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Transit-time damping (TTD) is a process in which the magnetic mirror force – induced
by the parallel gradient of magnetic field strength – interacts with resonant plasma
particles in a time-varying magnetic field, leading to the collisionless damping of
electromagnetic waves and the resulting energization of those particles through the
perpendicular component of the electric field, E⊥. In this study, we utilize the recently
developed field–particle correlation technique to analyse gyrokinetic simulation data.
This method enables the identification of the velocity-space structure of the TTD energy
transfer rate between waves and particles during the damping of plasma turbulence.
Our analysis reveals a unique bipolar pattern of energy transfer in the velocity-space
characteristic of TTD. By identifying this pattern, we provide clear evidence of TTD’s
significant role in the damping of strong plasma turbulence. Additionally, we compare
the TTD signature with that of Landau damping (LD). Although they both produce a
bipolar pattern of phase-space energy density loss and gain about the parallel resonant
velocity of the Alfvénic waves, they are mediated by different forces and exhibit different
behaviours as the perpendicular velocity v⊥ → 0. We also explore how the dominant
damping mechanism varies with ion plasma beta βi, showing that TTD dominates over
LD for βi > 1. This work deepens our understanding of the role of TTD in the damping
of weakly collisional plasma turbulence and paves the way to seek the signature of TTD
using in situ spacecraft observations of turbulence in space plasmas.

Keywords: space plasma physics, plasma simulation, astrophysical plasmas

1. Introduction

A key area of research in the study of turbulence in weakly collisional plasmas
is understanding how energy from the fluctuating plasma flows and electromagnetic
fields is converted into plasma particle energy. This phenomenon is especially relevant
in heliospheric plasmas like the solar wind, where the characteristic low density and
high temperature lead to a weakly collisional plasma dynamics. The dissipation of
turbulence in such space and astrophysical plasmas is likely mediated by three categories
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of mechanisms: (i) resonant wave–particle interactions, such as Landau damping (Landau
1946; Chen, Klein & Howes 2019), transit-time damping (Barnes 1966; Stix 1992)
and cyclotron damping (Isenberg & Hollweg 1983; Isenberg & Vasquez 2019); (ii)
non-resonant wave–particle interactions, including stochastic heating (Chandran et al.
2010, 2013; Martinović et al. 2020; Cerri, Arzamasskiy & Kunz 2021), magnetic pumping
(Lichko & Egedal 2020; Montag & Howes 2022) and ‘viscous’ damping mediated by
kinetic temperature anisotropy instabilities (Arzamasskiy et al. 2023); and (iii) dissipation
within coherent structures, in particular collisionless magnetic reconnection that may
occur in the current sheets that are found to arise naturally in plasma turbulence (Osman
et al. 2011; Zhdankin, Uzdensky & Boldyrev 2015; Loureiro & Boldyrev 2017; Mallet,
Schekochihin & Chandran 2017).

Given the low collisionality of these plasma environments, the six-dimensional (three
dimensions in spatial space and three dimensions in velocity space (3D-3V)) kinetic
plasma theory is essential for analysing the evolution of the turbulence and its dissipation
through collisionless interactions between electromagnetic fields and plasma particles
(Howes 2017). Although in situ spacecraft measurements in the solar wind provide
invaluable data, they are often limited to a single point, or a few points, in space,
which presents a significant challenge for the investigation of the physical mechanisms
that remove energy from the turbulent fluctuations and consequently energize the
plasma particles. The recently developed field–particle correlation technique (Klein &
Howes 2016; Howes, Klein & Li 2017; Klein, Howes & TenBarge 2017) enables direct
measurements of the electromagnetic fields and particle velocity distributions at a single
point in space to be combined to create a velocity-space signature of particle energization
that can be used to identify the physical mechanisms responsible for damping the
turbulence and to estimate the resulting rate of the change of particle energy density.
Consequently, this technique provides an innovative means to utilize in situ spacecraft
observations to identify specific collisionless damping mechanisms and determine particle
heating rates.

This technique has shown success in identifying several damping mechanisms in weakly
collisional turbulent plasmas, such as ion Landau damping (Klein et al. 2017; Li et al.
2019), ion cyclotron damping (Klein et al. 2020; Afshari et al. 2023), electron Landau
damping (Chen et al. 2019; Li et al. 2019; Afshari et al. 2021; Conley, Howes & McCubbin
2023) and magnetic pumping (Montag & Howes 2022). However, the role of transit-time
damping, a resonant wave–particle interaction, in the damping of plasma turbulence
remains unconfirmed. The focus of this paper is to employ the field–particle correlation
technique to identify the velocity-space signature of ion energization through transit-time
damping and to recover this signature from simulations of strong plasma turbulence.

The structure of this paper is laid out as follows. We derive the specific form of
the field–particle correlation for transit-time damping in § 2.1. This is followed by
an exploration of the expected transit-time damping signature in § 2.2. In § 3, we
conduct single kinetic Alfvén wave simulations to investigate the velocity-space signature
characteristic of transit-time damping. Subsequently, in § 4, we delve into turbulence
simulations, presenting details for distinguishing transit-time damping from the turbulence
damping process. § 5 summarizes our findings and outlines potential future applications
for further research.

2. Transit-time damping

The idea of transit-time damping (TTD) had its origins in mid-20th-century plasma
physics when transit-time magnetic pumping was proposed as a means to heat a confined
plasma (Spitzer & Witten 1953). This method is characterized by a modulation of
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FIGURE 1. Diagram of the radial component Fr and axial component Fz of the Lorentz force
of the magnetic field (red) on a positively charged particle (red +) in a converging magnetic
field (green) with increasing magnitude in the +z direction. Averaged over the Larmor orbit of
the particle (blue), the net magnetic mirror force is in the direction of decreasing magnetic field
magnitude, here the −z direction.

the magnetic field magnitude at a frequency considerably lower than the ion cyclotron
frequency; the evolution of the parallel and perpendicular particle velocities in the
time-varying magnetic field, combined with a weak collisionality, leads to a net transfer
of energy to the plasma particles. The term ‘transit time’ refers to the duration necessary
for an ion to traverse from one side to the other across the confined region.

The magnetic mirror force plays a key role in the dynamics of TTD. In a static magnetic
field with a spatial variation of the magnetic field magnitude along the direction parallel to
the field, the mirror force accelerates charged particles in the direction of decreasing field
magnitude. In a cylindrical coordinate system aligned with the magnetic field direction,
the condition ∇ · B = 0 implies that an increase of the magnetic field along the axial
direction must be accompanied by the convergence of the field in the radial direction,
as shown in figure 1. For a particle with a guiding centre on the axis, the particle will
experience an inward radial field throughout its Larmor orbit. The Lorentz force, which
acts perpendicularly to the magnetic field direction at the particle position, will therefore
have both a large radial and a small axial component. Averaged over the full Larmor orbit,
the net non-zero axial component accelerates the particle in the direction of the decreasing
magnetic field magnitude. Because the magnetic field can do no work, the total energy
of the particle remains constant – the change in the parallel velocity is accompanied
by a small change in the perpendicular velocity governed by the average of the radial
component of the Lorentz force. The net effect of the magnetic mirror force is that, as a
particle moves in the direction of the increasing magnetic field, the mirror force reduces
the velocity v‖ parallel to the mean magnetic field over the Larmor orbit and increases
perpendicular velocity v⊥ to maintain a constant total velocity v = (v2

⊥ + v2
‖)

1/2.
Although the mirror force in a static magnetic field cannot change the energy of

particles, any changes of the magnetic field in time will induce an electric field according
to Faraday’s law. Work done by that induced electric field can do work on the particles,
providing the key element underlying the physics of TTD. In a collisionless plasma,
collisionless wave–particle interactions are governed by the resonance condition, given
by ω − k‖v‖ = nΩs, where the left-hand side represents the wave frequency in the
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frame moving with the particle in the parallel direction and the right-hand side nΩs
for n = 0,±1,±2, . . . incorporates the cyclotron harmonics of the particle motion in a
magnetic field (Melrose 1980). Here, we adopt the convention that the value of the wave
frequency ω is positive, so that the sign of the wave vector k indicates the direction of the
phase velocity. The n = 0 resonance, known as the Landau resonance, describes resonant
interactions with particles that have parallel velocities near the phase velocity of the wave,
v‖ � ω/k‖, enabling energy exchange between the particles and the wave through two
mechanisms: (i) the electrostatic force due to the parallel component of the electric field
governing the phenomenon of Landau damping (LD) (Landau 1946; Villani 2014); (ii)
the magnetic mirror force governing the phenomenon of TTD (Stix 1992), also known as
Barnes damping (Barnes 1966). In the case of TTD, the perpendicular component of the
electric field, induced by the change in the magnetic field magnitude along the parallel
direction, accelerates the particle by changing the perpendicular velocity v⊥; the mirror
force effectively converts this perpendicular velocity into parallel velocity, leading to a net
acceleration of the particle along the axial direction parallel to the magnetic field (Howes,
Huang & Felix 2024). For a Maxwellian distribution of particles, there are more particles
with parallel velocities |v‖| < ω/|k‖| than particles with |v‖| > ω/|k‖|, so the net effect on
the distribution is an increase of the particle energy, leading to damping of the wave. A
detailed demonstration of this phenomenon for a model moving magnetic mirror field is
presented in § 2.2.

2.1. Field–particle correlation for transit-time damping
To determine the appropriate form of the field–particle correlation to diagnose TTD via
the magnetic mirror force, we start with the Vlasov equation for a species s being acted
upon by a general force F s

∂fs

∂t
+ v · ∇fs + F s

ms
· ∂fs

∂v
= 0, (2.1)

where fs denotes the distribution function, and ms is the mass of the particle. Multiplying
the Vlasov equation by msv

2/2, we obtain an expression for the rate of change of the
phase-space energy density, ws(r, v, t) ≡ msv

2fs(r, v, t)/2,

∂ws(r, v, t)
∂t

= −v · ∇ws − v2

2
F s · ∂fs

∂v
. (2.2)

Previous analysis of this equation (Klein & Howes 2016; Howes et al. 2017) has shown
that, if integrated over space (with appropriate infinite or periodic boundary conditions),
the change in the total kinetic energy of the particles Ws(t) = ∫

d3r
∫

d3vws(r, v, t) is
due to work done on the particle species by the force F s. Therefore, the field–particle
correlation due to a general force F s at spatial position r0 is defined as a time average over
a correlation interval τ of the last term on the right-hand side of (2.2)

CF s(r0, v, t; τ) ≡ 1
τ

∫ t+τ/2

t−τ/2

−v2

2
F s(r0, v, t′) · ∂fs(r0, v, t′)

∂v
dt′. (2.3)

Note here that the correlation interval τ is a parameter of the field–particle correlation
analysis, and so is included as a secondary argument, separated by a semicolon from the
primary arguments that define the dimensions of the 3D-3 V phase space in position,
velocity and time.
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If we consider the force due to an electric field F s = qsE, we obtain the established
field–particle correlation due to the electric field (Klein & Howes 2016; Howes et al. 2017;
Klein et al. 2017)

CE,s(r0, v, t; τ) = 1
τ

∫ t+τ/2

t−τ/2

−qsv
2

2
E(r0, t′) · ∂fs(r0, v, t′)

∂v
dt′. (2.4)

The collisionless transfer of energy between electromagnetic waves and particles in TTD
is mediated by the magnetic mirror force, F s = −μsb̂ · ∇B, where the magnetic moment
for a particle of species s is given by μs = msv

2
⊥/(2B), the unit vector in the direction of

the magnetic field is given by b̂ ≡ B/B and the magnitude of the magnetic field is B = |B|.
Substituting the magnetic mirror force into (2.3), we obtain

CB,s(r0, v, t; τ) = 1
τ

∫ t+τ/2

t−τ/2

msv
2v2

⊥
4B

(b̂ · ∇)B(r0, t′) · ∂fs(r0, v, t′)
∂v

dt′. (2.5)

A few modifications of the form of the field–particle correlation for TTD given
in (2.5) are helpful for its application to the gyrokinetic simulations presented here.
First, we exploit two important characteristics of TTD and turbulence: (i) TTD is most
effective in damping the dominant Alfvénic fluctuations1 in turbulence with perpendicular
wavelengths at the ion scales, k⊥ρi ∼ kρi ∼ 1, where k‖/k⊥ 	 1; and (ii) for most
turbulent space and astrophysical plasmas of interest, the amplitude of the magnetic
fluctuations δB at ion scales kρi ∼ 1 is much smaller than the magnitude of the mean
magnetic field B0. Therefore, if we separate the magnetic field into its mean plus
the fluctuations, B = B0 + δB, where |δB| 	 |B0|, the change in the magnetic field
magnitude δ|B| (which is the key ingredient for the magnetic mirror force) can be
expressed as δB‖ by recognizing

