
PROPERTIES OF THE COEFFICIENTS OF 
ORTHONORMAL SEQUENCES 

P. S. BULLEN 

1. I n t r o d u c t i o n . In this paper we consider complete orthonormal sequences 
denned on the interval [0, 1] and satisfying an inequality of the type 

(1) /„Ore) = ( I |*,|\fc) < Fn, 2 < v < », = (I \4>n\vdx) < Fn, 

= SUp \(t>n\ < Fn, 

0 < x < 1 

for all n and some sequence {Fn}. Such sequences were first considered by 
Zygmund and Marcinkiewicz (8) . They extended the well-known results of 
Hausdorff-Young and Paley, originally proved for the case v = œ y Fn = M for 
all n (12). We will consider cases of equali ty in the Hausdorff-Young theorems 
and certain limiting cases of the Paley theorems. Application of these results 
and the results in (8) will be made to functions harmonic in the unit a-sphere. 

2. If p > 1 then p' will denote the conjugate index, 1/p + 1/p' = 1. 
If Ci, c2, . . . , are the Fourier coefficients of a function in Lq, with respect 

to {<t>n} satisfying (1) define 

(2) dn(q) = cnFn^'(2-w-2'<\ « = 1 , 2 , . . . , 

(3) Uric) = UT(d) = | Z K(5)|rj- = | E Kl'F.^'j , 

= max \dn{v')\ = max {\cn\F^), r = œ , 
n n 

where r, 5 are related by 

v' 2 - v' 
(4) L + ~ = 1. 

T h e Fourier coefficients are replaced in this general s i tuat ion by the sequence 
{dn\. For instance, the following extension of Mercer 's theorem can be proved 
along the lines of the original theorem (6, p . 155). 

T H E O R E M 1. / / / £ Lv> then dn(v') = o ( l ) . 
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3. Cases of equality. 

3.1. The cases of equality in the Hausdorff-Young theorems were first 
discussed by Hardy and Littlewood (4) for the trigonometric case. Their results 
were extended to the case v = °o y Fn = M for all n, by Verblunsky (10) and 
Calderôn and Zygmund (1). We will use the methods of the last authors to 
prove the general Hausdorff-Young result and then to discuss equality. 

3.2. THEOREM 2. (a) If f Ç Lp, v < p < 2, with Fourier coefficients d, c2y . . . , 
with respect to {cj)r} then 

(5) UM < Jvif) 
where 

v 2 - v' 

^+ = L 

p q 
(b) If for a sequence {cn}, Up(d) < œ , 1 < p < 2, then there exists a function 

f G Lq such that cn is the Fourier coefficient of f with respect to 4>n, n = 1 , 2 , . . . , 
and 
(6) Jq(f) < Up(d), 
where 

v 2 - v' 
q p 

It is known that (a) implies (b) by a conjugacy argument and that it is 
sufficient to prove (a) under the assumption that {cj>n} has N terms, / is a 
simple function with Jp(f) = 1, (1). 

Let \an} be a sequence such that 
N 

Uq(d) = X) cnanFl~Q. 
7 1 = 1 

Define {An} and F(t) by 

an — s±n r n eni s±n ^ u > | € w | — 1 , 

f{t) = FV\t)y){t), F(t)>0, |u(0| = l. 

Putting l/p = z in Ut(d) it becomes 

(7) $(2) = £ j4a-,(1-,))/(2-,oFr/(2-^(i-22) / f V W A ( 
ra=l W O / 

a function continuous and bounded in every strip, %\ < x < x2, of finite wridth. 
It is not difficult to show that 

(8) Fn > 1, É ^ = 1, f J W = I-
ra=l » /0 

Hence, by simple applications of Holder's inequality and Bessel's inequality, 
it can be shown that neither |$(1/V + iy)\, nor |4>(l/2 + ry)| exceeds 1. This, 
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by the Phragmén-Lindelôf theorem, implies |$(JS)| < 1 in the whole strip 
1/2 < x < 1/V, which proves the theorem. 

3.3. We are now in a position to discuss cases of equality in Theorem 2, 
excluding the trivial cases/ = 0, p.p., and cn = 0 for all n. 

