EXTENSION OF FINITE PROJECTIVE PLANES I. UNIFORM HJELMSLEV PLANES

ROBERT T. CRAIG

1. Introduction. In his paper (3) on finite H-planes, Kleinfeld has defined invariants s and t for an H-plane π as follows: let P and k be any point and line of π such that P is incident with k, then let s be the number of non-neighbour points to P on k and let t be the number of neighbour points to P on k. He has shown that s and t are independent of the choice of P and k, t divides s, π has $s^{2}+s t+t^{2}$ points (lines), π^{*} has order s / t, and, if $t \neq 1$, $s \leqslant t^{2}$. In the case $s=t^{2}, \pi$ is called uniform and has the property that each pair of neighbour lines (points) has exactly t points (lines) in common.

The neighbour relation has been shown in (4) to be an equivalence relation on points as well as lines. Using this, Klingenberg constructed a projective plane π^{*}, as above, associated with each Hjelmslev plane π. The points (lines) of π^{*} are the equivalence classes of neighbour points (lines) of π. Furthermore, class \mathfrak{F} is incident with class \mathfrak{Z} in π^{*} if and only if there exist a P in \mathfrak{P} and l in \mathbb{R} such that P is incident with l in π.

Surely, we can find the incidence matrix A^{*} of π^{*} from the incidence matrix A of π by partitioning A into blocks of neighbours and by then replacing each of these submatrices by the appropriate 0 or 1 . However, it has been unknown whether or not the incidence matrix A^{\prime} of a finite projective plane could be extended or "blown up" to the incidence matrix A of an H-plane with $t \neq 1$.

In § 2, a subset © of the positive integers is defined and we show that $n \in \mathfrak{C}$ is a necessary and sufficient condition for a projective plane of order n to be extended to not only an H-plane but in fact a uniform H-plane. In $\S 3$, this condition is removed as we show the equivalence of the existence question for projective planes to that of the uniform H-planes and also to the membership question for \mathfrak{C}.
2. Extension. The following definition was motivated by the structure of the incidence matrix of the uniform H-plane with $t=2$, as in (1).

Definition 1. $n \in \mathfrak{C}$ if and only if the positive integers $1,2, \ldots, n^{2}$ can be partitioned into n n-tuples in $n+1$ distinct ways such that each pair of distinct numbers from $1,2, \ldots, n^{2}$ occurs in exactly 1 of the n-tuples. The set of the $n+1$ partitions will be called a $\mathfrak{(S}$-decomposition for n.

Received December 26, 1962.

Definition 2. A projective plane π^{\prime} can be extended to an H-plane π, if π^{*} is isomorphic to π^{\prime}.

This definition does not seem to say that π^{\prime} is necessarily isomorphic to a subspace of π.

Theorem 1. Let π^{\prime} be a projective plane of order n. Then π^{\prime} can be extended to a uniform H-plane π with $t=n$, if $n \in \mathbb{C}$.

Proof. Let $\mathfrak{B}_{1}, \mathfrak{B}_{2}, \ldots, \Re_{N}$ and $\Omega_{1}, \ldots, \Omega_{N}$ be the points and lines of π^{\prime}, where $N=n^{2}+n+1$. Let A^{\prime} be the incidence matrix of π^{\prime}, i.e.

$$
A^{\prime}=\left[a_{i j}{ }^{\prime}\right]
$$

where $a_{i j}{ }^{\prime}=1$ if \mathfrak{B}_{i} is on \mathfrak{R}_{j}, and $a_{i j}{ }^{\prime}=0$ if \mathfrak{B}_{i} is not on \mathfrak{R}_{j}.
Since $n \in \mathbb{C}$, we can form a \mathbb{E}-decomposition for n. For each partition in this decomposition, we form an $n^{2} \times n^{2}$ matrix by letting the (i, j) th entry be 1 if i and j appear in the same n-tuple in that partition; otherwise let the entry be 0 . After this is done for each partition we have $n+1$ distinct $(0,1)$ matrices, say M_{1}, \ldots, M_{n+1}.

Now, we extend A^{\prime} by replacing a zero entry by the zero square matrix of order n^{2} and replace each 1 in A^{\prime} by one of the matrices M_{1}, \ldots, or M_{n+1} such that no two 1's in the same row (column) of A^{\prime} are replaced by the same M_{i}. This is readily done by writing A^{\prime} as the sum of $n+1$ permutation matrices, $A^{\prime}=A_{1}^{\prime}+\ldots+A_{n+1}^{\prime}$. Then replace the 1 's in A^{\prime} that come from $A_{i}{ }^{\prime}$ by M_{i}.

We now have a matrix $A=\left[a_{i j}\right]$ which can be considered as the incidence matrix for a structure π with points $P_{1}, \ldots, P_{N n^{2}}$ and lines $l_{1}, \ldots, l_{N n^{2}}$, where P_{i} is on l_{j} if and only if $a_{i j}=1$. We now show that π is a uniform H plane by checking the axioms for an H-plane as they appear in (3).
I. Two points determine at least one line.
(a) If two points are in the same block, they have exactly n lines in com-mon-the lines that result from the unique n-tuple they have in common.
(b) If two points are in different blocks, they have exactly one line in com-mon-since two n-tuples in different partitions have exactly one number in common.

II. Two lines determine at least one point.

The dual of I holds as M_{1}, \ldots, M_{n+1} are symmetric.
Note that two points (lines) are neighbours if and only if they belong to the same block.
III. If $l \circ k$ and $k \phi m$ and l, k, m all contain P, then $m \phi l$.

