o

This statement is proved in [EV82, Lemme 1.2, 1.3] with two extra assumptions: X is
projective, and ¥ is a stmple normal crossing divisor, that is it has normal crossing singularities
and its irreducible components are smooth. One can show that the projectivity assumption is
not necessary, and the normal crossings case reduces to the simple normal crossing case, by étale
base change (see [Amb13]).

2. Injectivity for open embeddings
Let (X,Y) be a log smooth pair, with X proper. Denote U = X \X.

THEOREM 2.1. The restriction homomorphism H?(X,Ox(Kx + %)) — HY(U,Oy(Ky)) is
injective, for all q.

Proof. Consider the inclusion of filtered differential complexes of Ox-modules
(% (og X), F) C (w. (), F),

where F' is the naive filtration of a complex. Let n = dim X. The inclusion F" C F 0 induces the
following commutative diagram.

HE+ (X, F0% (log B)) —— HO+ (X, 0% (log 2))

l ia

HOH (X, Fhw, () H™ (X, w. ()

By Theorem 1.11, « is an isomorphism. Theorem 1.12 implies that 3 is injective. Therefore cco 3
is injective. Therefore a” is injective.
But F"Q% (log X) = % (log X)[—n| and F™w,(82f;) = w«(2)[—n]. Therefore o™ becomes

o™ HU(X, Q% (log £)) — HU(X, w, ().

The morphism w: U C X is affine, so H9(X, w,(Q;)) — H4(U, Q) is an isomorphism. Therefore
a™ becomes the restriction map

o™ HU(X, Q% (log $)) — HUU, Q). 0
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COROLLARY 2.2. Let T' be a Q-divisor on X such that T ~g 0 and Supp{T'} C 3. In particular,
T|v has integer coefficients. Then the restriction homomorphism

HY(X,Ox (Kx + 5 + | T))) - H(U, Oy (Ky + T|v))
is injective, for all q.
Proof. We use the notation of § 1.8. Denote V = 7-}(U) = Y\ Xy. By Theorem 2.1, the restriction
HY(Y,Oy(Ky + Xy)) = HY(V,Oy(Ky))
is injective. By the Leray spectral sequence and Lemma 1.14, the restriction
HY(X, 1.0y (Ky + Xy)) — H{(U, 7.0y (Ky))

is injective. Equivalently, the direct sum of restrictions

r—1
D HX, Ox(Kx + 2 + [iT])) = H(U, Oy(Ky +iT|y)))
i=0
is injective. For ¢ = 1, we obtain the claim. O

THEOREM 2.3. Let X be a proper non-singular variety. Let U be an open subset of X such that
X\U is a normal crossings divisor with irreducible components (E;);. Let L be a Cartier divisor
on X such that L ~g Kx+)_,b;E;, with 0 < b; < 1 for all i. Then the restriction homomorphism

HY(X,0x (L)) — HI{(U,Oy(L|t))
is injective, for all q.

Proof. Choose a labeling of the components, say E1, ..., E;. Since L— K x has integer coefficients,
it follows by Lemma 1.5 that the set

l
V= {xeRl:LNRKX+ZxZ-Ei}
=1

is a non-empty affine linear subspace of R! defined over Q. Then (by,...,b) € V N (0, 1] can be
approximated by (b],...,b)) € VN(0, 1]'NQ’, such that b, = b; if b; € Q. Because 0 ~g —L+Kx +
>, U E; and the right-hand side has rational coefficients, it follows that 0 ~g —L+Kx+_, b E;.

In conclusion, L ~g Kx + Y, b;E; and 0 < b, <1 for all i. Set ¥ = >, E; and T = L —
Kx =), UE;. Then T ~g 0, {T} = >, {-b;} E; and L = Kx + X+ [T']. Corollary 2.2 gives the
claim. O

Remark 2.4. Let U C U’ C X be another open subset. From the commutative diagram

HY(X,0x(L)) H(U, Ou(Lv))

\/

HYU', Oy (L|y))

it follows that H4(X,Ox (L)) — HY(U', Oy/(L|y)) is injective for all q.
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Remark 2.5. Recall that for an Ox-module F, I's(X, F) is defined as the kernel of I'(X, F) —
[(U, F|y). The functor I's(X,-) is left exact. Its derived functors, denoted (H&(X,F))is0, are
called the cohomology of X modulo U, with coefficients in F. For every F we have long exact
sequences

0—=Tx(X,F) = TI(X,F) - T(UF|U) = HX,F) - H (X, F) - H (U, F|lU) = --- .

Therefore Theorem 2.3 says that the homomorphism H(X,Ox (L)) — HY(X,Ox(L)) is zero
for all q. Equivalently, I's (X, Ox (L)) = 0, and for all ¢ we have short exact sequences

0 — HI(X,0x (L)) = HY(U, Oy (L|y)) — HE (X, 0x(L)) = 0.

