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Summary

It is now clear that the genetic basis of adaptation does not resemble that assumed by the

infinitesimal model. Instead, adaptation often involves a modest number of factors of large effect

and a greater number of factors of smaller effect. After reviewing relevant experimental studies, I

consider recent theoretical attempts to predict the genetic architecture of adaptation from first

principles. In particular, I review the history of work on Fisher’s geometric model of adaptation,

including recent studies which suggest that adaptation should be characterized by exponential

distributions of gene effects. I also present the results of new simulation studies that test the

robustness of this finding. I explore the effects of changes in the distribution of mutational effects

(absolute versus relative) as well as in the nature of the character studied (total phenotypic effect

versus single characters). The results show that adaptation towards a fixed optimum is generally

characterized by an exponential effects trend.

The situation to which these studies point is not one of a
large number of genes all with more or less equal effect. It
seems, rather, that a small number of genes with large effects
are responsible for most of the response, the remainder of
the response being due to a larger number of loci with small
effects.

D. S. Falconer (1981)

1. Introduction

The history of quantitative genetics has been charac-

terized by a curious tension. On the one hand,

theorists since Fisher (1930) have typically maintained

that response to selection in general – and adaptation

in particular – involves many genes of small pheno-

typic effect each. Taken to its logical conclusion, this

view gets formalized in the infinitesimal model :

phenotypic variation and hence response to selection

is underlaid by a nearly infinite number of loci of

infinitesimally small effect each. On the other hand,

virtually all textbook examples of adaptation in nature

appear to involve a modest number of genes – often

one – of quite large effect. The litany of such cases is

familiar, including industrial melanism (Lees, 1981),

heavy metal tolerance in plants (Macnair, 1987) and

Batesian and Mullerian mimicry (Turner, 1977).
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More recent work has confirmed these classic

findings from ecological genetics. ffrench-Constant

(1994), for instance, has shown that insecticide

(cyclodiene) resistance in the wild among at least three

orders of insects involves the same amino acid

substitution (AlaUSer) in the same single gene (Rdl,

resistance to dieldrin, which encodes a subunit of a

GABA-gated chloride ion channel). Indeed cyclodiene

resistance routinely involves the same nucleotide

substitution in all orders studied, a result that is as

inconsistent with the infinitesimal view as logically

possible. (See also Roush & McKenzie (1987).)

Empirical evidence against the infinitesimal view

has also come from artificial selection experiments.

The relevant findings fall into two classes. First,

certain statistical inferences from responses to selec-

tion cast doubt on the ‘micromutational ’ view.

Falconer (1981 ; see especially his table 12.2), for

instance, appreciated early on that half-lives for

Drosophila and mouse artificial selection lines taken to

selection limits were often much shorter than predicted

under the infinitesimal model. (Robertson’s (1960)

theory of selection limits shows that 1±4 N
e
generations

are required to proceed to half the selection limit

under the infinitesimal model ; with major factors, the

half-life is reached more quickly (Hill & Caballero,

1992).) Although such patterns do not readily allow
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firm conclusions – as Falconer himself was quick to

emphasize – they suggest, at the very least, that the

infinitesimal assumption deserves closer scrutiny.

Such scrutiny is provided by the second line of

evidence from artificial selection: the direct mapping

of factors underlying response to selection, typically

by quantitative trait locus (QTL) analysis. The genetic

basis of response to artificial selection has been

analysed in a fair number of cases, including experi-

ments in Drosophila (Shrimpton & Robertson 1988a,

b ; Long et al., 1995; Frey et al., 1995) mice (Keightley

et al., 1996) and several crop species (Paterson et al.,

1991 ; Edwards et al., 1992; Tanksley 1993; Paterson

et al., 1995). Analysis by Doebley and colleagues

(Doebley & Stec, 1991 ; Doebley & Wang, 1997) of the

profound phenotypic differences distinguishing maize

from its wild ancestor, teosinte, represents perhaps the

most impressive example of such an analysis to date.

