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Abstract. Let K be a field of characteristic 0, which is algebraically closed to
radicals. Let F = K((X)) be the valued field of Laurent power series and let G =
Aut(F/K). We prove that if L is a subfield of F, K �= L, such that L/K is a sub-
extension of F/K and F/L is a Galois algebraic extension (L/K is Galois coalgebraic
in F/K), then L is closed in F, F/L is a finite extension and Gal(F/L) is a finite cyclic
group of G. We also prove that there is a one-to-one and onto correspondence between
the set of all finite subgroups of G and the set of all Galois coalgebraic sub-extensions
of F/K. Some other auxiliary results which are useful by their own are given.

2010 Mathematics Subject Classification. Primary 12F10, 13F25, 12J20; Secondary
12J10, 12E99, 12F99.

1. Introduction. In [5], O. F. G. Schilling considered the automorphisms group
G = Aut(F/K), where F = K((X)) is the Laurent formal power series valued field with
coefficients in a field K of characteristic 0. He proved that any σ ∈ G is continuous
relative to the X-order topology and σ (X) = u1X + u2X2 + . . . , where u1, u2, . . . ∈ K
and u1 �= 0 (see also Part 1 of the present paper).

Using these basic ideas of Schilling, in this paper we try to construct a Galois
type theory for some sub-extensions of F/K. For this, in Part 2 we use a version
of Krasner Lemma (Lemma 1) to prove that if (T, w) is a Krull valued field and P
is a subfield of it, such that T/P is a Galois algebraic extension and w is the only
valuation of T which extends the restriction wP of w to P, then P is closed in T
(Corollary 1). Using this last result, we prove in Theorem 1 that for any Galois
coalgebraic sub-extension L/K ⊂ F/K (F/L is a Galois algebraic extension), L is
closed, F/L is finite and Gal(F/L) is a finite cyclic subgroup of G.

In Theorem 2, we prove that a subgroup H of G is finite if and only if its fixed
subfield LH of F is �= K. Moreover, every finite subgroup of G is cyclic (Corollary 2). In
Theorem 3 we provide a Galois type theory for all the Galois coalgebraic sub-extension
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L/K of F/K. These last ones are in one-to-one and onto correspondence with the set of
all finite (cyclic) subgroups of G. With the additional hypothesis that K be algebraically
closed to radicals, we prove in Theorem 4 that for any two power series f and g of
the same order n ∈ � does exist exactly n automorphisms σ in G such that σ (f ) = g.

Using this result, in Corollary 3 and Corollary 4 we prove (if K is algebraically closed
to radicals) that any finite subgroup of G is conjugate with a Galois group of the type
Gal(F/K((Xn))) for a n ∈ �.

We hope that these elementary results on K((X)) and on its group of K-
automorphisms provide a serious starting point for a deeper study of the structure
of all sub-extensions of K((X))/K and of K((X))/K, where K((X)) is an algebraic
closure of K((X)).

(1) Let K be field of characteristic 0. Let F = K((X)) be the field of Laurent power
series f = ∑∞

j>−∞ ajXj with coefficients aj ∈ K. Let v be the usual X- order valuation on
F : v(f ) = min{j : aj �= 0}. By G = Aut(F/K) we mean all the field automorphisms ϕ of
F such that ϕ(α) = α for any α ∈ K. For ϕ ∈ G the map vϕ : F∗ → �, vϕ(f ) = v(ϕ−1(f ))
is a new valuation on F with the valuation ring ϕ(K [[X ]]), where K [[X ]] = {g ∈ F :
v(g) ≥ 0} is the valuation ring of (F, v). It is easy to prove (see also [5, Proof of
Lemma 1]) that F is also complete relative to this last valuation vϕ. Since F is complete
relative to v and vϕ and since F is not algebraically closed, v and vϕ must be equivalent
(see [4] or [6]). So there exists s ∈ �∗ = {1, 2, . . .} such that vϕ(f ) = sv(f ) for any f ∈ F.

In particular, ϕ is continuous relative to the topology induced by v on F. Hence ϕ is
completely determined by ϕ(X) = c1X + c2X2 + . . . , where c1 �= 0 and G is isomorphic
with the group U of all the series of this last type, with respect to the usual composition
between two power series. Moreover, the above s is 1, so v(ϕ(f )) = v(f ) and so any
ϕ ∈ G preserves the order of series.

In the following, we freely use the fact that any K-automorphism of G = Aut(F/K)
is continuous, i.e. whenever σ ∈ G, one has σ (

∑∞
j>−∞ ajXj) = ∑∞

j>−∞ ajσ (X)j.
(2) Let L/K be a sub-extension of F/K such that L �= K and L is (topologically)

closed in F. Let vL be the induced valuation (by v) on L and let �(F), �(L) be the
value groups of F and L, respectively. Since �(F) = �, �(L) = n� for a natural number
n �= 0. Since L is a complete discrete rank 1 valued field with residue field K, the valued
field extension F/L is totally and tamely ramified and n = [F : L], i.e. the codimension
of L in F is finite and equal to the index of �(L) in �(F) = �. A basic result in valuation
theory (see e.g. [3, Proposition 4.4]) says that there is a power series f ∈ K [[X ]] with
v(f ) = n such that L = K((f )). It is easy to see that {1, X, X2, . . . , Xn−1} is a basis of
the vector space F over L. Since the nth roots of unity are in K, the extension L ⊂ F
is a Galois extension with the Galois group GL = Gal(F/L) a cyclic group of order n,