Remark 2.6. Theorem 2.3 is also equivalent to the following statement, which generalizes the
original result of Esnault and Viehweg [EV92, Theorem 5.1]: let D be an effective Cartier divisor
supported by . Then the long exact sequence induced in cohomology by the short exact sequence
0— Ox(L) = Ox(L+ D) — Op(L + D) — 0 breaks up into short exact sequences

0 — HY(X,0x(L)) - HY(X,0x(L + D)) = HY(D,Op(L+ D)) -0 (q > 0).
Indeed, let D be as above. We have the following commutative diagram.

HY(X,0x(L)) —*— HY(X,0x(L + D))

& i

HY(U, Oy(Lly)) ——= HI(U,O0y((L + D)|v))

Since D is disjoint from U, « is an isomorphism. By Theorem 2.3, 3 is injective. Therefore yo S is
injective. It follows that « is injective. Conversely, suppose H4(X,Ox (L)) - H1(X,Ox(L+ D))
is injective for all divisors D supported by X\U. Then we see that H4(X,Ox(L)) - H(X,
Ox (L +mYX)) is injective for every m > 0. Lemma 1.1 implies the injectivity of

HY(X, Ox(L)) — lim HY(X, Ox (L + mX)).

m

By Lemma 1.7, this is isomorphic to the homomorphism HY(X,Ox (L)) — H4{(U,Oy(L|v)).
COROLLARY 2.7. Let D be an effective Cartier divisor supported by Y. Then

0— HY(X,O0x(Kx +%)) - H(X,0x(Kx +¥X+ D)) - H{(D,Op(Kx + X+ D)) = 0
is a short exact sequence, for all q.
Proof. By Remark 2.6 for L = Kx + . O

COROLLARY 2.8. The homomorphism I'( X, Ox (Kx +2%)) — I'(X, Ox(Kx 4 2Y)) is surjective.

If 3 is the general member of a base point free linear system, this is the original result of
Tankeev [Tan71, Proposition 1].

3. Differential forms of intermediate degree

Let (X,3) be a log smooth pair such that X is proper and U = X\¥ is contained in an affine
open subset of X.
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THEOREM 3.1. We have H(X, Q% (logX)) = 0 for p + ¢ > dim X. In particular, H1(X, Ox
(Kx + %)) =0 for g > 0.

Proof. Consider the logarithmic de Rham complex Q% (logX). Let U’ be an affine open subset
of X containing U. The inclusions U C U’ C X induce the following commutative diagram.

H" (X, Q% (log X)) H"(U, Q)

\/

H (U, % (log %))

Since U’ is affine, H1(U’, Q% (log X)|/) = 0 for ¢ > 0. Therefore H"(U’, 2% (log X)|¢) is the rth
homology of the differential complex I'(U’, Q% (log X)). Since Q% (logX) = 0 for p > dim X, we
obtain

H" (U, Q% (log X)|y/) =0 for r > dim X.

Let » > dim X. It follows that the horizontal map is zero. But it is an isomorphism by
Theorem 1.11. Therefore
H"(X, Q% (log X)) = 0.

By Theorem 1.12, we have a non-canonical isomorphism

H" (X, Q% (log X)) ~ ) HI(X, 0% (logX)).
ptg=r

Therefore H1(X, Q% (logX)) =0 for all p+q = 7. O

Let T be a Q-divisor on X such that 7" ~g 0 and Supp{7'} C X. In particular, T|y has
integer coefficients.

THEOREM 3.2. We have HY(X, 0 (logX) ® Ox(|T])) = 0 for p + ¢ > dim X. In particular,
HY(X,0x(Kx +X+|T])) =0 for ¢ > 0.

Proof. We use the notation of §1.8. Let X\X C U’, with U’ an affine open subset of X. Let
V! = 77Y(U’"). By Lemma 1.14, the Leray spectral sequence associated to 7|y : V' — U’ and
O (log Xy )|y degenerates into isomorphisms

HUU', (ly) Q5 (log By ) [vr) = HI(V', Q4 (log By ) [y).
Since U’ is affine, the left-hand side is zero for ¢ > 0. Therefore
HYV' Q% (logZy)|y) =0 for ¢ > 0.
In particular, the spectral sequence
EYT = HI(V', Q5 (log By )|yr) = HY(V’, Q3 (log Ty ) |v)
degenerates into isomorphisms
h'(D(V', Q5 (log Ty ))) ~ H'(V', Q5 (log Xy ) |v),

where the first term is the rth homology group of the differential complex I'(V’, Q3. (log Xy)).
Since Q- (log ¥y') = 0 for p > dimY’, we obtain

H"(V', Q% (logXy)|y:) =0 for r > dimY.
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Let V = 77}(U) = Y\Zy. The restriction map
H" (Y, Q3 (log Zy)) — H"(V, €25 (log Xy )[v)

is an isomorphism by Theorem 1.11. It factors through H"(V’, Q3 (log £y )|v/), hence it is zero
for r > dim Y. Therefore

H"(Y, Q3 (logXy)) =0 for r >dimY.