δ|B| = |B| − |B0| =
√

(B0 + δB)2 − B0 =
√

B2
0 + 2δB · B0 + |δB|2 − B0 � δB‖, (2.6)

where we use a binomial expansion to eliminate the square root, neglect the small |δB|2
term, and write δB‖ = δB · (B0/B0) as the variation in the component of the perturbed
magnetic field parallel to the mean magnetic field. Furthermore, separating term v2 =
v2

⊥ + v2
‖ in the correlation (2.5), it is easy to show that the v2

⊥ contribution yields a perfect
differential in fs when integrated over all parallel velocity (Howes et al. 2017), so we choose
to omit this term since it leads to zero net change in the particle energy. Finally, we write
the gradient along the magnetic field direction by ∇‖ ≡ b̂ · ∇, leading to our preferred
form of the field–particle correlation for TTD

CδB‖,s(r0, v, t; τ) = 1
τ

∫ t+τ/2

t−τ/2

msv
2
‖v

2
⊥

4B
∇‖δB‖

∂fs(r0, v, t′)
∂v‖

dt′. (2.7)

In the gyrokinetic system of equations (Antonsen & Lane 1980; Frieman & Chen
1982; Howes et al. 2006; Schekochihin et al. 2009), the gyroaveraged effect of parallel
magnetic field gradients leads to the magnetic mirror force, which can accelerate particles
in the direction parallel to the magnetic field via the Landau resonance, and therefore can
lead to collisionless TTD of electromagnetic fluctuations. A rigorous derivation of the

1This peak in TTD damping rates is clearly shown in the linear dispersion relation plots for the Alfvén wave mode
shown in figure 6.
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gyrokinetic equation in Appendix A shows explicitly the two collisionless wave–particle
interactions via the Landau resonance – specifically, LD and TTD. The natural form of the
field–particle correlation arising from the gyrokinetic version of the generalized energy
density equation is slightly different from the field–particle correlation for TTD given in
(2.7), but the gyrokinetic form requires the gyroaveraged distribution function, which is
not accessible through single-point spacecraft measurements and is not a natural quantity
that can easily be derived from other kinetic simulation approaches, such as particle-in-cell
or Vlasov simulations. Therefore, we choose here to use the perturbed distribution
functions and electromagnetic fields generated by our gyrokinetic simulations, but we
analyse them using (2.7), which is more directly applicable to spacecraft measurements
or alternative kinetic simulation approaches, such as particle-in-cell codes.

Utilizing the gyroaveraged distribution function and corresponding fields, the quantity
CδB‖,s(r0, v, t; τ) reveals the velocity-space signature of TTD on the gyrotropic velocity
space (v⊥, v‖). To simplify the notation, henceforth, we shall employ CδB‖,s(v‖, v⊥) to
signify the gyrotropic correlation, explicitly noting the associated spatial position r0,
time t, and the correlation interval τ only when necessary. The resonant structure of the
velocity-space signature of TTD is primarily a function of v‖, so it is often useful to define
the reduced parallel field–particle correlation by integrating CδB‖,s(v‖, v⊥, t) over v⊥, given
by CδB‖,s(v‖, t) ≡ 2π

∫
CδB‖,s(v‖, v⊥, t)v⊥ dv⊥, where the extra 2πv⊥ factor arises from the

integration over the gyrophase in 3 V phase space. A timestack plot of the reduced parallel
correlation CδB‖,s(v‖, t) reveals the persistence in time of any resonant velocity-space
signatures in v‖. We can also consider the rate of change of the kinetic energy density
of species s due to TTD by integrating the gyrotropic correlation over all velocity space:
(∂Ws/∂t)TTD = ∫

CδB‖,s(v‖, v⊥) d3v.
In closing, note that the gyroaveraging procedure employed in the derivation of the

system of gyrokinetics enables the variations in the perpendicular components of the
electric field E⊥ to be expressed in terms of changes in the parallel component of the
magnetic field δB‖, as shown by (A7). In a system where the gyroaverage has not been
performed, the work done by TTD is actually mediated (at the position of the particle)
by the perpendicular component of the electric field E⊥ (Howes et al. 2024). Therefore,
the perpendicular electric field correlation, given by summing the two perpendicular
contributions to the electric field correlation, CE⊥(r0, v, t; τ) (Klein et al. 2020; Afshari
et al. 2023), can be used to seek the velocity-space signature of TTD at the parallel
resonant phase velocity, as seen recently in hybrid particle-in-cell simulations of plasma
turbulence (Cerri et al. 2021).

2.2. Prediction of the velocity-space signature of transit-time damping
To predict the velocity-space signature of TTD, we begin with a simple model of a
magnetic field with an amplitude variation that varies along the mean field direction z,
given in cylindrical coordinates (r, φ, z) by

B(r, φ, z) = −δBz

4
kr sin(kz′)r̂ +

{
B0 + δBz

2
[1 − cos(kz′)]

}
ẑ, (2.8)

where the wavenumber k of the spatial variation of the magnetic field magnitude is along
the mean field direction z, and z′ = z − Ut, such that that pattern moves in the +z direction
with a phase speed U ≥ 0. The corresponding electric field variation can be determined
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by the Lorentz transform2 from the primed (wave) frame K ′ in which the magnetic field
pattern is stationary (and therefore E ′ = 0) to the unprimed (laboratory) frame K. This
Lorentz transformation in the non-relativistic limit U/c 	 1 is given by E = E ′ − U × B
and B = B′ (Howes, Klein & TenBarge 2014), where the transformation velocity is just
U = Uẑ. The resulting induced electric field in the laboratory frame K is given by

E(r, φ, z) = U
δBz

4
kr sin(kz′)φ̂. (2.9)

With this simple model, we can illustrate how a single particle is accelerated into different
regions of velocity space by the electromagnetic fields. Extending this approach to
consider a distribution of particles will enable us to predict the qualitative and quantitative
features of the velocity-space signature of TTD.

Consider first the acceleration of a single particle in a stationary mirror field with U = 0,
as shown in figure 2(a), for a ‘wave’ amplitude of δBz/B0 = 0.2, giving a mirror ratio of
Bmax/Bmin = 1.2. The particle begins at the minimum in the magnetic field at z = 0 with
an initial perpendicular velocity v⊥ and an initial parallel velocity v‖ < 0, given by the
red + in the figure at the tip of the initial velocity vector vi (blue). As the particle moves
into the increasing magnetic field at z < 0, the mirror force increases v⊥ and decreases v‖
such that the particle moves through velocity space (green arrow) on a circle of constant

total velocity v =
√

v2
‖ + v2

⊥ (black dashed circle). The particle will be reflected by the

mirror field if the particle has an initial pitch angle α = tan−1(v⊥/v‖) larger than the
loss-cone angle αloss = sin−1(

√
Bmin/Bmax). For Bmax/Bmin = 1.2, the loss-cone angle is

αloss = 66◦; the particle depicted in figure 2(a) has an initial pitch angle α > αloss and
is therefore reflected by the mirror field. The particle follows this circular trajectory in
(v‖, v⊥) velocity space until it returns to its initial axial position z = 0, ending up with a
final velocity vf (blue) with the same perpendicular component but an equal and opposite
parallel component. Thus, the kinetic energy of the particle does not change, consistent
with the fact that magnetic fields do no work on particles. The particle has simply been
reflected by the mirror, reversing the sign of its parallel velocity.

Next, we consider the case for a magnetic mirror field moving with velocity U = Uẑ,
where U > 0. In the wave frame, moving at velocity U = Uẑ in which the magnetic
field is stationary, the acceleration of the particle by the magnetic field must be the
same as the stationary case in figure 2(a). But, in the laboratory frame, depicted in
figure 2(b), the particle now moves on a circular trajectory in velocity space centred
about the mirror velocity U, given by a constant magnitude of velocity in the wave frame
v0 = √

(v‖ − U)2 + v2
⊥. Here, the particle is initially moving in the same direction as the

mirror field but with a slower initial parallel velocity 0 ≤ v‖ ≤ U, given by the red + in the
figure at the tip of the initial velocity vector vi (blue). If the pitch angle in the wave frame
αw = tan−1[v⊥/(v‖ − U)] is greater than the loss-cone angle, αw > αloss, the particle will
be reflected by the moving mirror field, leading to a net acceleration in the axial direction,
ultimately ending up with a parallel velocity greater than the mirror velocity v‖ > U, with
a final velocity vector vf (blue). In this case, the induced electric field given by (2.9) has
done work on the particle (Howes et al. 2024), ultimately leading to a net acceleration in
the axial direction. This process is the fundamental energy transfer underlying the physics
of TTD.

2The equations for spatial and temporal variations of the magnetic and electric field given by (2.8) and (2.9)
satisfy Faraday’s law, indicating explicitly that the electric field arises from the time variation of the magnetic field,
but mathematically solving for (2.9) is more easily done using the Lorentz transform.
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(a) (b)

(c) (d)

FIGURE 2. Diagram of the magnetic mirror reflection and prediction for the velocity-space
signature of TTD: (a) v⊥ versus v‖ for the single particle motion in a static magnetic mirror
field; (b) v⊥ versus v‖ for the single particle motion in a moving magnetic mirror field, where
the vertical black dashed line denotes the wave phase velocity U; (c) the predicted velocity-space
signature for a Maxwellian velocity distribution function, where the phase-space energy density
decreases at v‖ < U (blue) and increases at v‖ > U (red); (d) effective v⊥ weighting of
correlation v2

⊥f (v⊥), which constrains the velocity-space signature in the v⊥ direction.

Finally, we consider how this understanding of the single particle motion and
acceleration can be combined with a distribution of initial particle velocities to predict
the velocity-space signature of TTD. Note that for the sinusoidally oscillating magnetic
field magnitude given by (2.8), the long time evolution of the particle in velocity space
would oscillate back and forth between vi and vf along the green trajectory shown in
figure 2(a,b); for example, if the particle started with initial velocity vf , the other side of
the mirror field would lead to a reflection in the opposite direction, ultimately resulting
in the particle ending up with a final velocity vi. In the case of a moving mirror field,
for a Maxwellian velocity distribution there will be more particles with parallel velocities
v‖ < U than with v‖ > U, so the net effect is that more particles will gain energy than
lose energy, leading to a net energization of the particles and consequent damping of the
electromagnetic wave. Only particles with pitch angles in the wave frame larger than the
loss-cone angle, αw > αloss, will undergo the mirror reflection, so that net effect on the
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distribution is an acceleration of particles from v‖ < U to v‖ > U. The resulting change
in the phase-space energy density leads to the prediction of the velocity-space signature
of TTD depicted in figure 2(c): a loss of phase-space energy density (blue) in the region
v‖ < U, and a gain of phase-space energy density (red) in the region v‖ > U. The extent of
this velocity-space signature in (v‖, v⊥) velocity space is confined by two effects: (i) only
particles outside of the loss cone will experience a net acceleration; and (ii) the signature
is weighted by the v2

⊥ weighting in (2.7) for the rate of change of phase-space energy
density by TTD (which arises from the magnetic moment μ = mv2

⊥/(2B) dependence of
the mirror force) combined with the reduced perpendicular velocity distribution f (v⊥),
where this net weighting of v2

⊥f (v⊥) is shown in figure 2(d). Thus, the velocity-space
signature of TTD in figure 2(c) is restricted to ‘Landau resonant’ particles with parallel
velocities near the velocity of the magnetic field pattern v‖ ∼ U and to a region away from
the v⊥ = 0 axis, unlike the velocity-space signature of LD (Klein & Howes 2016; Howes
et al. 2017; Klein et al. 2017) which extends down to v⊥ = 0.