F = L( n
√

f u), u a unit in F and v(f ) = n (see [7, Proposition 3-4-3]).
We recall now a version of the known ‘Krasner Lemma’ (see [1] for the original

version).
Let (T, w) be an arbitrary (Krull) non-trivial valued field and let P be a proper

subfield of it such that T/P is a Galois algebraic extension and w is the unique valuation
on T which extends wP, the restriction of w to P. For any α ∈ T, α /∈ P, one defines
ω(α) = max{w(α − α′)}, where α′ runs on the set of all conjugates α′ of α, distinct
of α.

LEMMA 1. Let (T, w) and P be as above. Let α ∈ T � P and β ∈ T such that
w(α − β) > ω(α). Then P(α) ⊂ P(β).
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Proof. Assume that α /∈ P(β). Then there exists σ ∈ Gal(T/P) such that σ (β) =
β and σ (α) �= α. Hence ω(α) ≥ w(α − σ (α)) ≥ min{w(α − β), w(σ (β) − σ (α))}. But
w ◦ σ is a new valuation on T which extends wP, thus w(σ (α − β)) = w(α − β), i.e.
ω(α) ≥ w(α − β), which contradicts the hypothesis. Hence we must conclude that
P(α) ⊂ P(β). �

COROLLARY 1. Let (T, w) and P like in Lemma 1 and let P′ ⊃ P, P′ ⊂ T such that
P is dense in P′ relative to the topology induced by w. Then P = P′.

Proof. Suppose that α is in P′ and α is not in P. Since P is dense in P′ one can
choose a β ∈ P such that ω(α) < w(α − β). By Lemma 1, P(α) ⊂ P(β) = P and so
α ∈ P, a contradiction. Hence P = P′. �

(3) Let us apply these results to our situation.

THEOREM 1. Let L/K be a sub-extension of F/K, where F = K((X)). Suppose that
either

(i) F/L is a Galois algebraic extension, or
(ii) v is the only extension to F of the restriction vL of v to L.
Then L is (topologically) closed, [F : L] < ∞ and GL = Gal(F/L) is a finite cyclic

subgroup of G = Aut(F/K).

Proof. Let L̃ be the (topological) closure of L in F. From the above remarks (see
Part 2), L̃ = K((f )), where f ∈ K [[X ]], v(f ) = n and [F : L̃] = n, for a natural number
n �= 0. Since F/L is a Galois extension (in case [i]) any extension w of vL to F is of the
form: w = v ◦ ϕ, where ϕ ∈ Aut(F/L) (see [3, p. 167, Proposition 9.1]). But ϕ is also a
continuous K-automorphism of F, so w = v ◦ ϕ = v (see Part 1). This means that v is
the unique valuation on F which extends vL (i.e. the case [ii]). Now, since L is dense in
L̃, one can apply Corollary 1 and find that L = L̃. So that the other statements follow
easily from this last equality and the remarks from the beginning of Part 2. �

In the proof of Theorem 1 we saw that if F/L is a Galois algebraic extension, then
v is the unique extension of vL to F. Conversely, if v is the unique extension of vL to
F, then we also proved in Theorem 1 that L = L̃ = K((f )) for a f ∈ F and that F/L is
a cyclic extension, i.e. a Galois algebraic extension. Hence L = L̃ if and only if F/L is
a Galois algebraic extension. Hence, in the statement of Theorem 1, the hypotheses (i)
and (ii) are equivalent.

REMARK 1. If F/L is algebraic but not Galois, the statement of Theorem 1 may
be not true. Let, for instance, K = �( 3

√
2), F = K((X)) and L = K(T), where T is a

transcendence base of F over K, which contains X. The equation Z3 − 2X3 = 0 has
only one root in L (i /∈ L). So, the extension F/L is not Galois. If the conclusions of
Theorem 1 were true, then L = K((f )), for an f ∈ F (see Part 2). But this last result is
not true since (1 + f )1/2 would be in L = K(T), which is not the case.

THEOREM 2. Let H be a subgroup of G = Aut(F/K), and let LH be the fixed subfield
by H. Then,

(a) H is infinite if and only if LH = K, and
(b) if H is finite, then LH = K((f )) for a f ∈ K [[X ]]; H is a cyclic subgroup of G with

|H| = v(f ) and H = Gal(F/LH).

Proof. (a) Assume H is infinite and LH � K. Then LH = L̃H because any
automorphism in H is continuous. Hence LH = K((f )) and [F : LH ] = n = v(f ). From
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Part 2 and Theorem 1, GLH = Gal(F/LH) is cyclic and contains H. So H itself is cyclic
and finite, a contradiction. Therefore, if H is infinite, then LH = K. Conversely, if
LH = K, then H cannot be finite. Otherwise [F : LH ] = |H| < ∞ (see [2, Section 14.2,
Theorem 9]) and in this last case F/LH would be algebraic, which is a contradiction
because LH = K.