Remarkably, Doebley’s group found that the maize–

teosinte differences involve as few as five QTL. Indeed

one morphological difference, in lateral branching

patterns, appears due to a single gene, teosinte

branched-1 (tb1 ). Tb1 ’s role has been confirmed in a

critical complementation test and the gene has been

cloned (Doebley & Wang, 1997). Indeed very recent

work suggests that tb1 ’s morphological effect may

map to a small non-transcribed regulatory region of

the gene (Wang et al., 1999).

Unfortunately, the above lines of evidence all

involve human intervention, in the form of either

environmental disturbance or direct artificial selection.

Because such cases typically involve strong – and

perhaps unnaturally harsh – selection, it has often

been argued that they are potentially misleading (e.g.

Lande, 1983). Thus ‘natural adaptations’, those not

involving human intervention, might well still have a

polygenic basis.

This argument has not aged well. Although we still

suffer from an appalling shortage of rigorous genetic

analysis of natural adaptations, the data we do

possess provide little comfort to micromutationism.

Orr & Irving (1997), for instance, found that dif-

ferences between natural populations of Drosophila

melanogaster in ability to overcome parasitism by the

common parasitoid wasp Asobara tabida involve

factor(s) restricted to the second chromosome and

probably to the centromeric region of this chromo-

some: at least 60% of the genome thus plays no role.

Similar results have been obtained for D. melano-

gaster’s resistance to another parasitic wasp, Lepto-

pilina boulardi (Carton & Nappi, 1997). Several more

recent and powerful QTL analyses also provide

evidence against micromutationism. Jones (1998)

genetically dissected D. sechellia’s resistance to the

normally toxic effects of its host fruit, Morinda

citrifolia. Using 15 markers scattered throughout the

genome, he showed that resistance appears oligogenic.

While at least five factors underlie adult resistance,

large chromosome regions of no effect are also

common. Similarly, preliminary data show that D.

sechellia’s behavioural preference for ovipositing on

Morinda has a fairly simple genetic basis. Although

several factors are involved, large regions of the

genome, including the entire X chromosome – which

represents 20% of the genome – play no role (C. D.

Jones, personal communication). (The significance of

such negative results has not been widely appreciated.

While the QTL community has been largely concerned

with the precision of QTL map positions, demon-

stration that whole chromosomes have no effect may

be of considerably more evolutionary import.) Finally,

Bradshaw et al. (1998) performed QTL analysis of a

suite of 12 floral characters distinguishing two species

of the monkeyflower, Mimulus. Their results also

suggest an oligogenic basis : much of the observed

phenotypic difference appears due to a few factors of

large effect, although an appreciable number of factors

of small effect probably also exist. Although QTL

analyses tend systematically to overestimate QTL

effects when sample sizes are small (Beavis, 1994),

this problem would not appear serious in the above

studies : the Drosophila work involves thousands of

genotyped individuals, while the Mimulus work

involves approximately 500 individuals genotyped at

66 RAPD markers.

These observations highlight the poverty of our

theoretical understanding of adaptation. There is an

undeniable and deep gulf between the known genetical

facts and traditional micromutational theory. Indeed

the problem is not merely that classical quantitative

and population genetic theory fail to explain the

observed genetic architecture of adaptation; the

deeper problem is that they do not attempt to explain

the observed architecture. The infinitesimal model

does not, after all, represent the endpoint of some

extended theoretical argument. There is no principled

reason why the genetics of character evolution should

have such a basis. Instead (and obviously) the

infinitesimal view represents an assumption made for

its undeniable mathematical convenience. Given this

– and given micromutationism’s empirical inadequacy

– it seems worth asking whether the enterprise can be

profitably stood on its head. Can one, starting from

first principles, make any non-trivial predictions about

the genetics of adaptation? Can one make any

theoretical claims about what the genetic architecture

of adaptation should look like?

Recently, I suggested that at least one such

prediction was possible. Phenotypic effects among

genes fixed during adaptation should be exponentially

distributed (Orr, 1998). This finding, which follows

from Fisher’s (1930) model of adaptation (see below),

supports Robertson’s (1967) precocious insight into

the genetics of phenotypic evolution and provides a
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heuristic expectation about the genetics of adaptation

as seen in QTL, associational and experimental

evolution studies.