By Theorem 1.12, H"(Y,Q$ (log Xy)) ~ @ H(Y, 0} (log 2y)). Therefore

p+g=r
HY(Y, Q) (log2y)) =0 for p+ ¢ > dimY.

The cyclic group of order r acts on HZ(Y, QY. (logXy)), with eigenspace decomposition

r—1
P (X, 0% (log ) © Ox ([iT])).
i=0
Therefore HY(X, Q% (logX) @ Ox(|T])) = 0. O

3.1 Applications
COROLLARY 3.3. We have HY(X, 0% (log¥) ® Ox (=X — |T])) = 0forp + ¢ < dimX. In
particular, H1(X,Ox (=X — |T'])) = 0 for all ¢ < dim X.

Proof. This is the dual form of Theorem 3.2, using Serre duality and the isomorphism
(95 (log X))V ~ Q"X P(log %) ® Ox (—Kx — %). O

For T = 0, we obtain H%(X,Zy, @ Q% (log X)) = 0 for all p+ ¢ < dim X. In particular, H?(X,
Zy) =0 for all ¢ < dim X.

COROLLARY 3.4. The homomorphism HY(X, Q% @ Ox(—|T])) — HQ(E,Qg ® Os(—|T))) is
bijective for p + q < dim X and injective for p + ¢ = dim X..

Proof. Denote KP1 = H(X,0% (log¥) @ Ox (=X — [T])). The short exact sequence of
Lemma 1.13 induces a long exact sequence in cohomology

K7 — HI(X, 0% @ Ox(—|T))) 5 HY(S, 08 @ Og(—|T))) — KPI,
By Corollary 3.3, a% is bijective for ¢ + 1 < dim X — p, and injective for g+ 1 =dim X —p. O

COROLLARY 3.5 (Weak Lefschetz). The restriction homomorphism Hp,n(X/k) — Hp,p(3/k) is
bijective for r < dim X and injective for r = dim 3.

Proof. Set T = 0. The homomorphism H?(X, Q%) — HY(%, Q%) is bijective for p + ¢ < dim &
and injective for p + ¢ = dim 3. The Hodge to de Rham spectral sequence degenerates at Fj,
for X/k by [Del69, Theorem 5.5] and for ¥/k by Theorem 1.9, and is compatible with the maps
above. O

COROLLARY 3.6. Suppose Supp{T'} = X. Then H1(X, Q% (logX)®@ Ox(|T])) =0 for all p+q #

dim X.

Proof. For p+ ¢ > dim X, this follows from above. For p + ¢ < dim X, apply the dual form to

=T, using —¥ — |-T| = |T]. O
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COROLLARY 3.7. Suppose X \Supp{T'} is contained in an affine open subset of X. Then HI(X,
Ox(|T])) =0 for ¢ < dim X.

THEOREM 3.8 (Akizuki-Nakano). Let X be a projective non-singular variety. Let L be an ample
divisor. Then H1(X, Q% (L)) = 0 for p+q > dim X . Dually, H1(X, Q% (—L)) = 0 for p+¢ < dim X.

Proof. There exists r > 1 such that the general member Y € |rL| is non-singular. Set
T=L—-(1/r)Y and ¥ =Y. Then T ~g 0, Supp{T} = ¥ and X\X is affine. We also have
|T'| = L =Y. By Theorem 3.2, we obtain

HYX, 05 (logY)®Ox(L—-Y)) =0 forp+gq>dimY.
The short exact sequence of Lemma 1.13, tensored by L, gives an exact sequence
HYX, 0% (logY)(L-Y)) - HY(X, Q% (L)) — HI(Y, % (L)).
Let p4q > dim X. The first term is zero from above, and the third is zero by induction. Therefore
HY(X, 0% ® Ox(L)) = 0. O

COROLLARY 3.9 (Kodaira). Let X be a projective non-singular variety. Let L be an ample
divisor on X. Then H4(X,Ox(Kx + L)) =0 for ¢ > 0.

4. Log pairs

A log pair (X, B) consists of a normal algebraic variety X, endowed with an R-Weil divisor B
such that Kx + B is R-Cartier. If B is effective, we call (X, B) a log variety.

A contraction f: X — Y is a proper morphism such that the natural homomorphism Oy —
f«Ox is an isomorphism.