(b) If H is finite, [F : LH ] = |H| < ∞, like in (a) and LH = L̃H = K((f )), so H
becomes a subgroup of order n = v(f ) = [F : LH ] of GLH = Gal(F/LH). Since

∣∣GLH

∣∣ =
n one gets that H = GLH . �

COROLLARY 2. Every finite subgroup of G = Aut(K((X))/K) is cyclic.

A sub-extension L/K of F/K is called coalgebraic if F/L is algebraic, and it is
called Galois coalgebraic if in addition F/L is Galois.

THEOREM 3. Let F(G) be the set of all finite (cyclic) subgroups H of G and let
Gcoalg(F) be the set of all Galois coalgebraic sub-extensions L/K of F/K. Let ϕ :
F(G) →Gcoalg(F) be the mapping which carries H in LH, the fixed subfield of H and
let ψ :Gcoalg(F) → F(G), ψ(L) = GL = Gal(F/L). Then ϕ ◦ ψ = 1Gcoalg and ψ ◦ ϕ =
1F(G).

Proof. Let H be ψ(L) with F/L a Galois algebraic extension. Theorem 1 says
that L = L̃ and GL = Gal(F/L) is exactly the Galois group of F/L. So ϕ(ψ(L)) =
LH = L, because [F : LH ] = n = [F : L]. Let now T = LH be ϕ(H) for a H ∈ F(G).
Then H is cyclic and [F : LH ] = |H| , i. e. ψ(ϕ(H)) = Gal(F/LH) = H and the proof is
complete. �

THEOREM 4. Let K be algebraically closed to radicals and of characteristic 0.

Let f and g be in F = K((X)) such that n = v(f ) = v(g). Then there exists n distinct
automorphisms σ ∈ Aut(F/K) such that σ (f ) = g. In particular, K((f )) is K- isomorphic
and homeomorphic with K((g)) by a restriction of an automorphism of G.

Proof. It is enough to consider g = Xn and to construct σ ∈ G with σ (Xn) = f. To
construct σ we need to find u1 �= 0, u2, . . . in K such that if we define σ (X) = u1X +
u2X2 + . . . then σ (Xn) = (u1X + u2X2 + . . .)n = f = anXn + an+1Xn+1 + . . . , where
an �= 0, an+1, . . . are known elements in K. So we must determine u1, u2, . . . as functions
of an, an+1, . . . . Since un

1 = an and since K is algebraically closed to radicals, one has n
distinct possibilities for u1, namely the nth roots of an in K (K has the characteristic 0!).
Let us fix such a root u1 ∈ K. Considering the equality (u1X + u2X2 + . . .)n = anXn +
an+1Xn+1 + . . . , mod(Xn+2), mod(Xn+3), . . . , one can use mathematical induction to
prove that u2, u3, . . . can be uniquely expressed in function of u1 and an, an+1, . . . . The
other statements follow easily from this last observation. �

In the following, we assume that K is algebraically closed to radicals.

REMARK 2. G acts transitively on the set Cn of elements f of the same valuation
n = v(f ).

COROLLARY 3. Any Galois coalgebraic sub-extension L/K of F/K is conjugate
relative to G with a subfield of F of the type K((Xn)), n = 1, 2, . . . . In particular, if
Dn = Gal(F/K((Xn))), then Gal(F/L) = σDnσ

−1, where σ is an automorphism in G.

COROLLARY 4. Let τ ∈ G be an automorphism of order m. Let ζm be a primitive
m-th root of 1 in K and let μζm ∈ G such that μζm (X) = ζmX. Then μζm is a generator
of Dm = Gal(F/K((Xm))), the normalizer NG(Dm) of Dm in G is the infinite subgroup
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{ω ∈ G | ω(X) = aX, a �= 0} and there exists a σ ∈ G such that τ = σμh
ζm

σ−1, where
(h, m) = 1 and h depends only on τ. Moreover, h is unique (mod m) with the property
that τ = σμh

ζm
σ−1 for a σ in G.

Proof. Let H = 〈τ 〉 be the cyclic subgroup of G generated by τ , and let LH =
K((f )) be the fixed subfield of F relative to H. Let σ ∈ G such that σ (Xm) = f (the
number of such σ ’s is finite, see Theorem 4). Since Gal(F/L) = σDmσ−1 and τ ∈
Gal(F/L), one gets that τ = σμh

ζm
σ−1 with (h, m) = 1. If we change σ with σ ′ such that

σ ′(Xm) = f, then σ ′(X) = σ (μt
ζm

(X)) = μt
ζm

σ (X), where (t, m) = 1 (see Theorem 4). So
τ = σ ′μh

ζm
(σ ′)−1, i. e. h depends only on τ and not on σ. This h is unique, because τ =

σ1μ
h1
ζm

σ−1
1 = σμ

h1
ζm

σ−1 = σμh
ζm

σ−1 implies h1 = h mod m. A simple computation shows
us the structure of the normalizer NG(Dm). �
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