The remainder of this paper has two goals. First, I

will briefly review Fisher’s model of adaptation and

the history of recent work on it, including the finding

of exponential gene effects. Secondly, I will examine

the generality of this result, asking how robust this

trend is to changes in the distribution of mutational

effects as well as to changes in the nature of the

character studied. The results will show that the

exponential trend is surprisingly robust. Under a

remarkably wide variety of circumstances, adaptation

towards a fixed optimum is characterized by expo-

nential distributions of gene effects.

2. Fisher’s model of adaptation

To Fisher (1930), the essence of adaptation is that

organisms must conform to the environment in many

different ways. He further suggested that this con-

formity could be captured in a simple geometric

model. Because organisms must simultaneously opti-

mize a large number of independent characters,

adaptation can be pictured as movement towards an

optimum in an n-dimensional phenotypic space. If an

organism were comprised of just two characters,

phenotypic evolution could be tracked in a Cartesian

coordinate system, where each axis represents a trait,

the optimal combination of trait values sits at the

origin, and fitness falls off as a Gaussian function of

distance from the optimum. But because real orga-

nisms are very complex, Fisher argued that we must

consider adaptation in the case where the number of

dimensions is large.

Beginning some distance from the optimum, orga-

nisms adapt via production of random mutations,

where a mutation’s phenotypic effect is represented by

a vector of some magnitude but having random

direction in phenotypic space. A mutation is favour-

able if it takes the population closer to the optimum

and deleterious if it takes the population further from

the optimum.

Fisher used this model to find the probability that

random mutations of a given size would be favourable.

Beginning with a population residing a distance, d}2,

from the optimum, he calculated the probability that

random mutations of magnitude r would move an

organism nearer the optimum. He famously showed

that, while small mutations have a good chance of

being favourable, larger ones suffer a rapidly de-

creasing probability. He thus concluded that small

mutations are the stuff of adaptation, a claim which

laid the intellectual foundation for micromutationism

and which was repeatedly cited by the founders of the

modern synthesis (see reviews by Turner, 1985; Orr &

Coyne, 1992).
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Fig. 1. The distribution of factors fixed during adaptation
in Fisher’s model (semilog plot). Mutations were
uniformly distributed and simulations were performed at
n¯ 25 dimensions. Data derive from 50000 substitutions
over many walks to the optimum.

Fifty years later, however, Kimura (1983) pointed

out that Fisher’s conclusion is seriously compromised

by considerations of probability of fixation. For

although smaller mutations are more likely to be

favourable, larger ones are more likely to escape

stochastic loss when favourable – a point neglected by

Fisher. Taking both factors into account, Kimura

argued that Fisher’s micromutational conclusion was

in error and derived a corrected distribution of gene

effects fixed in adaptation. In particular, Kimura

showed that adaptation will typically involve muta-

tions of intermediate size.

While bringing us one step closer to the distribution

of factors underlying adaptation, one problem re-

mained with Kimura’s analysis. In experimental, e.g.

QTL or experimental evolution, analyses we study the

results of an entire – and perhaps extended – bout of

evolution. Following an environmental change, a

population substitutes a favourable allele and so

moves closer to the phenotypic optimum. But the

population then likely substitutes another and, on

average, smaller mutation, moving again closer to the

optimum. Such an ‘adaptive walk’ to the optimum

might involve many steps. What we would most like

to known, then, is the distribution of effects among

factors fixed summing o�er the entire walk to the

optimum.

Derivation of this distribution requires knowing the

mean distance travelled to the optimum by favourable

mutations – a quantity derived by Hartl & Taubes

(1996) – as well as the mean distance travelled to the

optimum by those favourable mutations that actually

get fixed – derived by Orr (1998, 1999). Knowing

these quantities, one can obtain an approximate

solution to the distribution of factors fixed over the

walk to the optimum (Orr, 1998). In all cases studied,

this distribution was found to be nearly exponential,

i.e. different from either Fisher’s or Kimura’s dis-

tribution (see Fig. 1 for an example). Theory and
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simulations further showed that the largest factor

fixed during such an adaptive walk to the optimum is

on average far larger than Fisher’s argument implied.