We can deduce (7) with no restrictions except Jp(f) = 1 and again <&(z) 
is continuous and bounded, J < x < 1/V, and regular, \ < x < 1/V, and (8) 
holds (with TV = oo of course.) 

THEOREM 3. (a) A necessary condition for equality in (5) is that 
N 

(9) f(x) = X) cnk<i>nk{x), m < n2 < . . . < nN. 
k=l 

For such functions we have equality if and only if 

(i) Kk\F^ = X, 

independenf of k, 

(ii) / is constant in a set of measure 

(s "$' and / = 0 in &E. 

(b) A necessary condition for equality in (6) is that only a finite number of 
cn differ from zero, and satisfy (i). The function is then of form (9) and we have 
equality if and only if it satisfies (ii). 

A conjugacy argument shows that (a) implies (b). Let us assume then that 
$ ( ! /£ ) = 1> that is, that we have equality in (5). Then the Phragmén-Lin
delôf theorem implies that $(z) = 1 for | < x < 1 / / . In particular $ ( 1 / / ) = 
1. Further, (8) implies that 

\F:\n^
lFllv'^ndt 

Hence for all n for which An ^ 0, 

;MJo 

(10) FZ\{f*F1/9'r,$jUf = 1. 

But F1/pf 6 Lv> and so by Theorem 1 the left-hand side of (10) is o(l). There
fore there is at most a finite number of non-zero Any which proves (9). 

From (10) we also get that 
»i 

FVv'\<i>nk\ (signf)(sign cnk$nk)dt = Fnk > 0, 

which implies two important facts about the set E where / is non-zero. 

(a) sign/ = sign (cnk$nk), p.p. in £ , k = 1, . . . , N. 

(b) F(x) = { / ^ W ( * ) | } ' p . p . i n £ , * = 1,2,. ..,N. 

y 
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Hence, 

k J = fl/l I *.*!* = Fnt f \f\Fllvdt, 
•/E *)E 

which proves (i). Also 

|/(*)| = Fll\x) t Vnk\Fnk. 
k=l 

Let r be any number , v < r < 2, then the initial remark of the proof 
implies 

which, using the above results, gives 

/ N \ - l / s / n \lfr 

. k= 

Applying this equali ty for r = v , 2, and p, where p is any value between 2 
and oc t to the Holder inequali ty 

J* / C \(V-v')lW-v') / S* \ (2-p)/(2-r') 

we see t h a t it reduces to equal i ty . Hence F, and so / , is cons tan t p.p. in E. 
This proves the necessity, the sufficiency is immediate . 

4. S tar t h e o r e m s . Given a sequence [cn] such t h a t cn = 0(1) the sequence 
{c*n\ denotes {\cn\} arranged in descending order. 

T h e proof (8) of the extension of Paley 's theorems requires Fn to satisfy 

(11) Ft < F2 < Fz < . . . 

or, a t least, t h a t for some a > 1 and all i> j , i < j , 

(11) ' max Fn < K min Fn. 
o* + Ko*' + 1 ai+Ka' + i 

Whether this is essential is not known. If Fn = M for all n the order of the 
sequence <t>n is immaterial and the Paley theorems can be improved to the 
Paley s tar theorems (8) . However, because of (11) (or (11)')» no such simple 
a rgumen t is possible in general. We conjecture the following s ta r theorem. 
I t would followT immediately from the unstar red result if (11)' could be dropped. 
Let, d = dn and define 

(12) Vr(d) = Vr = | É \dn(r)\rn{r-2)/(2-v,)j, v > 2, 1 < / < r < v < 00 

= max {\dn(co)\n}} r = v = 00. 
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THEOREM 4. (a) Let dn = o(l) be such that, 2 < q < v, Vq{d*) < œ. 
Then there exists an f Ç Lq such that 

r — A 77"7(2->") ((2'/<?)-!) 

^n anrn 

is the Fourier coefficient of f with respect to <j>n, n = 1 , 2 , . . . , and 
(13) Jq(f) <Aq,,V9(d*). 

(b) If f £ Lp, v' < p < 2, has Fourier coefficients Ci, c2. . . , wi£Â respect to 
{<j)n} then 

(14) ^ (d*) < Ap,,Jp(f). 