4.1 Totally canonical locus
Let (X, B) be a log pair. Let u: X’ — X be a birational contraction such that (X', Exc(u) U
Supp ;! B) is log smooth. Let

p(Kx + B) = Kx/ + Bx
be the induced log pair structure on X’. We say that u: (X', Bx/) — (X, B) is a log crepant
birational contraction.
For a prime divisor E on X', 1 — multg(Bx-) is called the log discrepancy of (X, B) in the
valuation of k(X ) defined by E, denoted a(E; X, B) (see [Amb06] for example).

Define an open subset of X by the formula U = X\u(Supp(Bx/)>?). The definition of U
does not depend on the choice of i, by the following lemma.

LEMMA 4.1. Let p: (X', B") — (X, B) be a log crepant proper birational morphism of log pairs
with log smooth support. Then u(Supp B'~°) = Supp B>°.

Proof. First, we claim that B’ < p*B. Indeed, X is non-singular, so Ky — u*Ky is effective
p-exceptional. From p*(Kx + B) = Kx/ + B’ we obtain

M*B—B/:KX/ _N*KX = 0.

To prove the statement, denote U = X\Supp(B>°). Then B|y < 0. The claim for
-y (W U), B'l~vany) — (U,Bly) gives B'|,~1y < 0. Therefore p(Supp B~?) C
Supp B>?. For the opposite inclusion, note that Supp B>? has codimension one. Let E be a

prime in Supp B>°. Since p is an isomorphism in a neighbourhood of the generic point of E, E
also appears as a prime on X’ and multg(B’) = multg(B) > 0. Therefore E C p(Supp B’>%). O
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We call U the totally canonical locus of (X, B). It is the largest open subset U of X with the
property that every geometric valuation over U has log discrepancy at least 1 with respect to
(U, B|y). We have

X\(Sing(X) USupp(B>)) € U € X\Supp(B>").
The first inclusion implies that U is dense in X. The second inclusion is an equality if (X, Supp B)

is log smooth.

4.2 Non-log canonical locus
Let (X, B) be a log pair with log smooth support. Write B =), bgE, where the sum runs after
the prime divisors of X. Define

N(B)= ) [bg]E+ ) ([bg] - 1)E.
bp<0 bg>1

Then N(B) is a Weil divisor. There exists a unique decomposition N(B) = Nt — N~ where
N*, N~ are effective divisors with no components in common. Then Supp(N*) = Supp(B>1!)
and Supp(N~) = Supp(B<"). We have

B! -Nt= ) E
0<bp€Z
In particular N* < |B>!], and the two divisors have the same support. Denote
A(B) = B — N(B).
We have A(B) =3, _o{be}E + 3, ~0(be +1— [bg])E. The following properties hold:

(1) the coefficients of A(B) belong to the interval [0,1]. They are rational if and only if the
coefficients of B are;

(2) Supp(A(B)) = Supp(B~Y) U U0>bE¢Z E. In particular, (X, A(B)) is a log variety with log
canonical singularities and log smooth support;

(3) multg A(B) =1 if and only if multg B € Z~.

LEMMA 4.2. Let p: (X', B") — (X, B) be a log crepant birational contraction of log pairs with
log smooth support. Then p*N(B) — N(B') is an effective u-exceptional divisor. In particular,

Ox(=N(B)) = pOx(=N(B")).

Proof. The operation B + N(B) is defined componentwise, so u*N(B) — N(B’) is clearly
p-exceptional. Decompose B = A + N and B’ = A’ + N'. From p*(K + B) = Kx/ + B’ we
deduce

W'N—N=Kx +A —p*(K+A).

In particular, let E be a prime divisor on X’. And mp = multg(g*N — N’). Then
mp = a(E; X,A) —a(E; X', A).
Since (X, A) has log canonical singularities and A’ is effective, we obtain
mg=>0—12>—1.

If mp > —1, then mpg > 0, as it is an integer. Otherwise, mp = —1. In this case a(E; X, A) =0
and a(E; X', A") = 1. From a(E; X, A) = 0, we deduce that p(F) is the transverse intersection
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of some components of A with coefficient 1. That is u(F) is the transverse intersection of some
components of B with coefficients in Z>;. In particular, B > A near the generic point of u(FE).
We deduce

0=a(E;X,A) >a(E; X,B) =a(E; X', B).
That is multg B’ > 1. Then multg A’ > 0, so a(F; X', A’) =1 — multg A’ < 1. This is a
contradiction. O

DEFINITION 4.3. Let (X, B) be a log variety. Let u: (X', Bx/) — (X, B) be a log crepant log
resolution. Define

The coherent O x-module Z is independent of the choice of y, by Lemma 4.2. Since B is effective,
the divisor N(Bx/)~ = —|B5/] is p-exceptional. Therefore

We call Z the ideal sheaf of the non-log canonical locus of (X, B). It defines a closed subscheme
(X, B)_o of X by the short exact sequence

0—-7Z—0x —0Oxp_., —0.