3. Single kinetic Alfvén wave (KAW) simulations

Here, we perform numerical simulations of single KAWs to determine the
velocity-space signature of TTD using the astrophysical gyrokinetics code, AstroGK
(Numata et al. 2010). AstroGK evolves the gyroaveraged scalar potential φ(r), parallel
vector potential A‖(r) and the parallel magnetic field fluctuation δB‖(r), as well as
the gyrokinetic distribution function hs(r, v⊥, v‖), in a triply periodic slab geometry
of size L2

⊥ × L‖ elongated along the straight, uniform mean magnetic field B0 = B0ẑ.
The domain-scale wavenumbers are defined by k‖0 = 2π/L‖ and k⊥0 = 2π/L⊥. The
gyrokinetic expansion parameter is defined by ε ∼ k‖0/k⊥0 	 1 (Howes et al. 2006),
and all quantities are scaled to accommodate an arbitrary value of ε. The gyrokinetic
distribution function is related to the total distribution function fs via

fs(r, v, t) = F0s(v)

(
1 − qsφ(r, t)

Ts

)
+ hs(Rs, v⊥, v‖, t) + δf2s + · · · , (3.1)

where F0s is the equilibrium distribution, r is the spatial position, Rs is the associated
species gyrocenter related to r by r = Rs − v × ẑ/Ωs and δf2s are corrections second order
in the gyrokinetic expansion parameter ε which are not retained (Howes et al. 2006).
The code employs a pseudospectral method in the (x, y) (perpendicular) plane and finite
differencing in the z-direction. The velocity distribution is resolved on a grid in energy
E = v2

‖ + v2
⊥ and pitch angle λ = v2

⊥/v2 space, with the points selected on a Legendre
polynomial basis. A fully conservative, linearized, gyroaveraged collision operator is
employed (Abel et al. 2008; Barnes et al. 2009) to ensure velocity-space structure in
hs remains resolved throughout the simulation evolution. We normalize time using the
domain-scale Alfvén wave frequency ωA ≡ k‖0vA, and particle velocity is normalized to
the ion thermal velocity vti = √

2Ti/mi, where the Boltzmann constant has been absorbed
to yield temperature in units of energy.

3.1. Single-wave simulation set-up
We first determine the velocity-space signature of TTD by performing simulations of
single KAWs for a fully ionized proton–electron plasma with Maxwellian equilibrium
velocity distributions with a temperature ratio Ti/Te = 1 and a realistic ion-to-electron
mass ratio of mi/me = 1836. We perform three simulations with ion plasma beta βi =
0.3, 1, 3 and sample the time evolution of the electromagnetic fields and gyrokinetic
distribution function at discrete single points throughout the simulation domain with
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dimensions L⊥ = 2πρi and L‖ = 2πa0, yielding an arbitrary expansion parameter ε =
ρi/a0 	 1. The ion plasma beta is defined by βi = 8πniTi/B2 = v2

ti/v
2
A, where the ion

thermal velocity is vti = √
2Ti/mi, the Alfvén velocity is vA = B/

√
4πnimi and the

Boltzmann constant is absorbed to give temperature in units of energy. Here, ρi ≡ vti/Ωi
is the ion Larmor radius, where the angular ion (proton) cyclotron frequency is Ωi =
qiB0/mi. The dimensions of these single-wave simulations are (nx, ny, nz, nλ, nE, ns) =
(10, 10, 32, 128, 64, 2), where ns denotes the number of species. Using the solutions to the
linear gyrokinetic dispersion relation (Howes et al. 2006), a single plane-wave KAW with
wavevector (kxρi, kyρi, k‖a0) = (1, 0, 1) and amplitude3 δB⊥/B0 = 0.125ε is initialized
throughout the domain and allowed to evolve linearly for 5 wave periods with enhanced
collisionality to eliminate any transients associated with the initialization, yielding a clean,
single KAW with k⊥ρi = 1. The simulation is then restarted with lowered collisionalities
νs/(k‖0vti) = 2 × 10−3 and evolved to allow collisionless wave–particle interactions to
damp the wave. We have verified that the collisionless damping rates of the initialized
KAWs agree with the analytical predictions from Vlasov–Maxwell and gyrokinetic linear
dispersion relations.

3.2. The velocity-space signature of transit-time damping
We select the βi = 1 single KAW simulation as a fiducial case to determine the
velocity-space signature of TTD with (2.7) and compare it with the known velocity-space
signature of LD using only the parallel contribution to the dot product in (2.4) (Klein &
Howes 2016; Howes et al. 2017; Klein et al. 2017; Howes, McCubbin & Klein 2018; Chen
et al. 2019; Horvath, Howes & McCubbin 2020; Klein et al. 2020; Afshari et al. 2021).
The linear Vlasov–Maxwell dispersion relation yields a parallel phase velocity normalized
to the Alfvén velocity of ω̄ ≡ ω/(k‖vA) = 1.137 for a KAW with k⊥ρi = 1, βi = 1, and
Ti/Te = 1, corresponding to a normalized wave period of TωA = 5.526.

A key step in the field–particle correlation analysis is to choose an appropriate
correlation interval τ over which to time average the rate of energization to eliminate a
possibly larger amplitude signal of oscillatory energy transfer in order to reveal the often
smaller secular rate of energy transfer that corresponds to the collisionless damping of the
wave (Klein & Howes 2016; Howes et al. 2017; Klein et al. 2017). In figure 3, we present
a test of different correlation intervals over the range 0 ≤ τωA ≤ 10 for the βi = 1 single
KAW simulation. In (a), we plot the velocity-space-integrated rate of ion energization due
to TTD, (∂Wi/∂t)TTD = ∫

CδB‖,i(v‖, v⊥) d3v, vs. time. The unaveraged correlation (τ = 0,
dark blue) exhibits pronounced oscillations of the net energy transfer vs. time. Setting
the correlation interval to one linear wave period τωA = TωA � 5.5 (black) minimizes
the oscillations, providing an optimal choice for τ for a single wave with a well-defined
period, as might be expected on theoretical grounds. We show in (b) the evolution of the
reduced parallel correlation CδB‖,i(v‖, t) at a parallel velocity v‖ = 1.1vti slightly below
the resonant velocity. Here again, setting τωA = 5.5 (black) effectively minimizes the
oscillations, revealing clearly the rate of secular energy transfer at that parallel velocity. We
illustrate the impact of choosing an appropriate correlation interval τ on the timestack plot
of the correlation CδB‖,i(v‖, t) by comparing (c) the instantaneous (τ = 0) field–particle
correlation with (d) the correlation using τωA = 5.5, showing a clear bipolar signature
about the normalized parallel phase velocity ω/(k‖vti) = 1.137 that persists over the course
of the simulation.

3Note that the gyrokinetic simulation results can be scaled to any value of the gyrokinetic expansion parameter,
ε 	 1.
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(a) (b)

(c) (d)

FIGURE 3. Analysis of correlation interval selection for βi = 1 AstroGK single KAW
simulation. (a,b) Time evolution of (a) the rate of change of ion kinetic energy density due
to TTD, denoted as ∂Wi/∂t, and (b) the reduced correlation CδB‖,i(v‖, t) at v‖ = 1.1vti. Both
quantities are presented over a range of τωA values from 0 to 10. The selected τωA value of
5.5 is marked with a black line. (c,d) Timestack plots of the reduced correlation CδB‖,i(v‖, t)
for (c) τωA = 0 and (d) τωA = 5.5, with the vertical dashed line at v‖/vti = 1.137 labelling the
normalized parallel phase velocity ω/(k‖vti).

Specifying the correlation interval to be approximately one wave period τωA = 5.5,4
we now present in figure 4 the velocity-space signatures of (a) TTD and (b) LD from the
βi = 1 single KAW simulation. Each panel presents three sub-plots, explained here for
the TTD case in (a): (i) the main plot presents the gyrotropic velocity-space signature
CδB‖,i(v‖, v⊥) at time tωA = 63.57, with the parallel phase velocity indicated (vertical
dotted line); (ii) the lower plot shows the time-integrated parallel velocity-space signature
CδB‖,i(v‖) to highlight the variation of the net energy transferred as a function of v‖,
showing a clear bipolar signature at the parallel phase velocity; and (iii) the left plot shows
the velocity-space-integrated net energy density transfer rate due to TTD (∂Wi(t)/∂t)TTD
vs. time, with the centred time of the correlation interval shown in the gyrotropic signature
indicated (horizontal solid line). Panel (b) presents the corresponding plots for the LD
case.

A key result of this paper is the velocity-space signature of TTD plotted in gyrotropic
velocity space CδB‖,i(v‖, v⊥) in figure 4(a). From the same simulation, the gyrotropic
velocity-space signature of LD CE‖,i(v‖, v⊥), given by the parallel contribution to the dot
product in (2.4), is presented in (b) for comparison. The TTD signature agrees qualitatively

4Note that the velocity-space signature for a single KAW is independent of the probe position if the correlation
interval is taken to be an integral multiple of the wave period.
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(a)

(b)

FIGURE 4. Velocity-space signatures of (a) TTD and (b) LD, from the AstroGK simulation of a
single KAW with k⊥ρi = 1, βi = 1 and Ti/Te = 1, each showing the gyrotropic signatures in the
main panel, the time-integrated reduced parallel signatures in the lower panel and the net rate of
ion energization vs. time for each mechanism in the left panel. The correlation interval is chosen
as τωA = 5.5. The normalized parallel phase velocity is labelled by the two vertical dashed lines
at v‖/vti = ±1.137.
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with our prediction presented in figure 2(c), showing the key features: (i) the bipolar
signature of the rate of loss (blue) and gain (red) of phase-space energy density is centred
about the parallel wave phase velocity v‖ ∼ ω/k‖ (vertical dotted black line); (ii) the
gyrokinetic velocity-space signature does not extend down to v⊥ = 0, due to a combination
of the v2

⊥ weighting arising from the magnetic moment μ = mv2
⊥/(2B) in the mirror force

and from the loss-cone angle of the mirror force, as explained in § 2.2. The LD signature
in (b) likewise yields a bipolar signature near the parallel wave phase velocity. Besides
the fact that E‖ governs energization through LD and E⊥ governs energization through
TTD (Howes et al. 2024), a key way to distinguish these two mechanisms is that in
gyrotropic velocity space the TTD signature does not extend down to v⊥ = 0, whereas
the LD signature extends right down to v⊥ = 0.

Careful inspection of these single KAW velocity-space signatures reveals a ‘twist’ seen
in both panels of figure 4, where the bipolar pattern of energy loss (blue) to energy gain
(red) across the parallel phase velocity reverses sign as v⊥ changes. This feature arises
from the linear combination of three terms contributing to the linear response for perturbed
distribution function f1, which involves the components of the electric field perturbation
and the zeroth-order Bessel function and its derivative, as seen in (4.180) from Swanson
(2003). Although a detailed decomposition of these contributions to understand this twist
for a single KAW could be performed, for the case of TTD or LD in a turbulent plasma,
this twist is obscured when damping a broadband spectrum of wave modes, as shown in
§ 4, so we do not pursue this line of investigation further.

3.3. Variation of signature with ion plasma beta βi

Resonant damping of electromagnetic fluctuations through TTD and LD depends strongly
on the plasma beta, typically with LD dominant at βi 	 1 and TTD dominant at
βi � 1 (Quataert 1998), so we vary the value of βi here to determine its impact
on the characteristics of the velocity-space signature of the Landau-resonant damping
mechanisms. Using the same parameters Ti/Te = 1, mi/me = 1836 and k⊥ρi = 1, we
perform additional single KAW simulations with βi = 0.3 and βi = 3. For βi = 0.3,
the normalized parallel phase velocity is given by ω̄ ≡ ω/(k‖vA) = 1.267, yielding a
normalized wave period of TωA = 4.959; for βi = 3, we obtain ω̄ = 1.009 and TωA =
6.227.

In figure 5, we plot the velocity-space signatures for (a) TTD and (b) LD for the βi = 0.3
case and for (c) TTD and (d) LD for the βi = 3 case, where each panel has three subplots
in the same format as in figure 4. These bipolar velocity-space signatures look qualitatively
similar to the βi = 1 case in figure 4, with two important quantitative differences.

First, the position of the bipolar signature in v‖/vti changes as βi is varied, consistent
with the variation of the parallel phase velocity normalized to the ion thermal velocity as βi

varies, given by ω/(k‖vti) = ω̄/β
1/2
i . For βi = 0.3, we obtain ω/(k‖vti) = 2.313, indicated

by the vertical black dashed line in figure 5(a,b); for βi = 3, we obtain ω/(k‖vti) = 0.583,
as shown in (c,d). In both cases, the bipolar signature remains closely associated in v‖
with the parallel phase velocity ω/k‖, as expected for a Landau-resonant energy transfer
between the fields and the ions.