Because this exponential result appears to offer a

heuristic expectation about the results of QTL and

experimental evolution studies, it is of some im-

portance to test its generality. I turn now therefore to

an examination of the robustness of this trend.

3. Absolute distributions of mutational effects

The distribution of factors fixed during adaptation,

ψ(r), must to some extent depend on the distribution

of mutational effects provided to natural selection,

m(r), where r is the magnitude of a displacement in

Fisher’s n-character space and mutations appear at

many loci. (Note that the ‘size ’ of a mutation reflects

its phenotypic effects over all characters.) Previous

work considered two classes of mutational distri-

butions: uniform ones (following Kimura, 1983) and

those in which small mutations are more common

than large. In both cases, the distribution of factors

fixed in adaptation is nearly exponential, where we

assume that evolution involves substitution of unique

mutations (Orr, 1998).

For reasons of mathematical tractability, however,

attention was restricted in the second case to ‘relative’

distributions of mutational effects, i.e. to cases in

which the magnitude of mutant effects scales with an

organism’s present phenotype (Distance from the

optimum, z). This assumption greatly simplifies the

analysis : the population faces the same problem and

attempts the same solution at each step in the walk to

the optimum and adaptation merely involves repeated

changes of scale (i.e. is self-similar). Unfortunately,

this assumption may be biologically unrealistic for

many characters. It is thus important to characterize

the distribution of factors fixed during adaptation

when mutational effects are ‘absolute ’, i.e. unchanging

over the walk to the optimum.

The shift to absolute effects requires that we

abandon analytical treatment. Instead, I use computer

simulations. These simulations, which are exact, are

identical to those in Orr (1998) except for the manner

in which mutations are produced. In particular, we

now draw a mutation of magnitude r from a

distribution, m(r), where r is measured on the same

‘raw’ scale as Euclidean distance from the optimum,

not on Fisher’s standardized x scale. Because small

mutations appear to be more common than large

(Kimura, 1983), we restrict our attention to leptokurtic

distributions in which mutations with effects near zero

are most common. For convenience, we assume that

the population begins unit distance from the optimum

and focus on the n¯ 25 dimensions case.

First consider the case in which mutational effects

are exponentially distributed (m(r)¯ (1}ra) exp(®r}ra))
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Fig. 2. The distribution of factors fixed given absolute
mutational effects that were exponentially distributed with
ra ¯ 0±1 (semilog plots). Plots correspond to populations
that have travelled (a) 75%; (b) 90%, and (c) 95% of the
distance to the optimum. In all cases, more than 12000
substitutions were sampled over 200–500 replicate walks
to the optimum at n¯ 25 dimensions.

and let ra ¯ 0±1 (10% of the distance to the optimum).

Fig. 2 shows the resulting distribution of factors fixed

during adaptation, ψ(r). Remarkably, ψ(r) remains

nearly exponential even under absolute mutational

effects. Moreover, this result is roughly independent

of when during adaptation the population is analysed.

As Fig. 2 shows, ψ(r) is nearly exponential whether we

study the population after it has traversed 75%, 90%

or 95% of the distance to the optimum (in all cases,

over 12000 substitutions were sampled in 200–500

replicate walks to the optimum). Essentially identical

results were obtained for other dimensions and for

other exponential m(r) having various small means

(results not shown).

These results are not an artefact of assuming that

m(r) is itself exponential. Fig. 3 shows the distribution

of factors fixed with mutations are gamma distributed

with shape parameter β¯ 0±5 and the mean muta-
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Fig. 3. The distribution of factors fixed given absolute
mutational effects that were gamma distributed with
shape parameter β¯ 0±5 and scale parameter α¯ 5 (thus
ra ¯ 0±1). In all cases, over 16000 substitutions were
sampled over 250–750 replicate walks to the optimum at
n¯ 25 dimensions.

tional effect remains ra ¯ 0±1. Once again, ψ(r) is

exponential and, once again, this result is roughly

independent of distance to the optimum travelled (in

all cases, over 16000 substitutions were sampled in

250–750 replicate walks to the optimum).

