
EXTENSION OF FINITE PROJECTIVE PLANES 
I. UNIFORM HJELMSLEV PLANES 
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1. I n t r o d u c t i o n . In his paper (3) on finite H-planes, Kleinfeld has 
defined invariants s and t for an iJ-plane w as follows: let P and k be any 
point and line of T such t ha t P is incident with k, then let 5 be the number 
of non-neighbour points to P on k and let t be the number of neighbour points 
to P on k. He has shown tha t s and t are independent of the choice of P and 
k, t divides s, -K has s2 + st + t2 points (lines), 7r* has order s/t, and, if t ^ 1, 
s < t2. In the case s = t2, T is called uniform and has the property t ha t each 
pair of neighbour lines (points) has exactly t points (lines) in common. 

T h e neighbour relation has been shown in (4) to be an equivalence relation 
on points as well as lines. Using this, Klingenberg constructed a projective 
plane 7r*, as above, associated with each Hjelmslev plane IT. The points (lines) 
of 7T* are the equivalence classes of neighbour points (lines) of T. Fur ther 
more, class IP is incident with class ? in 7r* if and only if there exist a P in ty 
and I in ? such t ha t P is incident with I in ic. 

Surely, we can find the incidence matr ix A* of 7r* from the incidence matr ix 
A of 7T by part i t ioning A into blocks of neighbours and by then replacing 
each of these submatrices by the appropriate 0 or 1. However, it has been 
unknown whether or not the incidence matrix A1 of a finite projective plane 
could be extended or "blown u p " to the incidence matrix A of an iif-plane 
with t ^ 1. 

In § 2, a subset 6 of the positive integers is defined and we show t h a t 
n G (S is a necessary and sufficient condition for a projective plane of order 
n to be extended to not only an i l -p lane bu t in fact a uniform iJ-plane. In 
§ 3, this condition is removed as we show the equivalence of the existence 
question for projective planes to t ha t of the uniform iJ-planes and also to 
the membership question for Ê. 

2. E x t e n s i o n . The following definition was motivated by the s t ructure 
of the incidence matr ix of the uniform iJ-plane with t = 2, as in (1). 

D E F I N I T I O N 1. n € Ê if and only if the positive integers 1, 2, . . . , n2 can be 
partitioned into n n-tuples in n + 1 distinct ways such that each pair of distinct 
numbers from 1, 2, . . . , n2 occurs in exactly 1 of the n-tuples. The set of the 
n + 1 partitions will be called a ^-decomposition for n. 
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DEFINITION 2. A projective plane w' can be extended to an H-plane T, if 7r* 
is isomorphic to ir'. 

This definition does not seem to say that T' is necessarily isomorphic to a 
subspace of T. 

THEOREM 1. Let ir' be a projective plane of order n. Then irf can be extended 
to a uniform H-plane ir with t = n, if n G S. 

Proof. Let $i , ^32, . . . , ^N and 8i, . . . , 2N be the points and lines of 7r', 
where N = n2 + n + 1. Let A' be the incidence matrix of wf, i.e. 

4 ' = [at/], 

where a*/ = 1 if ^ is on £;-, and at/ = 0 if Ĵ3» is not on 8;-. 
Since w G S, we can form a E-decomposition for n. For each partition in 

this decomposition, we form an n2 X n2 matrix by letting the (i,j)th entry 
be 1 if i and j appear in the same w-tuple in that partition; otherwise let the 
entry be 0. After this is done for each partition we have n + 1 distinct (0, 1) 
matrices, say Mi, . . . , Mn+ i . 

Now, we extend A' by replacing a zero entry by the zero square matrix 
of order n2 and replace each 1 in A' by one of the matrices Mi, . . . , or Mn+\ 
such that no two l's in the same row (column) of A' are replaced by the 
same Mt. This is readily done by writing A' as the sum of n + 1 permutation 
matrices, A' — A/ + . . . + A'n+i. Then replace the l's in A' that come 
from A i by Mt. 

We now have a matrix A = [a^] which can be considered as the incidence 
matrix for a structure ir with points Pi , . . . , PNn2 and lines lu . . . , lNn2, 
where P{ is on /_, if and only if a{j = 1. We now show that ir is a uniform H-
plane by checking the axioms for an //-plane as they appear in (3). 

I. Two points determine at least one line. 

(a) If two points are in the same block, they have exactly n lines in com
mon—the lines that result from the unique w-tuple they have in common. 