We call (X, B)_ the locus of non-log canonical singularities of (X, B). It is empty if and only if
(X, B) has log canonical singularities. The complement X\ (X, B)_o is the largest open subset
on which (X, B) has log canonical singularities.

Remark 4.4. We introduced in [Amb03] another scheme structure on the locus of non-log
canonical singularities of a log variety (X, B). The two schemes have the same support, but
their structure sheaves usually differ. To compare them, consider a log crepant log resolution
p: (X', Bx/) — (X, B). Define

= |B%/ | = N(Bx/) + > E.
multg(By/)E€Z>1

Denote By = > pbpE. Then N* — N(By/) = 33, 7, E and |Bx/| - N°* =37, | E. In
particular
N < N° < |Bx/].

We obtain inclusions of ideal sheaves p.Ox/(—N) 2O p.Ox/(—N?®) 2O pu.Ox:/(—|Bx]).
Equivalently, we have closed embeddings of subschemes of X

Y < Y* < LCS(X, B),

where Y is the scheme structure introduced in [Amb03] and LCS(X, B) is the subscheme
structure on the non-klt locus of (X, B).

Consider for example the log variety (A2,2H1 + H), where Hy, Hs are the coordinate
hyperplanes. The above inclusions are

H1 — 2H1 —> 2H1 +H2.

LEMMA 4.5. Let p: (X', B") — (X, B) be a log crepant birational contraction of log pairs with
log smooth support. Then p*|B7'| — LB;?}J is an effective p-exceptional divisor. In particular,

Ox(~|B*]) = 1. 0x:(~ | BE! ).
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Proof. The operation B ~ |B7!]| is defined componentwise, so p*|B7!] — LB;?}J is clearly
p-exceptional. The equality p*(K + B) = Kx/ + Bxs becomes

W B! = |BL| = Kxo + B!+ {B%,} — u*(K + B~ + {B71}).

Consider the multiplicity of the left-hand side at a prime on X’. It is an integer. The right-hand
side is >—1. If >—1, it is >0. Suppose it equals —1. This implies a(E; X, B=! + {B7!}) = 0.
Then a(E; X, B=!) = 0 and B = B~! near the generic point of u(E). Then a(E; X', Bx/) = 0.
Then the difference is zero. This is a contradiction. O

4.3 Lc centers
For the definition and properties of lc centers, see [Amb06].

LEMMA 4.6. Let (X, B) be a log variety with log canonical singularities. Let D be an effective
R-Cartier R-divisor on X, let Z be the union of lc centers of (X, B) contained in Supp D, with
reduced structure. Then (X,B +¢eD)_o = Z for 0 < e < 1.

Proof. Let pu: X' — X be a resolution of singularities such that (X', Supp Bxs U Supp p*D) is
log smooth, where p*(Kx + B) = Ky + Bx/, and u~!(Z) has pure codimension one. We have
w* (Kx + B+ €eD) = Kx + Bxr + eu*D. Denote

Y = Z E.

multg(Bx/)=1,u(E)CZ

Since the coefficients of By are at most 1, for 0 < ¢ < 1 we obtain the formula

N(Bx: +eu*D) = [(Bx)<) + >, E
mult g (By/)=1,u(E)CSupp D

= [(Bx)<) +¥.

Denote A = —|(Bx/)<°|, an effective p-exceptional divisor on X’. Consider the following
commutative diagram with exact rows.

0 — 11O (A = ) — 1.0 (A) —= 1. Osy (Alsy) —2 R, Oxi (A - 5)

| | |

0 Iy Ox Oz 0

We claim that 0 = 0. Indeed, denote B’ = {B§9}+B§9—Z'. Then A—Y' ~p Kx/+B’ over X,
(X', B’) has log canonical singularities, and u(C) € Z for every lc center C of (X', B). The sheaf
1+Osy(Alxr) is supported by Z, so the image of 9 is supported by Z. Suppose by contradiction
that 0 is non-zero. Let s be a non-zero local section of Im 9. By [Amb03, Theorem 3.2(i)], (X', B)
admits an lc center C' such that u(C) C Supp(s). Since Supp(s) C Z, we obtain u(C) C Z, a
contradiction.