Second, looking at the vertical subplots on the left for each panel, which shows the
net rate of change of ion energy density Wi mediated by each mechanism averaged over
a correlation interval equal to one wave period τ = T , we find the surprising result for
βi = 0.3 that, although LD leads to a net gain of energy by the ions (as expected for
collisionless damping of a wave), TTD leads to a net loss of energy from the ions. This
finding suggests that the ions are losing energy through the magnetic mirror force while
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(a) (b)

(c) (d)

FIGURE 5. Velocity-space signatures of TTD (a,c) and LD (b,d) in AstroGK single KAW
simulations with k⊥ρi = 1, Ti/Te = 1 and βi = 0.3 (a,b) and βi = 3 (c,d). The correlation
intervals are set to the corresponding linear wave periods, with τωA = 5.0 for the βi = 0.3 case
and τωA = 6.2 for the βi = 3 case. The normalized parallel phase velocity is labelled by the
two vertical dashed lines at v‖/vti = ±2.313 for βi = 0.3 and v‖/vti = ±0.583 for βi = 3. Each
panel follows the layout format of figure 4.

gaining energy through acceleration by the parallel electric field. The rate of ion energy
gain by LD is approximately ten times larger than the rate of loss by TTD, so the summed
effect of these two mechanisms is energization of the ions by collisionless damping of the
wave, as expected. For the βi = 3 case, we find the equally surprising result that, although
TTD leads to a net gain of energy by the ions, LD is leading to a net loss of energy from the
ions; the rate of ion energy gain by TTD is larger than the rate of ion energy loss by LD,
so the summed contributions yield a net gain of ion energy as expected for collisionless
damping.

How do we reconcile these surprising results with the general expectation of
Landau-resonant collisionless damping of waves for a Maxwellian equilibrium velocity
distribution? As it turns out, this behaviour is exactly what is predicted by the linear
Vlasov–Maxwell dispersion relation. To be specific, we take the complex eigenfrequency
from the linear dispersion relation to be given by ω + iγ , so that time evolution of a
plane-wave mode is given by exp(−iωt) exp(γ t): positive imaginary components γ > 0
correspond to growth of the wave, and negative imaginary components γ < 0 correspond
to damping of the wave. In figure 6, we plot the normalized absolute value of the
imaginary component of the wave frequency |γ |/ω vs. k⊥ρi for KAWs using the PLUME
solver (Klein & Howes 2015) for a fully ionized proton–electron plasma with isotropic
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Maxwellian velocity distributions with Ti/Te = 1, mi/me = 1836, vti/c = 10−4, k‖ρi =
10−3 over the range 10−3 ≤ k⊥ρi ≤ 102 for the ion plasma beta values (a) βi = 0.3, (b)
βi = 1 and (c) βi = 3. We plot separately the total collisionless damping rate (black solid)
due to both ions and electrons, the total ion damping rate (green solid) and the separate
contributions to the ion damping rate from TTD (red) and LD (blue). For the separated
TTD and LD contributions, we plot negative imaginary components (which correspond to
collisionless damping of the wave) using dashed lines, and positive imaginary components
(which correspond to collisionless growth of the wave) using dotted lines.

Although all of the KAW dispersion relations plotted in figure 6 yield a net effect of
collisionless damping by the ions, over some ranges in k⊥ρi (dotted lines) either TTD
or LD individually may lead to a net transfer of energy from the ions to the waves over
the course of a single-wave period. For example, for the βi = 3 case in figure 6(c), the
imaginary component due to LD is positive over 1.4 × 10−3 � k⊥ρi � 2.1, corresponding
to a transfer of energy from the ions to the wave, and is negative outside of that range,
corresponding to a transfer of energy from the wave to the ions. A transfer from ions to
the wave would lead to a growth of the wave, but the sum of both of the LD and TTD
contributions is always negative for these cases with a Maxwellian velocity distribution,
leading to a net collisionless damping of the wave.

The perpendicular wavenumber k⊥ρi = 1 of our simulated single waves is indicated in
figure 6 by the vertical black dashed line, and with these plots we can understand the
results presented in figure 6. For the βi = 0.3 case, at k⊥ρi = 1 we have γiLD < 0 (blue
dashed) and γiTTD > 0 (red dotted), suggesting that ions gain energy due to E‖ but lose
energy due to the mirror force when averaged over the full wave period. This finding
agrees with the net gain of ion energy by LD in figure 5(b) and the net loss of ion energy
by TTD in (a). Similarly, for the βi = 3 case, at k⊥ρi = 1 we have γiTTD < 0 (red dashed)
and γiLD > 0 (blue dotted), suggesting that ions gain energy due to the mirror force but
lose energy due to E‖ when averaged over the full wave period. Again, this finding from
the linear Vlasov–Maxwell dispersion relation agrees with the net gain of ion energy by
TTD in figure 5(c) and the net loss of ion energy by LD in (d).

To further understand the physical meaning of γiTTD > 0 in the βi = 0.3 case, we first
point out that the only mechanism that can change the particle energy is work done
by the electric field, and the rate of change of the ion energy density Wi is given by
ji · E. For TTD, this energization arises from the component of the electric field that is
perpendicular to the magnetic field (Howes et al. 2024) (whereas LD energizes particles
through the parallel component of the electric field), so here we consider the perpendicular
contribution to the energization j⊥iE⊥. For a single plane wave, the net transfer of energy
to or from the ions by j⊥iE⊥ over a single wave period depends on the phase of the
perpendicular electric field fluctuation E⊥ relative to the phase of the self-consistent
perpendicular component of the ion current density associated with the wave, j⊥i. If the
phase difference δφ is such that there is an in-phase component 0 < δφ < π/2, there
will be a net energization of the ions; if there is an out-of-phase component π/2 <
δφ < π, the ions will lose energy. The eigenfunctions arising from solutions of the linear
Vlasov–Maxwell dispersion relation dictate the phases of the components of the electric
field and current density. For the βi = 0.3 case, this eigenfunction dictates that j‖i and E‖
are in phase, leading to ion energization and wave damping by E‖ (yielding LD), but j⊥i
and E⊥ are out of phase, so the magnetic mirror force partly counteracts the damping of
the wave.
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(a)

(b)

(c)

FIGURE 6. Linear dispersion relations for KAWs from PLUME calculations with the realistic
mass ratio mi/me = 1836, showing the absolute value of the normalized wave growth rate |γ |/ω
as a function of the dimensionless perpendicular wave vector k⊥ρi for (a) βi = 0.3, (b) βi = 1
and (c) βi = 3. The vertical black dashed line at k⊥ρi = 1 indicates the values used in the single
KAW AstroGK simulations. We plot γ (total damping rate, black), γi (total ion damping rate,
green), γiTTD (ion growth or damping rate via the magnetic mirror force, red) and γiLD (ion
growth or damping rate via the electrostatic force, blue). Line styles – solid, dashed and dotted
– represent the total damping rates, damping rates separated by mechanism and growth rates
separated by mechanism, respectively.
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4. Turbulence simulations

Now that we have determined the gyrotropic velocity-space signature of TTD for single
KAWs, with the fiducial example for βi = 1 shown in figure 4(a), we will seek similar
signatures of TTD in simulations of strong plasma turbulence.

4.1. Turbulence simulation set-up
We perform kinetic simulations of strong plasma turbulence using the astrophysical
gyrokinetics code AstroGK (Numata et al. 2010) for three values of the ion plasma
beta βi = 0.3, 1, 3. Each simulation has numerical resolution (nx, ny, nz, nλ, nE, ns) =
(96, 96, 32, 64, 32, 2) within a simulation domain L2

⊥ × L‖ = (8πρi)
2 × (2πa0), where

the elongation of the domain along the equilibrium magnetic field B0 = B0ẑ is
characterized by the arbitrary gyrokinetic expansion parameter ε ∼ ρi/a0 	 1. The
proton-to-electron temperature ratio of the Maxwellian equilibrium is Ti/Te = 1, and
we choose a reduced mass ratio mi/me = 36 to ensure that we fully resolve the kinetic
damping mechanisms needed to achieve a steady-state turbulent cascade in a driven
simulation, as discussed in Howes et al. (2018). These parameters lead to a fully resolved
range of perpendicular wavenumbers 0.25 ≤ k⊥ρi ≤ 7.75, or 0.042 ≤ k⊥ρe ≤ 1.29. For
the βi = 0.3 and βi = 1 simulations, the proton and electron collisionalities are set to
νs/(k‖0vti) = 0.1, and for the βi = 3 simulation, νs/(k‖0vti) = 0.05. These collisionalities
ensure weakly collisional plasma conditions, yet prevent the small-scale variations that
develop in velocity space from becoming unresolved on the velocity grid.

Turbulence in the simulations is driven from zero initial conditions using an oscillating
Langevin antenna (TenBarge et al. 2014) with characteristic frequency ω0/(k‖0vA) = 0.9
and decorrelation rate σ0/(k‖0vA) = −0.3 to drive four Alfvén wave modes at the domain
scale with wave vectors (kxρi, kyρi, kza0) = (0.25, 0,±1) and (0, 0.25,±1), generating
four perpendicularly polarized Alfvén waves propagating in both directions along the
equilibrium magnetic field. The amplitude of the driving is chosen to satisfy critical
balance with a nonlinearity parameter χ ≡ k⊥δB⊥/(k‖B0) � 1 (Goldreich & Sridhar 1995;
Howes et al. 2008a) at the driving scale k⊥ρi = 0.25. This driving has been shown to
generate effectively a strong plasma turbulent cascade to small scales in previous kinetic
simulations through nonlinear interactions between the counterpropagating Alfvén waves
(Howes et al. 2008b, 2011; Howes & Nielson 2013; TenBarge & Howes 2013; TenBarge,
Howes & Dorland 2013; Howes et al. 2018; Verniero, Howes & Klein 2018; Verniero &
Howes 2018; Horvath et al. 2020; Conley et al. 2023). To provide the data needed to apply
the field–particle correlation analysis, the electromagnetic fluctuations and proton velocity
distributions are sampled at a high cadence at twenty-four probe points that are distributed
throughout the domain, sixteen in the xy-plane at z = 0, and the remaining eight along the
z-axis, as illustrated in figure 2 of Horvath et al. (2020).

The time scale associated with the outer scale of the turbulent cascade in each simulation
is the wave period of the domain-scale Alfvén wave T , and the simulations are run for
6.78T for the βi = 0.3 simulation, 5.51T for the βi = 1 simulation and 3.61T for the
βi = 3 simulation. The perpendicular magnetic energy spectrum EB⊥(k⊥) at the end of
each of the simulations is shown in figure 7, showing the spectrum for βi = 0.3 (red),
βi = 1 (black) and βi = 3 (blue). These spectra demonstrate that each simulation yields
a broadband turbulent spectrum, with the spectral slope for each simulation consistent
with the expectation of −5/3 for strong plasma turbulence (Goldreich & Sridhar 1995)
in the inertial range at k⊥ρi < 1, and steepening of the spectrum at the transition to the
dissipation range at k⊥ρi ∼ 1. In the dissipation range at k⊥ρi > 1, the spectral slopes
begin around −3.2, steepening as k⊥ρe → 1 due to the resolved kinetic dissipation
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FIGURE 7. Perpendicular magnetic energy spectra at the end of each of the turbulence
simulations, showing βi = 0.3 (red), βi = 1 (black) and βi = 3 (blue). Vertical dotted lines
indicate the limit of fully resolved perpendicular wavenumbers in the simulation, 0.25 ≤ k⊥ρi ≤
7.75 or 0.042 ≤ k⊥ρe ≤ 1.29.

mechanisms that remove energy from the turbulent cascade. Note that these dissipation
range slopes are slightly steeper than the values ranging from −2.7 to −3.1 typically
observed in the solar wind (Sahraoui et al. 2013), but this is to be expected due to the
unphysical mass ratio of mi/me = 36, which effectively enhances the damping rate due to
electrons relative to the realistic mass ratio case (TenBarge et al. 2013), leading to slightly
steeper dissipation range spectra for stronger damping (Howes, Tenbarge & Dorland 2011).

In figure 8, we plot the normalized damping rates |γ |/ω from the linear dispersion
relation for the simulation parameters with the reduced mass ratio mi/me = 36, presenting
the results for (a) βi = 0.3, (b) βi = 1 and (c) βi = 3, in the same format as presented
in figure 6. Here, we plot vertical black dashed lines at the perpendicular wavenumber
limits of the simulation at k⊥ρi = 0.25 and k⊥ρi = 7.75. Note the salient features that
TTD yields a loss of ion energy for βi = 0.3 in (a), and LD yields a loss of ion energy
for βi = 3 at k⊥ρi � 1.5. These calculations of the linear wave properties and the effective
ion energization rates by TTD and LD provide an important theoretical framework for the
interpretation of our field–particle analysis results.