(b) If two points are in different blocks, they have exactly one line in com
mon—since two ^-tuples in different partitions have exactly one number in 
common. 

II. Two lines determine at least one point. 

The dual of I holds as Mi, . . . , Mn+i are symmetric. 

Note that two points (lines) are neighbours if and only if they belong to 
the same block. 

III. If I ok and k 0 m and I, k, m all contain P , then m 0 /. 

Surely m is in a different block than the block containing k and, hence, /. 
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IV. If I oj and j $ k, then kl o kj. 

Since k is in a different block, $ , than the block ?, containing / and j , then 
kl and kj have to be in the same block, namely $ £ . 

V. IfPoQandQ0 R, then RP o RQ. 

This is the dual of IV. 

VI . There exist points Rh R2, R^ and R± which are pairwise non-neighbour 
and RtRj $ RiRkfor i, j , and k all distinct as i,j, k = 1, 2, 3, 4. 

Pick four points from ir', say tytl, tyt2, ^t3, and s$*4, such t ha t no three are 
collinear. Then pick a point of ir from each of these classes, say Ri, R2, Rzy 

and Rh where Rj Ç <$tj for j = 1, 2, 3, 4. 
These four points satisfy the axioms since: 
(a) they are in different blocks and hence are non-neighbour, 
(b) if RiRj o RiRjc for i, j , and k all distinct, then tytii tytj, and tytk would 

be collinear—a contradiction. 
Hence, -K is an i7-plane. Fur thermore, each pair of neighbour points (lines) 

have n = t lines (points) in common, which shows T is a uniform plane with 
t = n. Lastly, A1 can be taken as the incidence matrix of 7r*, i.e. 7r* is iso
morphic to 7r'. This completes the proof of Theorem 1. 

T H E O R E M 2. If w is a uniform H-plane with t = n, then n G S. 

Proof. Label the points and lines of IT such t ha t they are in blocks of neigh
bours as in Theorem 1. Form the incidence matrix A of -K and look a t its 
n + 1 non-zero submatrices formed by the first row block and its incident 
column blocks. Each of these submatrices determines a parti t ion of 1, . . . , n2 

as follows: define the parti t ion such tha t i and j are in the same ^-tuple if 
and only if Pt and Pj have a line in common in this column block. Suppose, now, 
t h a t some pair i and j never occur in the same ?z-tuple in any of these part i 
t ions. Then , for some k, i and k appear in a t least two ^-tuples. Hence, Pt 

and Pjc have a t least 2n = 2t lines in common—a contradiction. Therefore, 
these part i t ions form a (S-decomposition for n. 

Theorems 1 and 2 combine to yield the following theorem. 

T H E O R E M 3. Let n be the order of a projective plane ir'. Then -K' can be extended 
to a uniform H-plane if and only if n G 6. 

Fur thermore , uniform iJ-planes are known to exist for all prime powers / 
(3). Therefore, we have the following corollary. 

COROLLARY. All projective planes of prime-power order can be extended to 
uniform H-planes. 

T h e extension of a projective plane to a uniform Hjelmslev plane may not 
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be unique, bu t Theorem 2 points out the importance of the method of extension 
in Theorem 1. 

3. Ex i s t ence . The definition of S is similar to the definition of orthogonal 
latin squares where each ordered pair mus t appear exactly once. Recall t h a t 
there exists a complete set of orthogonal latin squares of order n if and only 
if there exists a projective plane of order n (5). T h e following was a successful 
a t t e m p t to unite and use these concepts with the previous material . 

D E F I N I T I O N 3. Let 35 be the set of all positive integers n such that there exists 
a set of n2 — n n-tuples of the numbers 1, 2, . . . ,n where: 

(a) no two numbers will appear in the same respective positions in any two 
distinct n-tuples; 

(b) they can be listed one under the other, so as to yield n — 1 latin squares, 
also one under the other. 

T H E O R E M 4. 35 = S. 

Proof. Let n Ç 35. T o show t h a t this implies n G S, list n2 — n n-tuples 
which satisfy the definition of n £ 35. In the order they are listed, name 
them Pn+h . . . , Pn\ 

Now s ta r t to construct a ^-decomposit ion for n in the s tandard way. T h a t 
is, construct 

( 1 , 2 , . . . , » ) (w + 1 , . . . , 2 » ) . . . ( . . . , » * ) 

(1, ) (2, ) . . . ( » , ) 
(1, ) (2, ) . . . ( * , ) 

(1, ) (2, ) . . . ( * , ) 

Let Pi— (flji, . . . , ain) for i = n + 1, . . . , n2. Then , for each i, pu t i in 
the a ^ t h "w-tuple" of the (J + l ) s t part i t ion. 