Since A is effective and u-exceptional, § is an isomorphism. The map -y is injective. Since r
is surjective, «y is also surjective, hence an isomorphism. We conclude that « is an isomorphism.
That is Tz = 1«Ox/ (=N (Bx: + eu* D)) = L(x,B+eD)_ oo - 0
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5. Injectivity for log varieties

THEOREM 5.1. Let (X, B) be a proper log variety with log canonical singularities. Let U be the
totally canonical locus of (X, B). Let L be a Cartier divisor on X such that L ~g K + B. Then
the restriction homomorphism

HY(X,0x(L)) — H' (U, Oy (L|y))
is injective.

Proof. Let p: X" — X be a birational contraction such that X’ is non-singular, the exceptional
locus Exc z has codimension one, and Exc p U Supp(p; ! B) has normal crossings. We can write

Kx' +p;'B+Excpu=p* (K + B) + A,

with A supported by Exc p. Since (X, B) has log canonical singularities, A is effective. Denote
B' = pu;'B+Excpu—{A} and L' = u*L + | A|. We obtain

L ~R KX/ + B
Denote U’ = X'\ B’. We claim that U’ C y~!(U). Indeed, this is equivalent to the inclusion
Supp(B') 2 p~ ' p(Supp BYY).

By Zariski’s Main Theorem, Exc p = u~1(X\V), where V is the largest open subset of X such
that p is an isomorphism over V. Over X\V, the inclusion is clear since Exc u C Supp B’. Over
V', i is an isomorphism and the inclusion becomes an equality. This proves the claim.

Since A is effective and ju, A = 0, we have Ox (L) > 11, Ox/(L'). From U’ C p~Y(U) we obtain
the following commutative diagram.

HY(X', Ox/(L)) —~—= HYU', Oy (L))

| T

HY(X,Ox(L)) . HY(U, Oy(Llv))

By Theorem 2.3, o is injective. Since Ox (L) = pOx/(L'), Lemma 1.2 implies that j is injective.
Then o/ o 3 is injective. The diagram is commutative, so « is injective. O

COROLLARY 5.2. In the assumptions of Theorem 5.1, let D be an effective Cartier divisor such
that Supp(D) NU = @. Then we have a short exact sequence

0-T(X,0x(L)) - I(X,0x(L+ D)) - T'(D,Op(L+ D)) — 0.
Proof. Consider the following commutative diagram.

HY(X,0x (L)) —*—= H'(X,Ox(L + D))

& |

H' (U, Oy (Lly)) — H'(U, Ou((L + D)|v))
Since D is disjoint from U, ~ is an isomorphism. Since 3 is injective, we obtain that + o 3 is
injective. Therefore « is injective. The long exact sequence induced in cohomology by the short
exact sequence 0 = Ox (L) = Ox (L + D) — Op(L + D) — 0 gives the claim. O

1017

https://doi.org/10.1112/50010437X13007768 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X13007768

F. AMBRO

5.1 Applications
Let (X, B) be a proper log variety with log canonical singularities, let L, H be Cartier divisors
on X.

COROLLARY 5.3. Suppose L ~r Kx + B. Suppose the totally canonical locus of (X, B) is
contained in some affine open subset U’ C X. Then H*(X,Ox (L)) = 0.

Proof. Let U be the totally canonical locus of (X, B). The restriction homomorphism H!(X,
Ox (L)) — HYU,Opy(L|y)) is injective. It factors through H'(U’, Oy (L|y+)) = 0, hence it is
zero. Therefore H(X,Ox (L)) = 0. O

COROLLARY 5.4. Let L ~gr Kx+ B. Let H be a Cartier divisor on X such that the linear system
|[nH| is base point free for some positive integer n. Let mg > 1 and s € I'(X, Ox(moH)) such
that s|c # 0 for every lc center of (X, B). Then the multiplication

®s: HY(X,0x(L+mH)) = HY(X,0x (L + (m +mg)H))
is injective for m > 1.

Proof. Let D be the zero locus of s. There exists a rational number 0 < € < 1/my such that
(X, B + €D) has log canonical singularities. We have

L+mH~RKX+B+eD+(m—emO)H.

There exists n > 1 such that the linear system |n(m — emg)H| has no base points. Let Y be a
general member, and denote B’ = B+eD+(1/n)Y. Then (X, B’) has log canonical singularities,
Supp D C Supp B’ and

L+mH ~p Kx + B'.

Since Supp(D) is disjoint from the totally canonical locus of (X, B’), Corollary 5.2 gives the
injectivity of H'(X, L +mH) — H'(X,L +mH + D). O

COROLLARY 5.5. Let V C T'(X,Ox(H)) be a vector subspace such that V @y Ox — Ox(H) is
surjective. If L ~g K + B +tH and t > dimy V, then the multiplication map

V@, T'(X,0x(L - H)) = I'(X,0x(L))
is surjective.