4.2. Choosing the correlation interval τ

Unlike in the single KAW simulations, where the single-wave period T is the obvious
choice for the correlation interval τ to eliminate the oscillatory contribution to the transfer
of energy from fields to particles, choosing τ for a plasma supporting broadband turbulent
fluctuations is less straightforward. The longest wave period for an Alfvén wave at the
domain scale in our βi = 1 simulation is τωA � 6.28. In figure 9, for a single probe
position in the βi = 1 simulation, we present (a) the total energy transfer rate to ions due
to TTD (∂Wi/∂t)TTD and (b) the energy transfer rate at v‖/vti = −1.3, for a correlation
interval spanning 0 ≤ τωA ≤ 15. The instantaneous values of the local energy transfer
rates (with τ = 0, blue) exhibit large fluctuations with both positive and negative signs,
but for τωA = 6.4 (black) and longer correlation intervals, those large fluctuations are
averaged out, leading to a time-averaged energy transfer rate that is approximately an
order of magnitude smaller in amplitude than the peaks of the instantaneous value. In
figure 9, we also show timestack plots CδB‖,i(v‖, t; τ) for (c) τ = 0 and (d) τωA = 6.4,
showing that a relatively persistent bipolar signature of TTD is revealed at v‖/vti = −1.1
in the τωA = 6.4 case with peak amplitudes about an order of magnitude smaller than
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(a)

(b)

(c)

FIGURE 8. Linear dispersion relations for KAWs from PLUME calculations with the reduced
mass ratio mi/me = 36, showing the absolute value of the normalized wave damping or growth
rate |γ |/ω as a function of the dimensionless perpendicular wavenumber k⊥ρi for (a) βi = 0.3,
(b) βi = 1 and (c) βi = 3. The two vertical black dashed lines at k⊥ρi = 0.25 and 7.75 label the
range consistent with the AstroGK turbulence simulations, and the two vertical green dashed
lines mark the range of 1/e of the peak value of γi. The horizontal dashed black line at |γ |/ω =
10−1 indicates the threshold above which significant damping or growth occurs. Each panel
follows the layout format of figure 6.
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(a) (b)

(c) (d)

FIGURE 9. Analysis of correlation interval selection for the βi = 1 AstroGK turbulence
simulation at probe 13 (πρi, 7πρi, 0). (a,b) Time evolution of (a) the rate of change of ion kinetic
energy density due to TTD, denoted as ∂Wi/∂t, and (b) the reduced correlation CδB‖,i(v‖, t) at
v‖ = −1.3vti. Both quantities are presented over a range of τωA values from 0 to 15. The selected
τωA value of 6.4 is marked with a black line. (c,d) Timestack plots of the reduced correlation
CδB‖,i(v‖, t) for (c) τωA = 0 and (d) τωA = 6.4, where the range of parallel phase velocities
of KAWs that experience significant damping by ions is indicated by vertical dashed lines at
v‖/vti = ±1.020 and v‖/vti = ±1.704.

the instantaneous case with τ = 0. Thus, we choose a correlation interval τωA = 6.4 to
perform the field–particle correlation analysis of our βi = 1 turbulence simulation.

4.3. Results for βi = 1 simulation
Performing the field–particle correlation analysis with τωA = 6.4 for TTD and LD at all 24
probe positions in our βi = 1 turbulence simulation, we seek the gyrotropic velocity-space
signatures of TTD and LD shown in figure 4. In figure 10(a), we plot the gyrotropic
velocity-space signature CδB‖,i(v‖, v⊥; τ) at one of the 24 probes, centred in time at
tωA = 19.71, showing a clear bipolar signature comparable to that shown in figure 4(a).
The range of resonant parallel phase velocities for the KAW mode over which significant
ion collisionless damping is expected is indicated by the vertical dashed lines; specifically,
these lines mark the resonant velocities of the KAW mode at k⊥ρi � 0.5 and k⊥ρi � 2.3,
the points at which the total ion collisionless damping rate drops to a factor 1/e of its
peak value at k⊥ρi � 1.3, as illustrated by the vertical green dashed lines on the linear
dispersion relation plot for mi/me = 36 in figure 8(b). In the lower panel is shown the
reduced parallel velocity-space signature CδB‖,i(v‖; τ) integrated over v⊥, yielding a clear
bipolar signature with a zero crossing at v‖/vti � −1.1. Note that the zero crossing of this

https://doi.org/10.1017/S0022377824000667 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000667


Transit-time damping 21

(a) (b)

(c) (d)

FIGURE 10. Velocity-space signatures of TTD (a,b) at probe 13 (πρi, 7πρi, 0) and LD (c,d) at
probe 24 (4πρi, 4πρi, 0.875πa0) in AstroGK turbulence simulation with 0.25 ≤ k⊥ρi ≤ 7.75,
Ti/Te = 1, and βi = 1. The correlation interval is set as τωA = 6.4. (a,c) Gyrotropic plane
(v‖, v⊥) signatures, following the layout format of panels in figure 4. (b,d) Timestack plots of the
v⊥-integrated reduced correlation; the main panel here shows the reduced correlation on (v‖, t)
grids, and the lower panel shows the time-integrated reduced correlation. Four vertical dashed
lines at v‖/vti = ±1.020 and v‖/vti = ±1.704 indicate the resonant parallel phase velocity
ranges where significant ion damping occurs.

velocity-space signature falls within the expected range of resonant velocities (vertical
dashed lines), as expected theoretically for a resonant collisionless damping mechanism.
The left panel shows the net rate of ion energization due to TTD (∂Wi/∂t)TTD as a function
of time, showing net positive ion energization due to TTD at this position over almost the
full duration of the simulation. Thus, figure 10(a) demonstrates that TTD indeed plays a
role in the damping of turbulent fluctuations and consequent energization of the ions, a
second key result of this paper.

In figure 10(b), we show a timestack plot CδB‖,i(v‖, t; τ) of the ion energization by TTD
at the same probe position as in (a), showing the persistence in time of the reduced
parallel velocity-space signature with the zero crossing at v‖/vti � −1.1. Note that the
zero crossing at v‖/vti � −1.1 in this timestack plot shifts to slightly lower phase velocities
near the end of the simulation at tωA > 25, likely due to damping associated with KAWs
that have slightly lower perpendicular wavenumbers k⊥ρi, as can occur in broadband
turbulence. There is also a relatively short-lived bipolar signature observed at v‖/vti � 1
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at times tωA < 15, indicating that TTD is also acting on KAWs propagating the other
direction along the magnetic field (Afshari et al. 2021).

We perform the analogous field–particle correlation for LD, showing CE‖,i(v‖, v⊥; τ)
in figure 10(c), yielding a bipolar gyrotropic velocity-space signature at v‖/vti � 1.2 at
time tωA = 24.3, also within the expected range of resonant parallel phase velocities. This
finding of the velocity-space signature of LD confirms previous field–particle correlation
analyses showing that ion LD plays a role in the dissipation of plasma turbulence (Klein
et al. 2017; Howes et al. 2018; Klein et al. 2020; Cerri et al. 2021). The timestack plot
CE‖,i(v‖, t; τ) in figure 10(d) shows this strong bipolar signature of LD at v‖/vti � 1.2
persists over 22 � tωA � 30. In closing, it is worthwhile noting that, to distinguish the
velocity-space signature of TTD from that of LD, it is necessary to examine the signatures
in gyrotropic velocity space (v‖, v⊥), showing that ion energization is limited to ions with
v⊥/vti � 1 for TTD, but that ion energization extends down to v⊥ → 0 for LD, as expected
by the physical arguments outlined in § 3.2.

4.4. Variations with ion plasma beta βi

Next, we explore how the velocity-space signatures of TTD and LD in plasma turbulence
vary with changing the ion plasma beta βi = v2

ti/v
2
A. Because βi is a function of the

ratio of the ion thermal velocity to the Alfvén velocity, it directly characterizes where
the parallel wave phase velocity falls with the ion velocity distribution, making it the
most important parameter controlling resonant wave–particle interactions in a weakly
collisional plasma. Specifically, ω/(k‖vti) = ω̄β

−1/2
i , where the parallel phase velocity

normalized to the Alfvén velocity ω̄ ≡ ω/(k‖vA) typically has a value ω̄ ∼ 1 for the
perpendicular wavelengths k⊥ρi ∼ 1 at which the ions strongly interact with the waves.
Note that, at the perpendicular scale of the domain k⊥0ρi = 0.25, the Alfvén wave has the
ω̄ � 1 for all values of βi, so we simply choose a correlation interval τωA = 6.4 for all of
the turbulence simulation analysis below.

We plot some typical velocity-space signatures for TTD and LD for the βi = 0.3
simulation in figure 11. Note that, for this value of βi = 0.3, the contribution of TTD
is always to remove energy from the ions, as shown in figure 8(a), so we expect only
negative TTD signatures, similar to that shown in figure 5(a). Consequently, we expect
LD to dominate the removal of energy from the turbulence. Performing the TTD analysis
to determine CδB‖,i(v‖, v⊥; τ), we display a typical gyrotropic velocity-space signature
in figure 11(a) with the associated timestack plot at the same probe in (b), showing
two bipolar signatures with a net negative energy transfer rate and zero crossings at
v‖/vti � ±0.7. These look like typical reversed TTD signatures, but the phase velocity
is not within the expected range 1.8 � |v‖/vti| � 2.4 for a KAW with βi = 0.3. Only 3 of
the 24 probes showed reversed TTD signatures with phase velocities closer to the expected
range, as shown in figure 11(c,d) with a bipolar zero crossing around v‖/vti � −1.5.

Performing the LD analysis to determine CE‖,i(v‖, v⊥; τ) in the same βi = 0.3
turbulence simulation, we find a similar intriguing result that we commonly find bipolar
signatures associated with positive energy transfer to ions, but with zero crossings well
below the expected range of 1.8 � |v‖/vti| � 2.4. In figure 11(e), we see two bipolar
signatures at v‖/vti � −0.7 and v‖/vti � 1.2. Only 2 of the 24 probes recover LD
velocity-space signatures in the expected range, such as that shown in figure 11(g,h).

Turning next to the field–particle correlation analysis of the βi = 3 turbulence
simulation, the linear dispersion relation plot for KAWs in figure 8(c) shows that LD
removes energy from ions for waves with k⊥ρi � 1.7, but TTD positively energizes ions
over perpendicular wavenumbers with k⊥ρi � 4. At all probes in the simulation, we find
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(a)

(c) (d)

(b)

(e) ( f )

(g) (h)

FIGURE 11. Velocity-space signatures of TTD (a–d) and LD (e–h) sampled from AstroGK
turbulence simulation with 0.25 ≤ k⊥ρi ≤ 7.75, Ti/Te = 1 and βi = 0.3. The correlation
interval is set as τωA = 6.4. (a,c,e,g) Gyrotropic plane (v‖, v⊥) signatures, and (b,d, f,h)
Timestack plots of the v⊥-integrated reduced correlation; both following the layout format of
figure 10. The resonant parallel phase velocity ranges are marked by the four vertical dashed
lines at v‖/vti = ±1.832 and v‖/vti = ±2.373. From top to bottom, data are taken from probe
7 (5πρi, 3πρi, 0), probe 15 (5πρi, 7πρi, 0), probe 20 (4πρi, 4πρi, −0.125πa0) and probe 5
(πρi, 3πρi, 0), respectively.
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(a) (b)

(c) (d)

FIGURE 12. Velocity-space signatures of TTD (a,b) at probe 22 (4πρi, 4πρi, 0.375πa0) and
LD (c,d) at probe 5 (πρi, 3πρi, 0) sampled from AstroGK turbulence simulation with 0.25 ≤
k⊥ρi ≤ 7.75, Ti/Te = 1 and βi = 3. The correlation interval is set as τωA = 6.4. (a,c) Gyrotropic
plane (v‖, v⊥) signatures, and (b,d) Timestack plots of the v⊥-integrated reduced correlation;
both following the layout format of figure 10. The resonant parallel phase velocity ranges are
marked by the four vertical dashed lines at v‖/vti = ±0.583 and v‖/vti = ±0.936.

bipolar velocity-space signatures of positive energy transfer by TTD to ions at both
positive and negative parallel velocities near the expected range 0.58 � |v‖/vti| � 0.94,
with a typical case illustrated in figure 12, showing (a) the gyrotropic velocity-space
signature CδB‖,i(v‖, v⊥; τ) and (b) the timestack plot CδB‖,i(v‖, t; τ) indicating that these
signatures are persistent in time. On the other hand, analysing the signatures of LD
using (c) the gyrotropic velocity-space signature CE‖,i(v‖, v⊥; τ) and (d) the timestack plot
CE‖,i(v‖, t; τ), the pattern of energy transfer to ions is widely variable, with ions losing
energy more than gaining energy, in agreement with the expectations from the linear
dispersion relation. During the majority of the time when clear reversed bipolar patterns
are visible for LD, they appear to have zero crossings that are close to the expected range
of parallel resonant velocities.