Since atJ ^ aik for j 9e k, every number will appear once, and, therefore, only 
once, in each part i t ion. Fur thermore , since the P / s form n — 1 latin squares, 
each "w-tuple" will receive n — 1 new elements. Therefore, each par t i t ion 
will consist of n w-tuples of the numbers 1, 2, . . . , n2. 

I t remains to show tha t each pair of dist inct numbers occurs in exactly 
one of the ^-tuples. 

If this is not the case, then some pair of dist inct numbers , i and j , will 
appear in the same w-tuple in a t least two different part i t ions. Surely neither 
i nor j can be less than n + 1. So we can assume t h a t i, j > n + 1. Suppose 
they appear in the same w-tuple in both the kth and Zth part i t ions, k ^ I. 
Then , by the construction, we have 

aik = ajk and aiX = an. 
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However, this gives 

Pi = (. . . , aijc, . . . , aih . . . ) , 

li H 
Pj — (• • • » ajk, • • • > CLji . . . ) , 

which contradicts par t (a) of the definition of n G 33. Hence, this is a Ê-
decomposition for n. Therefore, 33 Q S. 

T o show tha t Ê C 33 reverse the previous steps. 

T H E O R E M 5. There exists a complete set of orthogonal latin squares of order n 
if and only if n G 33. 

Proof. Assume we have a complete set of orthogonal latin squares, say 
A1, . . . , An~l t h a t are in normal form, i.e. the first row is 1 2 3 . . . n. 

Form the following (n — l)- tuple for each position (i, j), i ^ 1, of the set 
of latin squares: 

/ 1 2 n-l\ 
\a>ij, aij, . . . , aij ) , 

where ak'i3 is the element in the i\\\ row and j t h column of the square Ak. 
These give a set of n2 — n {n — 1)-tuples with entries from 1, . . . , n such 

t h a t no two members appear in the same respective positions in any two 
of the (n — l )- tuples, since the squares are mutual ly orthogonal. 

Now, extend these (n — 1)-tuples to n-tuples by extending 

/ 1 2 n71"1} 
[aij, afj, . . . , a^j j 

t o 
/ • 1 2 n-l\ 
[j, aij, aij, . . . , aij ) . 

Suppose (a) of the definition for 33 was now not t rue. Then we would have 
the following se tup : for some i, j , k, and /, i 9^ I, 

/ • 1 k \ 
\Ji &iji • • • > &iji • • • ) i 
/ • 1 k \ 
Ui aijj • • • i &iji • • •)> 

where akij = ak
l3. This, however, implies t ha t the j t h column of Ak has two 

entries the same—a contradiction. Therefore, (a) holds. 
Now, list these ^-tuples one under the other by the positions they came 

from in the following order: 

(2, 1), (2, 2), . . . , (2, n), (3, 1), . . . , (3, » ) , . . . , (*, n). 

The top n ^-tuples form a latin square since 
(i) the rows clearly have no repetit ions; 

(ii) if the same number appeared twice in the same column, say the it\\ 
column, then the second row of A1 would have a repeti t ion—a contradiction. 
Therefore, n G 33. 

T o prove the converse, reverse the previous argument . 
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We can now replace Theorem 3 by our main result. 

THEOREM 6. Every finite projective plane can be extended to a uniform H-plane. 

Proof. Let ir be a projective plane of order n. Then n Ç Ê by applying 
first the remark at the beginning of this section and then Theorems 5 and 4. 

Lastly, we can combine all of these results in the following Theorem. 

THEOREM 7. The following statements are equivalent'. 
(a) w G S , 
(b) there exists a projective plane of order n, 
(c) there exists a uniform H-plane with t = n. 

Proof. 
(a) «=> (b) as in proof of Theorem 6. 
(b) => (c) by Theorem 6. 
(c) =» (b) the associated projective plane satisfies this. 

One of the most important unanswered questions dealing with projective 
planes is: For what n do projective planes of order n exist? The only known 
projective planes have prime-power order and there is a projective plane for 
each of these prime-power orders (5). Moreover, Bruck and Ryser (2) have 
shown necessary conditions for n to be the order of a projective plane. How
ever, there is a gap between the two as, for example, nothing is known for 
n = 10. 

Theorem 7 itself does not add anything to the final solution of this question. 
However, it suggests new methods of attack that are worthy of consideration. 
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