These theorems were first mentioned in a paper by Littlewood (7), and the 
following comments are of some interest. 

(i) The hypothesis of (a) implies the existence of an / G L2 with the re
quired Fourier coefficients. 

(ii) The hypothesis of (b) implies, by Theorem 2, that dn = o(l), and hence 
that starring is possible. 

(iii) By a conjugacy argument (a) implies (b). 

(iv) In § 5 the cases q = v = <*>, p = v' = 1 are shown to hold in a modified 
form. 

(v) In § 6 Theorem 4 is used to prove a known result. 

(vi) A similar argument to that in Zygmund (12) shows that Theorem 4 
implies Theorem 2 although in a slightly less precise form. 

(vii) If dn takes only the values 0, 1, —1, (a) is true. Because, let N < °o 
be the number of non-zero terms, then by Theorem 2 

Jlif) < {Up(d)V = N< Kp,v £ w<*-2),(i-,') = Kp,,Vl(d*). 

(viii) Similarly (b) is true i f / is a function such that dn takes only the values 
0 , 1 , - 1 . 

(ix) Finally we have the following weaker result. 

THEOREM 5. (a) Let dn = o(l) be such that for an e > 0, 2 < q < v, Vq(n
ed*n) 

< co. Then Theorem 4 (a) holds with (13) replaced by 

JAf) <Ag^tVq(n'd\). 

(b) With the hypothesis of Theorem 4 (b) we have 

Vp(n-*d*n) < Ap,ViJp(f), for all e > 0. 

As the usual conjugacy argument shows that (a) implies (b) it is sufficient 
to prove (a). By Theorem 2 : 

J,if) < Up(d) = Up(d*) < Ag,,i€Vg(n<d*). 
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5. Some limiting cases of Paley's theorem. It is known that the Paley 
results are not valid for the extreme values of p and q, that is, p = v', q = v. 
Zygmund, (11), has extended the results to these cases for uniformly bounded 
{<i>n\ by slightly modifying the hypotheses and conclusions. 

Let us, for convenience, number the orthonormal sequence 02, 03, . . . , and 
also let v = » . B y / G LVA we shall mean that \f\v (log+ |/|)5 Ç L. We place 
no restriction on the sequence {Fn) and so the star theorems follow immediately 
from the unstarred results. The proofs follow Zygmund's closely enough for 
them to be omitted here. 

THEOREM 6. Let {dn} be any sequence satisfying 

dn' < n~l{\og n)«-\ a < 0, n = 2, 3, . . . , 

where {dn
r\ is some ordering of [\dn\). Then cn = dn Fn~

l is the coefficient with 
respect to <j>n of a function such that for X > 0, small enough, 

{ exp{\\f\1/a} dx < A, 

THEOREM 7. Iff £ Li,«, a > 0, and if {cn\ are the Fourier coefficients of f 
with respect to {<t>n} and if d (1) then 

(a) Ê n-\\og nTxd*n <A f | / |(log+ | / |)" dx + B = C, 
w=2 «/0 

oo 

(b) ]C exp( — k d*n~
l/a) < » , for every k > 0, 

n=2 
oo 

(c) if in addition « < 1, £ tTW" < KaC
Va. 

THEOREM 8. If {dn} be any sequence such that 

£ 14,1 (log 1/14,1)" < œ,a>0, 

then cn = dnFn~
l is the Fourier coefficient with respect to <j>n of a function f such 

that exp {k\f\l,a) G L, for every k > 0. 

THEOREM 9. If {dn} is such that dn = 0(1) and 

w-2 

r > 1, //ze^ cn = ^ TV-1 is //?e Fourier coefficient of a function f such that exp 
W H € L, for all k > 0. 

5.2. The following theorem generalizes results due to Verblunsky, (10). 

THEOREM 10. 

, N TT 1 1 ?' . 2 — v' - . . , 

(a) If M = » I = 1» and p < r < a then 
v y r q q p 
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(i) (J')*rx-"TdxJllT <AP,VUP(c), 

(ii) ( S |^.|r »(-"'")/(^) FT"^"^-")1^ < A,Mf). 