Since the field–particle correlation analysis of our single-wave simulations in § 3.3
shows that the velocity-space signatures of TTD and LD appear near the resonant parallel
velocities of the waves, as illustrated in figure 5, it raises the question of why the
velocity-space signatures in the βi = 0.3 simulation in figure 11 often do not appear in
the expected range of resonant velocities. There exist at least two possible explanations
for this finding: (i) nonlinear transfer from Alfvén waves to other wave modes, and (ii)
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nonlinear TTD. Before going into the details of each of these possibilities below, it is
worthwhile emphasizing that the field–particle correlation technique determines the total
energy transfer to particles over the full velocity distribution, meaning that the net energy
transfer within a region of velocity space is effectively weighted by the number of particles
within that region of the velocity distribution. To illustrate this point, let us focus on the
specific example of figure 11(a), where the range of resonant parallel phase velocities for
the Alfvén mode (vertical black lines) occurs in the range 1.8 � v‖/vti � 2.4. Even if there
exists resonant energy transfer to the particles at these suprathermal parallel velocities,
a potentially competing mechanism (such as the two possibilities named above) could
dominate the net particle energization if it transfers energy to particles lying within the
bulk of the velocity distribution at v‖/vti ∼ 1, where many more particles can participate
in the energy transfer. Thus, the velocity-space signatures arising from the field–particle
correlation analysis are generally weighted by the underlying velocity distribution to
emphasize energy transfer mechanisms interacting with the main part of the velocity
distribution at v‖/vti ∼ 1.

First, let us analyse how nonlinear energy to other wave modes may explain the
velocity-space signatures observed in figure 11. Due to the predominantly Alfvénic nature
of fluctuations in space plasma turbulence (Tu & Marsch 1995; Schekochihin et al. 2009;
Bruno & Carbone 2013), we focus on the collisional damping rates of Alfvénic fluctuations
by TTD and LD in this study. However, the plasma turbulence in our gyrokinetic
simulations is broadband and may contain slow magnetosonic fluctuations that arise from
nonlinear couplings among the turbulent fluctuations. Although slow magnetosonic waves
are not generated by nonlinear couplings among the dominantly Alfvénic fluctuations
in the magnetohydrodynamics (MHD) limit at k⊥ρi 	 1 (Schekochihin et al. 2009), at
the ion kinetic scales k⊥ρi ∼ 1 it is possible that energy can be nonlinearly transferred
into slow magnetosonic fluctuations. These kinetic slow wave fluctuations5 may have
a different parallel phase velocity from the Alfvénic fluctuations and thereby mediate
damping of the turbulent energy through either TTD or LD at phase velocities that fall
within the bulk of the velocity distribution at v‖/vti ∼ 1. The second possibility is that
nonlinear TTD may occur, whereby the beat mode fluctuations (which are not natural wave
modes of the system) – arising from nonlinear interactions between Alfvénic fluctuations
with different frequencies and wave vectors – can have an effective phase velocity that
falls in the core of the velocity distribution, leading to efficient net energy transfer to the
ions via collisionless wave–particle interactions.

In closing this discussion about the velocity-space signatures observed in figure 11, a
final point to emphasize is that the clear bipolar signatures of negative energy transfer from
ions by TTD in figure 11(a) and of positive energy transfer to ions by LD in figure 11(e)
for βi = 0.3 suggest that some resonant energy transfer mechanism is governing the
energization in these simulations; the details of this turbulent damping mechanism, which
may include nonlinear couplings to other linear wave modes or nonlinear beat modes as
suggested above, are clearly a ripe avenue for exploration in future work.

4.5. Net turbulent damping as a function of ion plasma beta βi

To estimate the net energy density transfer to or from ions mediated by TTD or LD
averaged over the volume of the simulation, we integrate the energy density transfer
rate due to each mechanism over the duration of each turbulence simulation (after the

5The kinetic slow wave fluctuations specified here are the weakly collisional equivalent of the slow magnetosonic
wave in the MHD limit; these are compressible waves distinguished from the kinetic fast magnetosonic wave by the
having thermal and magnetic pressure fluctuations acting in opposition as restoring forces for the wave.

https://doi.org/10.1017/S0022377824000667 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000667


26 R. Huang, G.G. Howes and A.J. McCubbin

FIGURE 13. Ratio of the change of the ion kinetic energy density due to TTD and LD to the
total change of the ion kinetic energy density during the analysis time, both averaged over all 24
probes, plotted against βi. The error bars represent the standard deviations calculated across all
probes.

energy spectra have reached a statistically steady state) and average over all 24 probes for
each simulation. This procedure provides a statistical estimate of the total change in ion
energy density by each mechanism, denoted by Wi,TTD and Wi,LD. We compute the ratio
of these ion energy density changes by each mechanism to the total ion energy density
change Wi = Wi,TTD + Wi,LD, and plot Wi,TTD/Wi (green) and Wi,LD/Wi (blue) versus the
ion plasma beta βi in figure 13. Variability in the energy density changes due to TTD and
LD is indicated by error bars on each point, computed using the standard deviation of the
time-integrated energy density changes at all 24 probes. The red solid line at 1 presents
the sum of Wi,TTD/Wi and Wi,LD/Wi, and the black dashed line at zero highlights whether
a mechanism yields a positive net energy density transfer to ions or a negative net energy
density transfer from ions.

For βi = 0.3, the ion energization is dominated by LD, with TTD yielding a small
and slightly negative energy transfer. The ion LD and TTD contributions to the damping
rate from the linear dispersion relation in figure 8(a) provide intuition about the relative
role of these two collisionless damping mechanisms in a turbulent plasma. Note that
the broadband turbulence in the simulation consists of wave modes spanning the range
0.25 ≤ k⊥ρi ≤ 7.75, denoted by the two vertical dashed black lines in figure 8(a), with
a monotonically decreasing magnetic energy spectrum, as shown in figure 7. The net
ion energization by each mechanism expected in a given simulation can be intuitively
estimated by an integration over k⊥ρi of the product of the damping rate for that
mechanism with the electromagnetic energy at each scale. For βi = 0.3, figure 8(a) shows
that γiTTD > 0 and γiLD < 0 over the full range of perpendicular wavenumbers in the
simulation, so the numerical finding of net energy transfer rates in figure 13 appears to
be consistent with the expectation from the linear dispersion relation.

For βi = 1, both LD and TTD yield net positive energization of the ions, but LD
dominates over TTD once more, as seen in figure 13. This result is broadly consistent
with the linear damping rates from the linear dispersion relation plotted in figure 8(b),
where the LD rate integrated over k⊥ρi would be expected to dominate over the TTD rate,
but both mechanisms would be expected to yield net positive ion energization rates.
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At βi = 3, on the other hand, figure 13 shows that TTD mediates a net positive energy
transfer to the ions, while LD governs a net negative energy transfer with a slightly smaller
magnitude than the positive TTD energy transfer. The linear dispersion relation results in
figure 8(c) predict a more complicated behaviour than the βi = 0.3 and βi = 1 cases: TTD
yields ion energization for all k⊥ρi � 5, but LD leads to ion-to-wave energy transfer for
k⊥ρi � 1.5 and wave-to-ion energy transfer for k⊥ρi � 1.5. The velocity-space-integrated
rates of energy transfer by each mechanism at each probe – for example, the vertical left
panels of figure 12(a,c) – show variations in time that appear to be consistent with these
expectations from linear theory. The TTD rates of ion energy density change are generally
positive with moderate amplitudes. On the other hand, the LD rates of ion energy density
change are somewhat larger in amplitude but vary with both positive and negative rates,
such that the net LD rate averaged over all probes is negative and slightly smaller in
amplitude than the net TTD rate. This broader variation is evident in the larger standard
deviation of the βi = 3 values in figure 13 relative to the βi = 0.3 and βi = 1 cases.

In conclusion, it is worthwhile emphasizing that the expectations from linear theory
of the relative contributions to the energy density transfer rates from each mechanism,
including their overall sign, are only expected to hold in statistical sense, averaged over
a sufficiently large volume. This is particularly true for plasma parameter values where
the expected linear damping rate for a given mechanism changes sign within the range
of k⊥ρi where significant damping is expected, such as the case for ion LD in the βi = 3
simulation. Based on kinetic numerical simulations of turbulence, the rate of change of
energy density for species s given by js · E is highly variable spatially, with variations
that can be much larger than the spatially or temporally averaged net value. An example
from a simulation of a strongly nonlinear Alfvén wave collision – the nonlinear interaction
between counterpropagating Alfvén waves that is argued to be the fundamental building
block of astrophysical plasma turbulence (Howes et al. 2012; Drake et al. 2013; Howes &
Nielson 2013; Howes et al. 2013; Nielson, Howes & Dorland 2013; Howes 2016; Verniero
et al. 2018; Verniero & Howes 2018) – is seen in figure 8 of Howes et al. (2018), where the
wave-period-averaged energy density transfer rates are found to be an order of magnitude
smaller than the instantaneous rates. Furthermore, even for an overall damping rate that
energizes the plasma particles at the expense of the turbulent electromagnetic energy, the
net energy transfer rate averaged over time at single position may be negative, even when
the spatially averaged energy transfer rate is positive, as seen in figure 8(d) of Howes et al.
(2018).

That the turbulent energy damping rate is highly oscillatory, both in space and time,
with a much smaller amplitude net energy damping rate that is generally positive
(indicating a damping of turbulence and consequent energization of particles), should not
be especially surprising. The nonlinear energy transfer from large to small scales by the
turbulence is likewise found to be highly oscillatory, with third-moment calculations of the
instantaneous energy transfer rates (Kolmogorov 1941; Politano & Pouquet 1998) yielding
large values of both signs, with the net averaged value having a much smaller amplitude
of positive energy transfer to small scales (Coburn et al. 2014, 2015). Thus, field–particle
correlation calculations of the energy density transfer rate at a single point, even averaged
over a long duration, may still lead to a result in a turbulent plasma that appears to conflict
with the expectation from linear theory. Only with a sufficient large statistical average,
here estimated using the average over all 24 probe positions, should we expect the results
to be consistent with the general expectations of linear theory – the results in figure 13
indeed appear to be consistent with the general expectations for the relative contributions
of LD and TTD from linear theory.
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5. Conclusion

Transit-time damping is a well-known mechanism for the resonant collisionless
damping of electromagnetic waves exhibiting variations of the magnetic field magnitude
along the mean magnetic field direction, mediated by the magnetic mirror force. This
mechanism has been proposed as a possible means for removing energy from the
fluctuations in weakly collisional plasma turbulence, but to date there exists little direct
evidence clearly showing the damping of turbulence via TTD. Here we employ the recently
developed field–particle correlation technique to use measurements of the gradient of the
magnetic field magnitude and the ion velocity distribution at a single point to determine a
velocity-space signature that can be used to identify definitively that TTD plays a role in
the damping of plasma turbulence.

We first derive the particular mathematical form of the field–particle correlation for the
rate of energy transfer due to TTD in § 2.1, and then we predict the velocity-space signature
of the rate of change of phase-space energy density due to TTD using a simple model in
§ 2.2. Next, we perform gyrokinetic simulations of single KAWs to determine the resulting
velocity-space signature of TTD numerically, confirming the qualitative features of our
prediction, and presenting the first key result of this study: the gyrotropic velocity-space
signature of TTD in figure 4(a).

We contrast the velocity-space signature of TTD with the known bipolar velocity-space
signature of LD, showing the same bipolar pattern of phase-space energy density loss
below and gain above the resonant parallel phase velocity, but the TTD signature does
not extend down to v⊥ → 0 because it is mediated via the magnetic moment of the
charged particle μ = mv2

⊥/(2B); thus, signatures of TTD and LD can be distinguished
in gyrotropic velocity space by examining the behaviour at the resonant parallel phase
velocity as v⊥ → 0. Furthermore, we find the unexpected result that TTD can lead to a
net loss of ion energy over the period of the wave for βi < 1 and LD can lead to a net loss
of ion energy over the period of the wave for βi > 1. This surprising result is explained,
however, by examining the separate contributions of TTD and LD to ion damping from the
linear Vlasov–Maxwell dispersion relation: for a single linear KAW, the net effect of TTD
and LD combined for a plasma with a Maxwellian equilibrium ion velocity distribution
always leads to a net damping of the wave and net gain of energy by the ions.