Proof. We use induction on dim V. If dimV = 1, then V = kg, with ¢: Ox = Ox(H). Then
®@p: Ox(L — H) — Ox(L) is an isomorphism, so the claim holds.

Let dim V' > 1. Let ¢ € V be a general element, let Y = (¢)+ H. Then the claim is equivalent
to the surjectivity of the homomorphism

Vl]y @ I'(X,O0x(L — H))ly = I'(X, Ox(L))|y

where I'(X, F)|y denotes the image of the restriction map I'(X, F) — I'(Y, F ® Oy), and V|y is
the image of V' under this restriction for 7 = Ox(H).

Assuming I'(X,Ox (L — H))|ly = T'(Y,Oy (L)) and I'(X, Ox(L — H))|y =T(Y, Oy (L — H)),
we prove the claim as follows: we have L ~gp Kx + B+Y + (t — 1)H. By adjunction, using that
Y is general, we have L|y ~r Ky + Bly + (t — 1)H|y, (Y, Bly) has log canonical singularities,
and t —1 > dimV — 1 = dim V|y. Therefore V|y @ T'(Y, Oy (L — H)) — I'(Y, Oy (L)) is surjective
by induction.
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It remains to show that I'(X,Ox(L)) — I'(Y,Oy(L)) and I'(X,O0x(L — H)) — I'(Y,
Oy (L — H)) are surjective. Consider the second homomorphism. We have

L-Y~grKx+B+({t—1)H=Kx+B+eY+(t—1—¢H.

Since Y is general, (X,B + €Y) has log canonical singularities for 0 < ¢ <« 1. Since H is
free, we deduce that L — Y ~gr Kx + B’ with (X, B’) having log canonical singularities, and
Y C Supp B’. By Corollary 5.2, I'(X,Ox (L)) — I'(Y,Oy (L)) is surjective. The surjectivity of
the other homomorphism is proved in the same way. O

6. Restriction to the non-log canonical locus

Let (X, B) be a proper log variety, and L a Cartier divisor on X such that L ~g Kx + B.
Suppose the locus of non-log canonical singularities Y = (X, B)_ is non-empty.

LEMMA 6.1. Suppose (X, Supp B) is log smooth.

(1) The long exact sequence induced in cohomology by the short exact sequence
0—Zy(L) — Ox(L) — Oy(L) — 0
breaks up into short exact sequences
0— HY(X,Zy(L)) - HY(X,Ox(L)) = HI(Y,Oy (L)) = 0 (¢ = 0).

(2) Let E be a prime divisor on X such that multy B = 1. The long exact sequence induced
in cohomology by the short exact sequence

0—-Zy(L-E)—Ox(L-FE)—Oy(L-—E)—0
breaks up into short exact sequences
0— HYX,Zy(L - FE)) » HY(X,0Ox(L — E)) - H(Y,Oy(L — E)) -0 (¢>0).

Proof. (1) Let N = N(B), so that Zy = Ox(—N). We have L—N ~r Kx+A and N is supported
by A. By Remark 2.6, the natural map HY(X,Ox(L—N)) - H1(X,Ox (L)) is injective for all q.

(2) We have L — E ~gp Kx + B— F and (X,B — E)_o = (X, B)_x = Y. Therefore (2)
follows from (1). O
THEOREM 6.2 (Extension from non-lc locus). We have a short exact sequence

0 — D(X, Ty (L)) — T(X, Ox (L)) — D(Y, Oy (L)) — 0.

Proof. Let p: (X', Bx:) — (X, B) be a log crepant log resolution. Let N(Bx/) =N =NT - N~
and A = By — N(Bx). We have

,LL*L—NNR Ky + A
and N7 is supported by A. By Remark 2.6, we obtain for all ¢ short exact sequences

0— HYX',Ox/(*'L — N)) = HUX', Oxr ('L + N7)) = HIN', O+ ('L + N7)) — 0.
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By definition, Zy = u.Ox/(—N). Thus Zy (L) = pu«Ox/(u*L — N), and we obtain the following
commutative diagram.

~a

HY(X', Ox/(u*L+ N~ — N*)) HY(X',Ox/(*L + N7))

BqT T

HY(X,Iy(L)) ot HY(X,0x(L))

From above, 4 is injective. By Lemma 1.2, 8! is injective. Therefore v' 03! is injective. Therefore

o'l is injective, which is equivalent to our statement. O

6.1 Applications

The first application was first stated by Shokurov, who showed that it follows from the log
minimal model program and log abundance in the same dimension (see the proof of [Sho03,
Lemma 10.15]).

THEOREM 6.3 (Global inversion of adjunction). Let (X, B) be a proper connected log variety
such that Kx + B ~r 0. Suppose Y = (X, B)_~ is non-empty. Then Y is connected, and
intersects every lc center of (X, B).