Analysis of many different absolute mutational

distributions with many different means reveals that

ψ(r) remains nearly exponential whenever: (1) small

mutations are more common than large; and (2) the

mean mutation is small relative to the starting distance

from the optimum. The precise shape of m(r) and the

precise distance to the optimum travelled are of little

significance, as long as the latter is reasonably large.

Fortunately, these conditions correspond to the

biologically relevant ones: small mutations are almost

certainly more common than large and genetic analysis

is only performed when the phenotypic difference

between taxa is large – far larger than the effect of the

average random mutation. (In Bradshaw et al.’s

(1998) study, for instance, the Mimulus species

analysed differed by more than 7 phenotypic standard

deviation units at 8 of 12 traits.)

It is also worth noting that the previously curious

finding that ψ(r) is exponential even when m(r) is

uniform (i.e. even when small mutations are not more

common than large) has a simple explanation. The

uniform distribution – like any power law distribution

– is scale-free. This property ensures that adaptation

remains self-similar throughout a walk to the

optimum. Extensive simulations (not shown) confirm

that ψ(r) remains exponential under any reasonable

power law distribution of mutational effects, e.g.

when m(r) varies as r−#, r−", r−"/# or r!.

The exponential trend thus appears quite robust,

arising under far broader conditions than considered

before.

4. Single characters

We now turn to a subtler issue. By the ‘magnitude’ of

a mutation, Fisher (1930) and Kimura (1983) meant

its total phenotypic effect when summing over all

characters. Similarly, the distribution of factors fixed

discussed above concerns the total phenotypic effect

of alleles. But in any real genetic analysis we cannot

hope to measure the total phenotypic effect of a gene.

We can only measure a QTL’s effect on a particular

character or on some small suite of characters. We are

thus left with an important unresolved question:

What is the distribution of phenotypic effects among

factors fixed in adaptation when considering single

characters? Is it also roughly exponential or does it

assume some qualitatively different shape?

The answer will clearly depend on what we consider

a ‘character ’. In some (fortunate) cases a character

might well correspond to something approximating a

mutation’s total phenotypic effect. That is, if we

consider some composite character, e.g. a complex

organ, that is more or less independent of the

remainder of the organism, Fisher’s geometric model

might sensibly pertain to this organ alone, not to the

organism. (Indeed Fisher sometimes spoke as though

his model referred to a single complex organ, e.g. the

vertebrate eye.) For such a complex character we

already know the distribution of phenotypic effects

fixed during adaptation: it is exponential.

It seems more natural, however, to think of a

measured character as corresponding to a single

dimension in Fisher’s model or perhaps to a linear

combination of dimensions. We would like, therefore,

to describe the distribution of gene effects arising

during adaptation for such simple characters.

Some progress can be made analytically. It can be

shown that the distribution of projections onto a

single dimension, f(r
i
), given random mutations of

constant total magnitude r is approximately normal
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Fig. 4. The distribution of phenotypic effects for single
characters among factors fixed during adaptation (semilog
plots). (a) The case in which all n characters begin equally
maladapted. Data derive over 32000 substitutions
sampled in 1000 replicate walks to the optimum at n¯
25. (b) The case in which characters begin unequally
maladapted. Data correspond to the initially most
maladapted character. Data derive over 32000
substitutions sampled in 1000 replicate walks to the
optimum at n¯ 25.

( f(r
i
)¯ (on}o2π r) exp[®nr#

i
}(2r#]), with a mean

per character (absolute) effect of

E[rr
i
r]¯’ 2

π

r

on
. (1)

Because (1) is linear in r, it remains correct over an

entire walk to the optimum, i.e. if we take r to refer to

the mean mutation fixed during adaptation. Put

differently, the mean gene effect on a single character

equals the mean effect over all characters standardized

by a factor of order 1}on, as claimed in Orr (1998).

However, to find the distribution of gene effects for

a single character in a walk to the optimum we must

turn to computer simulations. These simulations differ

from those above only in that we now track projections

onto all single dimensions. For simplicity, we consider

Kimura’s case of uniform mutational effects.