Next, we perform three gyrokinetic simulations of weakly collisional plasma turbulence
with three values of βi = 0.3, 1, 3 to seek the velocity-space signature of TTD in the
damping of the strong turbulent fluctuations. In the βi = 1 turbulence simulation, we
indeed find a velocity-space signature of TTD as shown in figure 10(a), indicating that this
mechanism does indeed play a role in the dissipation of kinetic plasma turbulence, along
with confirming previously demonstrated signatures of LD with ions in figure 10(c). This
second key result of this paper shows clearly the TTD does serve to damp the fluctuations
in weakly collisional plasma turbulence.

The relative strength of TTD and LD is predicted to be a strong function of βi (Quataert
1998), so we analyse our βi = 0.3 and βi = 3 simulations to confirm this prediction. For
βi = 3, we indeed find signatures of TTD in the predicted range of resonant parallel
phase velocities in figure 12(a), but LD signatures vary widely, with both positive and
negative energy transfer rates to the ions, and a negative overall average consistent with
expectations from the linear dispersion relation in figure 8(c). For βi = 0.3, however, we
discover puzzling bipolar velocity-space signatures of negative energy transfer but with a
zero crossing well below the parallel phase velocity of kinetic KAWs. This may indicate
that energy transfer via TTD is occurring through alternative wave modes, such as kinetic
slow magnetosonic fluctuations, or through nonlinear TTD via beat wave modes that are
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generated by nonlinear interactions among the turbulent fluctuations. These possibilities
will be explored in future work.

Determining the time-integrated change of ion kinetic energy density due to TTD and
LD as a function of βi from the three simulations, averaged over all of the probes to obtain
a reasonable statistical estimate, we find results in figure 13 that are generally consistent
with the expectations from the linear dispersion relation: (i) at βi = 0.3, TTD is small and
slightly negative, while LD is approximately an order of magnitude larger and positive;
(ii) at βi = 1, both TTD and LD are positive, but again LD is about an order of magnitude
larger than TTD; and (iii) at βi = 3, TTD is large and positive while LD is somewhat
smaller and negative. Note that despite one of the mechanisms possibly leading to a net
negative transfer of energy from ions to waves, for a sufficiently large statistical sample it
is always the subdominant mechanism that is negative, so the net effect of the sum of both
of these n = 0 Landau-resonant collisionless wave–particle interactions (TTD and LD)
averaged over all of the probe positions is a damping of the turbulence for equilibrium
Maxwellian velocity distributions.
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Appendix A. Explicit form of Landau damping and transit-time damping terms in
nonlinear gyrokinetics

The nonlinear, collisionless gyrokinetic equation (Howes et al. 2006) can be
manipulated into a form in which the terms governing LD and TTD are readily apparent.
We begin with the nonlinear, collisionless gyrokinetic equation in cgs units, (25) in Howes
et al. (2006),

∂hs

∂t
+ v‖

∂hs

∂z
+ c

B0
[〈χ〉Rs, hs] = qsF0s

T0s

∂〈χ〉Rs

∂t
, (A1)

where the nonlinear term is expressed in the Poisson bracket, defined by

[U, V] = ẑ ·
[

∂U
∂Rs

× ∂V
∂Rs

]
= ∂U

∂X
∂V
∂Y

− ∂U
∂Y

∂V
∂X

, (A2)

where the guiding centre coordinates are given by Rs = (X, Y, z). The gyroaverage of
a given quantity at the guiding centre position for a particle of species s is denoted by
〈. . .〉Rs . The gyrokinetic potential is defined by χ(r, t) = φ − v · A/c, where φ(r, t) is
the scalar electrostatic potential and A(r, t) is the vector potential. In this formulation,
the total velocity distribution function for species s is separated into fs(r, v, t) =
F0s(v) + (−qsφ(r, t)/Ts)F0s(v) + hs(Rs, v‖, v⊥, t) + O(ε2), where F0s(v) is the spatially
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homogeneous and temporally constant equilibrium Maxwellian velocity distribution and
hs(Rs, v‖, v⊥, t) is the perturbed gyrokinetic distribution function at the particle guiding
centre position Rs (independent of gyrophase θ in cylindrical velocity space).

We transform from the perturbed gyrokinetic distribution function hs to the
complementary perturbed gyrokinetic distribution function gs (Schekochihin et al. 2009),
given by

gs(Rs, v‖, v⊥, t) = hs(Rs, v‖, v⊥, t) − qsF0s

T0s

〈
φ − v⊥ · A⊥

c

〉
Rs

, (A3)

substituting for hs everywhere in the nonlinear gyrokinetic equation (A1). After some
simplification, the equation can be rearranged to obtain

∂gs

∂t
+ v‖

∂gs

∂z
+ c

B0
[〈χ〉Rs, gs] = −qsF0s

T0s

∂

∂t

〈
v‖A‖

c

〉
Rs

− qsF0s

T0s
v‖

∂

∂z

〈
φ − v⊥ · A⊥

c

〉
Rs

+ qsF0s

T0s

c
B0

[〈
v‖A‖

c

〉
Rs

,

〈
φ − v⊥ · A⊥

c

〉
Rs

]
. (A4)

We can rearrange the terms on the right-hand side to obtain a more physically illuminating
form

∂gs

∂t
+ v‖

∂gs

∂z
+ c

B0
[〈χ〉Rs, gs]

= qsF0s

T0s
v‖

[
− ∂

∂z
〈φ〉Rs − 1

c
∂〈A‖〉Rs

∂t

]
+ qsF0s

T0s
v‖

1
B0

[(
∂
〈
A‖
〉
Rs

∂Rs
× ẑ

)
· −∂〈φ〉Rs

∂Rs

]

+ qsF0s

T0s
v‖

∂

∂z

〈
v⊥ · A⊥

c

〉
Rs

+ qsF0s

T0s
v‖

1
B0

[(
∂
〈
A‖
〉
Rs

∂Rs
× ẑ

)
· 1

c
∂〈v⊥ · A⊥〉Rs

∂Rs

]
.

(A5)

Using the following relations:

∂〈A‖〉Rs

∂Rs
× ẑ = 〈δB⊥〉Rs, (A6)

qs

c
〈v⊥ · A⊥〉Rs = −1

2
qs

c
v2

⊥
Ωs

〈δB‖〉Rs = −μs〈δB‖〉Rs, (A7)

− ∂

∂z
〈φ〉Rs − 1

c
∂〈A‖〉Rs

∂t
= 〈E‖〉Rs, (A8)

−∂〈φ〉Rs

∂Rs
= 〈E⊥〉Rs, (A9)

we can simplify the result to obtain

∂gs

∂t
+ v‖

∂gs

∂z
+ c

B0
[〈χ〉Rs, gs]

= qsF0s

T0s
v‖

(
ẑ + 〈δB⊥〉Rs

B0

)
· 〈E〉Rs + F0s

T0s
v‖

[
−μs

(
ẑ + 〈δB⊥〉Rs

B0

)
· ∂〈δB‖〉Rs

∂Rs

]
.

(A10)
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Finally, to put this into a more concise form, we recognize that the direction of the total
magnetic field (including the perturbation) to the first order is B = B0ẑ + 〈δB⊥〉Rs , so we
can define the unit vector of the total magnetic field direction as b̂

b̂ = B0ẑ + 〈δB⊥〉Rs

B0
. (A11)

With this final simplification, we obtain the final result for the nonlinear gyrokinetic
equation

∂gs

∂t
+ v‖

∂gs

∂z
+ c

B0
[〈χ〉Rs, gs] = qsF0s

T0s
v‖b̂ · 〈E〉Rs − F0s

T0s
v‖μsb̂ · ∇Rs〈δB‖〉Rs . (A12)

This equation has a simple physical interpretation with respect to work done on the
distribution functions by the fields: the first term on the right-hand side is the effect of LD
by electric field parallel to the total magnetic field; and the second term on the right-hand
side is the effect of TTD by the magnetic mirror force due to the gradient of the magnetic
field magnitude along the total magnetic field, which to lowest order is just due to the
parallel magnetic field perturbations, as shown in (2.6). Note also that the nonlinear term
involves interactions between the electromagnetic fields and the plasma particles, but when
integrated over all guiding centre space Rs, it leads to zero net energy change.

Appendix B. Gyrokinetic form of the field–particle correlation

In gyrokinetics, a form of conserved energy inspired from the definition of entropy is
calculated by multiplying the complementary perturbed gyrokinetic distribution function
gs by T0sgs/F0s and integrating over all velocity and physical space (Howes et al. 2006;
Brizard & Hahm 2007; Schekochihin et al. 2009; Li et al. 2016; Howes et al. 2018). Using a
similar approach, we can obtain an energy equation for the gyrokinetic phase-space energy
density ws(Rs, v‖, v⊥, t) = Tsg2

s/(2F0s) by multiplying (A12) by T0sgs/F0s to obtain

∂ws

∂t
+ v‖

∂ws

∂z
+ T0sc

B0F0s

[
〈χ〉Rs,

g2
s

2

]
= v‖b̂ · 〈qsE〉Rs gs − v‖μsb̂ · ∇Rs〈δB‖〉Rs gs. (B1)

In this formulation, the gyrokinetic form of the field–particle correlation for LD would be
given by

CE‖,s(R0,s, v‖, v⊥, t) = 1
τ

∫ t+τ/2

t−τ/2
v‖b̂ · 〈qsE〉Rs gs dt′, (B2)

and for TTD would be given by

CδB‖,s(R0,s, v‖, v⊥, t) = −1
τ

∫ t+τ/2

t−τ/2
v‖μsb̂ · ∇Rs〈δB‖〉Rs gs dt′. (B3)

Note that the energy transfer in the nonlinear case is simply ‘linear’ collisionless
damping occurring along the local total magnetic field direction (which is a nonlinear
correction from the equilibrium magnetic field direction B0 = B0ẑ). Note also that, in the
gyrokinetic approximation, the nonlinear contribution (known as the parallel nonlinearity)
to the field–particle interactions is dropped, as it comes in only at higher order. Thus,
nonlinear saturation of LD does not occur in gyrokinetics, but the nonlinear correction of
‘linear’ collisionless damping due to the difference in the total magnetic field direction
from the equilibrium magnetic field direction is included in nonlinear gyrokinetics.
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(a) (b)

(c) (d)

FIGURE 14. Velocity-space signatures of TTD (a,b) and LD (c,d), plotted from single KAW
AstroGK simulation data with k⊥ρi = 1, βi = 1, Ti/Te = 1. The Vlasov–Maxwell version
correlations, (2.7) for TTD and the parallel component of (2.4) for LD, are applied in (a,c);
and the gyrokinetic version correlations, (B3) for TTD and (B2) for LD, are applied in (b,d).
The layout format, simulation data, correlation interval and normalized parallel phase velocity
presented in this figure are identical to those used in figure 4.

Mathematically, the correlations derived from the Vlasov–Maxwell equations, (2.7)
for TTD and the parallel contribution to the dot product in (2.4) for LD, and the
correlations derived from the gyrokinetics, (B3) for TTD and (B2) for LD are related
by the integration by parts. Physically, the Vlasov–Maxwell version correlation calculates
the change in phase-space energy density at fixed positions in velocity space (Eulerian
perspective). In contrast, the gyrokinetic version correlation measures the energy changes
experienced by particles along their orbits (Lagrangian perspective) (Montag & Howes
2022). The gyrokinetic version is effectively the same as the alternative field–particle
correlation previously defined (Howes et al. 2017), denoted by the symbol C′ instead
of C. Therefore, as illustrated in figure 14, where we plot both the Vlasov–Maxwell
version correlations and the gyrokinetic version correlations for the fiducial single KAW
simulation, the loss and gain of phase-space energy density in the velocity space are visible
in the Vlasov–Maxwell version correlation plots with the zero crossing centred at the
resonant velocity. Conversely, the gyrokinetic version correlation plots highlight the pure
energization of particles, with the peak positioned at the resonant velocity.

We choose not to use the particular forms of the field–particle correlations in (B2)
and (B3) for the study here because the gyrokinetic formulation is the lowest-order
contribution to the rate of change of phase-space energy density in the gyrokinetic limit of
small fluctuations relative to the equilibrium gs/F0s 	 1 (Howes et al. 2006); we prefer to
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establish a form that is appropriate for fluctuations of arbitrary amplitude, which is given
for TTD by the form in (2.7).