(b) IfM = - - - , - H — = l,p<r < g then 

(i) Ua{c) < Aq,v (j f*Tx-"Tdx) ", 

/ co \ l / r 

(n) J , C / ) < ^ « . ^ I : ki,»("'','r'H2"'')^"r"(îMr'')/(i-,')j . 
[f*(x) is a non-increasing rearrangement of \f(x)\1 (8).] 
Extreme values of r give known theorems. For instance if, in (a), r — p then 

(i) reduces to the integral analogue of Theorem 4 (b), and (ii) becomes the 
unstarred form of Theorem 4 (b). If r = q then (i) and (ii) of (a) reduce to 
parts (a) and (b) of Theorem 2 respectively. 

The proof of (a) is by an application of Holder's inequality using these 
extreme forms. 

(b) follows by a similar argument or by a conjugacy argument from (a). 

5.3. Further extensions of Paley's theorems are obtainable by integrating 
with respect to q, or by multiplying through by a function K(q) and in
tegrating, (9). For example, integration of the unstarred form of (13) gives 

( rifLuM dx)
1,s 

Uo log l/l dX) 
<A if (ki^v(2-"y/(2-">r- (\cn\F:'<«-"v>^yy« 
- -'lei Fr^v^'iogo^r^'V'^) * ' 

5.4. The Paley theorems were originally proved for the trigonometric 
system by Hardy and Littlewood (4), where they arose out of the following 
problem. If/ Ç Lr and 

for what value of Y and X does 

E n-x\c\Y 

converge? Using the above results we can solve this problem in the case of an 
orthonormal sequence satisfying 

Jv(<i>n) <Kna,a^ 0. 

THEOREM 11. If f 6 LT, r > 1, and (v'/p) + (2 — v'/q), then the series 
CO 

n \cn\ 
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is convergent if 

(i) r>2, F>2,X>0, 

(ii) r>2, 7 < 2 , X > 1 - | , 

(iii) r = p<2, Y>q,X >a(q- 2), 

(iv) r = p<2,p< Y<q,X> (1 + aY) - - (1 + 2a), 

(v) r = £ < 2, 0 < Y < p,X > (1 + aY) - - (1 + 2a), 

awd, ira general, it is not necessarily convergent in any other case. 

The proof follows that of Hardy and Littlewood exactly. 

6. Applications. 

6.1. Le t / (P ) be an integrable function defined on the surface, S, of the unit 
a-sphere, a > 1. Any such function can be expanded in terms of the ortho-
normal sequence of ultraspherical polynomials { Vn

{a) (P)} having the property 

(15) \v£\P)\<Kan
{al2)-\ 

If f(P) ~ Z caVn^(P), then we define 

oo 

(16) f(r,P) = £ cnV
(:\P)rn, 0 < r < 1; 

7 1 = 1 

/ ( r , P) is the function harmonic in the unit a-sphere with f{P) as boundary 
function. Series (16) can be summed to the Poisson integral taken over the 
surface, E, of the a-sphere of radius r. Using this representation du Plessis, 
(3), has proved a radial extension of the Fejér-Riesz theorem. It is known, 
(4), that when a = 2 the Fejér-Riesz theorem can be deduced from the 
Paley theorems. We will show that this is so in general. 

For reference we note that for orthonormal sequences satisfying (15) 

dn(q) = k|W«" /2)-1)(1-(2/<» 

Ur(c) = ( t k r W
( W 2 ) - 1 ) ( 2 - r t ) 1 / r l < r < » , 

= max (Ici n ), r = «>. 

VT(d) = (± IcYn"™*-*)1" Kr< », 
/I I «/2\ 

= max ( | d w ), r = oo. 
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THEOREM 12. Iff(r, P) is subharmonic in the unit a-sphere and 

(17) {f(r,PydP<C, p>l,r<l, 
•JE 

then 

i\l-rY-*\f{r,P)\vdr<Kp,aC. 
t / 0 

It is known that it is sufficient to prove this for / harmonic and p arbitrary 
but near to 1. Then it is an immediate consequence of the following lemma. 

LEMMA. Let f(r, P) be given by (16), and define 

(18) F(r)= £ k l n ( a / i ) - V . 