In the simplest scenario, all characters begin equally

maladapted. Letting the population evolve 90% of

the way to the optimum, Fig. 4a shows the resulting

distribution of factors fixed for a single character.

Although this distribution is clearly not perfectly

exponential, it shows a strong exponential trend.

(Indeed given the far from perfect resolution of real

genetic analysis, it is difficult to believe that one could

distinguish experimentally between a strictly expo-

nential distribution and that in Fig. 4a). As expected,

the mean gene effect on a single character is correctly

predicted by (1).

We can also consider the more realistic case in

which some characters begin far more maladapted

than others. Fig. 4b shows the resulting distribution

of gene effects in this case for an arbitrarily chosen

character (see figure legend for details). Once again,

the distribution of gene effects, while not perfectly

exponential, shows a strong exponential trend. Analy-

sis of many different characters, including ones that

were initially very maladapted as well as ones that

were initially well adapted reveals the same pattern.

While the distribution of total phenotypic effects is

almost perfectly exponential, that for single characters

is roughly so.

Last, I considered the case in which the environment

changes suddenly, throwing the population off the

optimum in a random direction; the population is

then allowed to walk adaptively back towards the

optimum (in all cases the population begins unit

distance from the optimum). The simulation results

for single characters were indistinguishable from those

in Fig. 4a, b (not shown).

Furthermore, in all the cases considered above, the

distribution of gene effects for linear combinations of

characters also shows a strong exponential trend.

The exponential trend thus seems to provide a

robust (though approximate) expectation about the

genetics of adaptation. Importantly, this pattern is

roughly independent of the details of just how our

measured character maps onto Fisher’s model.

5. Concluding remarks

Our understanding of the genetics of adaptation

remains appallingly weak. The problem involves both

a shortage of rigorous genetic analyses of natural

adaptations as well as a nearly complete absence of

relevant theory. While early work by Robertson,

Falconer and others suggested that the infinitesimal

view of response to selection is incorrect (indeed

Falconer & Mackay’s (1996) latest text announces

that ‘ the ‘‘ infinitesimal ’’ model… is clearly dis-

proved’), evolutionists have been slow to consider

theoretical alternatives. A number of authors, how-

ever, have recently suggested that Fisher’s (1930)

geometric model may allow considerable insight into

adaptation (Rice, 1990; Hartl & Taubes, 1996, 1998;

Orr, 1998). Although obviously an idealization – like
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the infinitesimal one before it – Fisher’s model enjoys

two strengths. First, by explicitly trading in mutations

of measurable phenotypic effects, it provides a way of

systematically mapping phenotypic effects onto fitness

effects. As Barton (1998) and Harl & Taubes (1998)

have emphasized, traditional population genetics

sidesteps this problem by beginning with alleles of

known selective advantage and makes no attempt to

explain the origin of selection coefficients. (For this

and other reasons, Hartl & Taubes (1998) conclude

that ‘classical population genetic models…are not

well-suited to address the problems of the origin,

progression, and limit of adaptation’.) Secondly,

Fisher is surely right that, although idealized, his

model captures the ‘statistical requirements of the

situation’ of adaptation, namely that one complex

system (the organism) must be made to conform to

another (the environment).

By requiring that evolution in Fisher’s model obey

the laws of population genetics, e.g. probabilities of

fixation, we can ask whether adaptation in this

broadest sense of conformity shows any statistical

regularities.

At least one such regularity has been identified. The

factors fixed during adaptation show a nearly expo-

nential distribution of phenotypic effects. Here I have

explored the generality of this result, finding it to be

reasonably robust to changes in both the distribution

of mutational effects (absolute versus relative) and, to

a lesser extent, the nature of the character analysed

(total phenotypic effect versus single character versus

linear combination of characters).

It would appear, then, that roughly exponential

distributions of gene effects should characterize

adaptation towards a fixed optimum. Although

present genetic data are crudely consistent with this

prediction (Orr, 1998), rigorous testing must obviously

await far more powerful quantitative genetic analyses

of natural adaptations. At the very least, it should be

clear that such analyses need not proceed in a

theoretical vacuum.
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GM51932 and by the David and Lucile Packard Foun-
dation.
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