Proof. By Theorem 6.2, we have a short exact sequence
0—-TI'(X,Zy) - I'(X,0x) - I'(Y,Oy) — 0.

We have 0 = I'(X, Zy), k = I'(X, Ox). Therefore k = I'(Y, Oy), so Y is connected.

Let C be a log canonical center of (X, B). Let u: (X', Bx/) — (X, B) be a log resolution
such that ;1~!(C) has codimension one. Let ¥ be the part of B5! contained in 1 (C). We have
u(X)=C.Let B = By — ¥ and N = N(B’) = N(Bx). We have

—>—N ~R KX’ —+ A(B/)
The boundary A(B’) supports N*. By Remark 2.6, we obtain a surjection
(X, Ox/(=X+N7)) = T(NT,Opn+ (=2 +N7)).

We have I'( X', Ox/ (=X +N7)) CI'(X,Z¢) = 0. Therefore I'( X', Ox/(—=X4+ N~)) = 0. We obtain
I'(NT,On+ (=X 4 N7)) = 0. Since

0= F(N+7ON+(_E + N_)) - F(N+a 0N+(N_)) ?é 07
we infer ¥ N NT # (. This implies CNY # @. 0

The next application is a corollary of [Amb03, Theorem 4.4.], if H is Q-ample.

THEOREM 6.4 (Extension from lc centers). Let (X, B) be a proper log variety with log canonical
singularities. Let L be a Cartier divisor on X such that H = L — (Kx + B) is a semiample
Q-divisor. Let mo > 1, D € |moH|, and denote by Z the union of Ic centers of (X, B) contained
in Supp D. Then the restriction homomorphism

I'NX,0x(L)) - T'(Z,0z%(L))

is surjective.
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Proof. By Lemma 4.6, there exists € € (0,1) NQ such that (X, B+e€eD)_o = Z. Let m; > 1 such
that the linear system |mjH| has no base points. Let D’ € |m1H| be a general member. Then
(X,B+eD+ (1/my —¢/momy)D’)_o = Z and

1
LNQKx+B+6D+<— € )D’.
mi momi

By Theorem 6.2, I'(X,Ox (L)) — I'(Z,0z(L)) is surjective. O
COROLLARY 6.5. Let (X, B) be a proper log variety with log canonical singularities such that the

linear system |m1(Kx + B)| has no base points for some my > 1. Let mg > 1, D € |mo(Kx + B)|,
and denote by Z the union of Ic centers of (X, B) contained in Supp D. Then

F(X, Ox(mKX + mB)) — F(Z, Oz(mKX + mB))
is surjective for every m > 2 such that mKyx + mB is Cartier.

Proof. Apply Theorem 6.4 to m(Kx + B) = Kx + B+ (m — 1)(Kx + B). O

7. Questions

Question 7.1. Let (X,X) be a log smooth pair, with X proper. Denote U = X\X. Is the

restriction H?(X, 0% (log X)) — HY(U, ;) injective for p + ¢ > dim X?

Ezample 7.2. Let P € S be the germ of non-singular point, of dimension d > 2. Let yu: X — §

be the blow-up at P, with exceptional locus E ~ P?~!. Denote U = X\E. The residue map
R, Ox(Kx + E) = R 1, 05(Kg)

is an isomorphism, so R4 'u,Ox (Kx + F) is a skyscraper sheaf on X centered at P. Since y is
an isomorphism on U, R*(u|y)«Op(Kg) = 0. Therefore the restriction homomorphism

R, 0x (Kx + E) = R (ulv)«Ou(Ky)

is not injective.

Question 7.3. Let (X,X) be a log smooth pair. Denote U = X\X. Let 7: X — S be a proper
morphism, let 7|y : U — S be its restriction to U. Suppose that 7(C) = w(X) for every strata
C of (X,X). Is the restriction RIm,Ox(Kx + X) = RY(w|y).Ou(Ky) injective for all ¢?

Question 7.4. Let (X, B) be a proper log variety with log canonical singularities. Let U be the
totally canonical locus of (X, B). Let L be a Cartier divisor on X such that L ~gr Kx + B. Is
the restriction H(X,Ox (L)) = HY(U, Oy(L|y)) injective for all ¢?

Question 7.5. Let (X, B) be a proper log variety. Suppose the locus of non-log canonical
singularities Y = (X, B)_ is non-empty. Let L be a Cartier divisor on X such that L ~p
Kx + B. Does the long exact sequence induced in cohomology by the short exact sequence
0—Zy(L) = Ox(L) = Oy (L) — 0 break up into short exact sequences

0 — HY(X, Ty (L)) — HYX,Ox (L)) — HU(Y, Oy (L)) = 0 (g 0)?
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