Appendix C. Separating Landau damping from transit-time damping

As shown by (A12), the nonlinear gyrokinetic equation can be manipulated into a form
in which the terms governing LD and TTD are explicitly separated. Here we explain how
one can separate the contributions to the damping rate γs for a given species s by LD
and TTD, both arising from the n = 0 Landau resonance, in the Vlasov–Maxwell linear
dispersion relation (Stix 1992; Swanson 2003) in the limit γs/ω → 0.

The rate of work done on a species s by the electric field in a plasma is given by

Ps(r, t) = js(r, t) · E(r, t), (C1)

where the fields js and E must be real. For a single plane-wave mode of an arbitrary vector
field A, the Fourier transform is given by

A(r, t) = 1
2 [Â(k) exp(i[k · r − ω(k)t]) exp(γ (k)t)

+ Â
∗
(k) exp(−i[k · r − ω(k)t]) exp(γ (k)t)], (C2)

where Â(k) is the complex Fourier coefficient for plane-wave vector k and the complex
mode frequency ωc(k) = ω(k) + iγ (k) is a function of k. Note that, for wave vectors
k ∈ [−∞,∞], the reality condition imposes the constraint Â(k) = Â

∗
(−k).

To determine the average energy transfer rate over one wave period 〈Ps(r)〉T , we compute

〈Ps(r)〉T = 1
T

∫ T

o
dt′js(r, t′) · E(r, t′). (C3)

In the case of weak total6 damping or growth rate, |γ |/ω 	 1, we can substitute in for
js(x, t) and E(x, t) in terms of the complex Fourier coefficients using (C2), which enables
us to derive

lim
γ /ω→0

〈Ps(r)〉T = 1
4

[ĵs(k) · Ê
∗
(k) + ĵ

∗
s (k) · Ê(k)], (C4)

as discussed in § 4-2 and (4)–(5) in Stix (1992).
To progress further, we need to determine the contribution to the plasma current density

due to the n = 0 resonant terms. In general, the current density for species s arising from
the linear response to an applied electric field Ê(k) is given by the linear conductivity
tensor σ s(ω, k)

ĵs(k) = σ s(ω, k) · Ê(k) = − iω
4π

χ s(ω, k) · Ê(k), (C5)

where the linear conductivity tensor can be expressed in terms of the susceptibility
χ s(ω, k) for species s.

Note that the susceptibility tensor χ s involves a sum over all integers n (the order of
the Bessel functions that arise in the integration over the gyrophase of the particles), as
shown clearly in (10)–(57) of Stix (1992). The Landau resonance, which gives rise to the
collisionless mechanisms of LD and TTD, corresponds to the n = 0 term in this sum.

6For a fully ionized, single-ion plasma, the total damping or growth rate is the sum of the damping or growth rates
due to both species, γ = γi + γe.
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Therefore, we need only evaluate the n = 0 contribution to χ s, denoted here by χ (n=0)
s .

For an equilibrium magnetic field B0 = B0ẑ and the choice of a wave vector in the (x, z)
plane, k = k⊥x̂ + k‖ẑ, all elements of the rank 2 tensor χ (n=0)

s (ω, k) involving the index x
are zero, i.e. χ

(n=0)

xj,s = χ
(n=0)

jx,s = 0, as shown in the Stix equations (10)–(61). Therefore, the

n = 0 contribution to the current density has x̂ · ĵ
(n=0)

s (k) = 0. Thus, we need only concern
ourselves with the work done by Êy and Êz.

Physically, LD is governed by the work done by the Êz component of the wave electric
field, and TTD is governed by the work done by the Êy component of the wave electric
field (Howes et al. 2024). Since we know that TTD is mediated by the magnetic mirror
force, it depends on the gradient of the magnitude of the magnetic field along the magnetic
field direction, b̂ · ∇|B|. In the limit of small amplitudes |δB| 	 B0 appropriate for linear
wave theory with total magnetic field B = B0 + δB, the variations of the magnitude of
the total magnetic field B = B0 + δB can be expressed as δ|B| � δB‖, as shown by (2.6).
Note that, with variations only in the x and z directions (due to our chosen wavevector
orientation), Faraday’s law gives

∂Bz

∂t
= −c

∂Ey

∂x
, (C6)

where δBz = δB‖. Therefore, the variations of the magnetic field magnitude that cause the
mirror force arise from the Êy component of the electric field.

Since χ
(n=0)

xj,s = χ
(n=0)

jx,s = 0, we can write the components ĵy,s and ĵz,s in terms of the
susceptibility tensor acting on Êy and Êz

ĵ
(n=0)

s (k) = − iω(k)

4π

⎛
⎝0 0 0

0 χ(n=0)
yy,s (k) χ(n=0)

yz,s (k)

0 χ(n=0)
zy,s (k) χ(n=0)

zz,s (k)

⎞
⎠
⎛
⎝ 0

Êy(k)

Êz(k)

⎞
⎠ . (C7)

Thus, we find

ĵ(n=0)
y,s (k) = − iω(k)

4π
[χ(n=0)

yy,s (k)Êy(k) + χ(n=0)
yz,s (k)Êz(k)] (C8)

ĵ(n=0)
z,s (k) = − iω(k)

4π
[χ(n=0)

zy,s (k)Êy(k) + χ(n=0)
zz,s (k)Êz(k)]. (C9)

Since TTD is mediated by Êy, using (C3) we can compute its energy transfer rate by

〈PTTD,s(r)〉T = 1
4 [ĵ(n=0)

y,s Ê∗
y + ĵ(n=0)∗

y,s Êy], (C10)

where we have suppressed the explicit dependence on k of the Fourier components for
notational simplicity. Similarly, the energy transfer rate by LD can be computed by

〈PLD,s(r)〉T = 1
4 [ĵ(n=0)

z,s Ê∗
z + ĵ(n=0)∗

z,s Êz]. (C11)

Substituting (C8) into (C10) and taking the limit γ /ω → 0, we obtain the expression
for the energy transfer rate due to TTD by species s

lim
γ /ω→0

〈PTTD,s(r)〉T = − iω
16π

[(χ(n=0)
yy,s − χ(n=0)∗

yy,s )ÊyÊ∗
y + χ(n=0)

yz,s Ê∗
y Êz − χ(n=0)∗

yz,s ÊyÊ∗
z ].

(C12)
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Substituting (C9) into (C11) and taking the limit γ /ω → 0, we obtain the expression for
the energy transfer rate due to LD by species s

lim
γ /ω→0

〈PLD,s(r)〉T = − iω
16π

[(χ(n=0)
zz,s − χ(n=0)∗

zz,s )ÊzÊ∗
z + χ(n=0)

zy,s ÊyÊ∗
z − χ(n=0)∗

zy,s Ê∗
y Êz]. (C13)

Poynting’s theorem integrated over the plasma volume can be used to connect the
period-averaged rate of work done on a plasma species s by a given collisionless damping
mechanism X to the linear damping rate by that mechanism, γX,s. For linear dispersion
relation solutions, the total damping rate γ is a linear combination of the damping rates
on each species by each mechanism; if only the n = 0 Landau-resonant mechanisms
contribute to the damping in a single-ion species and electron plasma, this linear
combination is simply γ = γLD,i + γTTD,i + γLD,e + γTTD,e. Separating the contributions
from each mechanism X and each species s, Poynting’s theorem therefore yields the
connection γX,s = 〈PX,s(x)〉T/(2WEM), where WEM is the total electromagnetic energy over
the integrated volume.

Note that the Stix (1992) representation of the power absorption by species s, from his
§ (11-8), is of the form

〈Ps〉T =
( ω

8π

)
[Ê

∗ · σ (a)
s · Ê], (C14)

where the anti-Hermitian component of the susceptibility is given by

σ (a)
s = − i

2
(σ s − σ †

s ). (C15)

In the examples in Stix (1992) of separating the LD and TTD contributions (see also
Quataert 1998), he artificially sets Êz = 0 to determine the power absorption due to TTD,
and sets Êy = 0 to determine the power absorption due to LD. Such a choice eliminates
all of the contributions from the cross-terms of the susceptibility χyz,s and χzy,s. However,
these terms are not small in general, so their neglect can lead to an inaccurate estimation
of the TTD and LD rates. Furthermore, by writing the power absorption in terms of the
anti-Hermitian component of the susceptibility σ (a)

s , the terms due to the cross-terms χyz,s
and χzy,s are exchanged between TTD and Landau damping, so the separation of the two
different mechanisms is not correct.

C.1. Numerical results of Landau damping and transit-time damping separation
As a demonstration of the separation of the LD and TTD rates for both ions and electrons,
we compute linear Vlasov–Maxwell dispersion relation for the Alfvén wave root using
PLUME (Klein & Howes 2015) for a proton–electron plasma with Maxwellian equilibrium
velocity distributions with Ti/Te = 1 and plasma parameters βi = 1, vti/c = 1 × 10−4 and
mi/me = 1836. In figure 15, we plot the normalized damping (or growth) rates γ /ω –
where damping corresponds to γ < 0 and growth corresponds to γ > 0, for k‖ρi = 0.01
over the range d 0.1 ≤ k⊥ρi ≤ 100. For this case of isotropic Maxwellian equilibrium
velocity distributions, there is not source of energy for instabilities, so we obtain a total
damping rate γ /ω < 0 (thin black). In the limit small growth or damping rate limit,
|γ |/ω 	 1, we separate the ion and electron contributions to the total damping rate,
plotting the ion damping or growth rate γi/ω (thin solid red) and the electron damping
or growth rate γe/ω (thin solid blue). Note the breakdown of this separation at k⊥ρi � 30
when the asymptotic small growth or damping rate limit is violated; the practical limit
where the breakdown of this separation by species occurs is |γ |/ω � 0.5, as shown in the
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FIGURE 15. For a plasma with βi = 1, Ti/Te = 1, mi/me = 1836, vti/c = 1 × 10−4 and k‖ρi =
0.01, plot of total normalized damping or growth rate γ /ω (thin black), ion damping or growth
rate γi/ω (red) and electron damping or growth rate γe/ω (blue). The separate contributions to
the ion damping rate are γi,LD/ω < 0 (red short dashed), γi,TTD/ω < 0 (red long dashed) and
γi,TTD/ω > 0 (red dotted). Similarly, the separate contributions to the electron damping rate
are γe,LD/ω < 0 (blue short dashed), γe,TTD/ω < 0 (blue long dashed) and γe,TTD/ω > 0 (blue
dotted).

figure where sum of the ion and electron damping rates deviates from the total damping
rate γ /ω (thin black) at k⊥ρi � 30.

Examining the separation of the LD from the TTD rates next, we plot in figure 15
the ion LD rate γi,LD/ω < 0 (red short dashed), the ion TTD rate γi,TTD/ω < 0 (red long
dashed) and the ion transit-time growth rate γi,TTD/ω > 0 (red dotted). Similarly, we plot
the electron LD rate γe,LD/ω < 0 (blue short dashed), the electron TTD rate γe,TTD/ω < 0
(blue long dashed) and the electron transit-time growth rate γe,TTD/ω > 0 (blue dotted).
Note that, for the ions, the transit-time contribution yields wave growth for k⊥ρi ≥ 3, and
effectively cancels out the contribution from ion LD for k⊥ρi ≥ 5, so the total ion damping
rate plummets. For the electrons, the transit-time contribution is positive yielding growth
for k⊥ρi � 1.7. For k⊥ρi � 0.7, γe,LD � −2γe,TTD, so the total electron damping rate is
approximately half of the Landau damping contribution. This plot shows clearly that the
contributions from one mechanism (LD or TTD) can actually yield growth for certain
parameters (meaning energy transfer from the particles to the fields via that mechanisms),
even when the overall effect is damping. One can interpret this perhaps puzzling finding
with the relative phase between the electric field and the current associated with a
particular mechanism. In some cases – e.g. electron damping at k⊥ρi � 1.7 – this means
that energy is transferred from the Ez component of the electric field to the electrons by
LD, but at the same time energy can be transferred from the electrons to the field via the Ey
component of the electric field by TTD. The net effect is damping, but the total damping
(or growth) rate is the summation over the Landau and transit-time contributions (which
can have either sign). Note also that, for the selection of parameters in this example, the
effect of the cyclotron resonance (n �= 0) on the collisionless damping rate is negligible, so
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the LD and TTD associated with the Landau (n = 0) resonance dominates the total wave
damping.
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