If 1 < p < 2 and (17) holds then 

f (1 - r)a-2Fp(r)dr < Kv,aC. 
Jo 

This lemma, an extension of one in (4), is stronger than Theorem 12 when 
1 < p < 2, but is false if p > 2. 

By Theorem 2 with v = q = oo we have 

k| rc^V < .£„ f |/(r,P)|<*P, 

and hence, from (17), 

which gives 

Fie-1) < KaC. 

Therefore, using Lemma 36 of (4) and the unstarred form of (14), we have 

(\l _ rf-^^dr < Kv,aC + f (1 - rf-^^dr 
•J 0 «/ e~l 

CO 

<Kv,aC + K £ n~\l - e-(i/n))«-V(e-<1/n+1)) 

<K,.aC + K±, n-"(± \cm\m(al2)-Vm,n))P 

It is known that Theorem 12 is false if p = 1 but the following result can 
be proved. 
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THEOREM 13. Let f(r, P) be subharmonic in the unit a-sphere. If, p > 1, 

(19) f |/(r, P)|(log+ \f(r, P)\)1/pdP<C,r<l, 
*J E 

then 
»i 

(1 - r ) * - » - 1 | / ( r , P ) |* dr < 4 C + B. 
'0 i: 

This follows from the lemma, 

LEMMA. Letf(ry P) be given by (16) and F{r) by (18) then if (19) holds 

(x 
i \ i/p 

(1 - r f ^ - 1 F V ) d r ) < 4 C + 5 . 

The proof of this lemma is similar to the above proof using Theorem 7 (c) 
in place of the unstarred form of (14). The case p = 1 of this theorem has been 
proved by du Plessis, (3), who considers diametral as well as radial theorems. 

6.2. lif(P) ~ D c.VJT\P) 

then 

MP) ~ E n-"cnVi"\P) 

is called the /3th integral of / . If a = 2, then Hardy and Littlewood, (5), proved 
that if / € Lp then fp Ç Lq where /3 = 1/p — 1/g. This result has been ex
tended by du Plessis, (2), to general a. Zygmund (12) has shown that, 
in the case a = 2, the result follows from the Paley star theorems provided 
p < 2 < q. We will show that this is the case in general, assuming the truth 
of Theorem 4. 

THEOREM 14. If / £ Lpy p > 1, 0 < /3 < (a — l)/p, then fp £ Lq where q 
is given by 13 = (a — 1) (1/p — l/q). Further 

(J \Mq dp)m < Kv,Q,a ( J* I/IP dp) v\ 
' s / w s 

We may assume that the right-hand integral has value 1. From Theorem 2, 

,1/8 

< K,Md) < K„,aUP(d*) o>^y 
< Kv,amax{dtnw)^m,)V^'\d*), 

since p' > qf, and provided qr > ^. 
Since d^n

vnp~2 decreases monotonically we have 

d%w = 0(1) 

with bound not exceeding Vp
p(d*). 

Hence if qf > p, 
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(J>l'*r) 
1/Q 

by Theorem 4. The completion to all p, q, p < 2 < q, follows as in Zygmund, 
(12). 

It is known that Theorem 14 is false if p = 1 but a modified theorem can 
be proved, again subject to q > 2, although the result is probably true without 
this restriction. 

THEOREM 15. (i) / / / Ç Lit(i/q)l q > 1, then fp Ç Lff w/zere fi is given by fi = 
(a — l)/g ' . Moreover 

(jjMQ dp)1'' < A J j / | (log+l/l)1" rfP + 5. 

(ii) Iff £ L i t i , thenfp Ç Lç where q is given by (3 = (a — 1)/V, a ^ moreover 

(jjM1 dp)1" < A J j / | (log+|/|) <ZP + 5, 

This is a generalization of a result due to Zygmund (11) although his proof 
is different. We deduce it from Theorem 7 (c) and the unstarred Theorem 4. 
Let dn = dn(l), then these two results imply that 

(^WàP)1" < K^\%x KI'w_1)1/? < A jjf\(log+\f\)1">dP + B. 

which is (i). In a similar manner (ii) follows, but is also a consequence of (i) 
since/ G Li,i implies/ G Za,ci/<?) for all q > 1. 
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