Surely m is in a different block than the block containing k and, hence, l.

IV. If $l \circ j$ and $j \phi k$, then $k l \circ k j$.

Since k is in a different block, \Re, than the block \mathbb{R}, containing l and j, then $k l$ and $k j$ have to be in the same block, namely $\Omega \Omega$.
V. If $P \circ Q$ and $Q \phi R$, then $R P \circ R Q$.

This is the dual of IV.
VI. There exist points R_{1}, R_{2}, R_{3}, and R_{4} which are pairwise non-neighbour and $R_{i} R_{j} \phi R_{i} R_{k}$ for i, j, and k all distinct as $i, j, k=1,2,3,4$.

Pick four points from π^{\prime}, say $\mathfrak{B}_{\iota_{1}}, \mathfrak{B}_{t_{2}}, \mathfrak{B}_{t_{3}}$, and $\mathfrak{ß}_{t_{4}}$, such that no three are collinear. Then pick a point of π from each of these classes, say R_{1}, R_{2}, R_{3}, and R_{4}, where $R_{j} \in \mathfrak{P}_{t j}$ for $j=1,2,3,4$.

These four points satisfy the axioms since:
(a) they are in different blocks and hence are non-neighbour,
(b) if $R_{i} R_{j} \circ R_{i} R_{k}$ for i, j, and k all distinct, then $\mathfrak{P}_{t i}, \mathfrak{P}_{t_{j}}$, and $\mathfrak{B}_{t_{k}}$ would be collinear-a contradiction.

Hence, π is an H-plane. Furthermore, each pair of neighbour points (lines) have $n=t$ lines (points) in common, which shows π is a uniform plane with $t=n$. Lastly, A^{\prime} can be taken as the incidence matrix of π^{*}, i.e. π^{*} is isomorphic to π^{\prime}. This completes the proof of Theorem 1.

Theorem 2. If π is a uniform H-plane with $t=n$, then $n \in \mathbb{C}$.
Proof. Label the points and lines of π such that they are in blocks of neighbours as in Theorem 1. Form the incidence matrix A of π and look at its $n+1$ non-zero submatrices formed by the first row block and its incident column blocks. Each of these submatrices determines a partition of $1, \ldots, n^{2}$ as follows: define the partition such that i and j are in the same n-tuple if and only if P_{i} and P_{j} have a line in common in this column block. Suppose, now, that some pair i and j never occur in the same n-tuple in any of these partitions. Then, for some k, i and k appear in at least two n-tuples. Hence, P_{i} and P_{k} have at least $2 n=2 t$ lines in common-a contradiction. Therefore, these partitions form a © \mathfrak{C} decomposition for n.

Theorems 1 and 2 combine to yield the following theorem.
Theorem 3. Let n be the order of a projective plane π^{\prime}. Then π^{\prime} can be extended to a uniform H-plane if and only if $n \in \mathfrak{C}$.

Furthermore, uniform H-planes are known to exist for all prime powers t (3). Therefore, we have the following corollary.

Corollary. All projective planes of prime-power order can be extended to uniform H-planes.

The extension of a projective plane to a uniform Hjelmslev plane may not
be unique, but Theorem 2 points out the importance of the method of extension in Theorem 1.
3. Existence. The definition of \mathbb{C} is similar to the definition of orthogonal latin squares where each ordered pair must appear exactly once. Recall that there exists a complete set of orthogonal latin squares of order n if and only if there exists a projective plane of order n (5). The following was a successful attempt to unite and use these concepts with the previous material.

Definition 3. Let \mathfrak{D} be the set of all positive integers n such that there exists a set of $n^{2}-n n$-tuples of the numbers $1,2, \ldots, n$ where:
(a) no two numbers will appear in the same respective positions in any two distinct n-tuples;
(b) they can be listed one under the other, so as to yield $n-1$ latin squares, also one under the other.

Theorem 4. $\mathfrak{D}=\mathfrak{C}$.
Proof. Let $n \in \mathfrak{D}$. To show that this implies $n \in \mathfrak{C}$, list $n^{2}-n n$-tuples which satisfy the definition of $n \in \mathfrak{D}$. In the order they are listed, name them $P_{n+1}, \ldots, P_{n^{2}}$.

Now start to construct a ${ }^{(6}$-decomposition for n in the standard way. That is, construct

Let $P_{i}=\left(a_{i 1}, \ldots, a_{i n}\right)$ for $i=n+1, \ldots, n^{2}$. Then, for each i, put i in the a_{i} th " n-tuple" of the $(j+1)$ st partition.

Since $a_{i,} \neq a_{i k}$ for $j \neq k$, every number will appear once, and, therefore, only once, in each partition. Furthermore, since the P_{i} 's form $n-1$ latin squares, each " n-tuple" will receive $n-1$ new elements. Therefore, each partition will consist of $n n$-tuples of the numbers $1,2, \ldots, n^{2}$.

It remains to show that each pair of distinct numbers occurs in exactly one of the n-tuples.

If this is not the case, then some pair of distinct numbers, i and j, will appear in the same n-tuple in at least two different partitions. Surely neither i nor j can be less than $n+1$. So we can assume that $i, j \geqslant n+1$. Suppose they appear in the same n-tuple in both the k th and l th partitions, $k \neq l$. Then, by the construction, we have

$$
a_{i k}=a_{j k} \quad \text { and } \quad a_{i l}=a_{j l} .
$$

However, this gives

$$
\begin{aligned}
P_{i} & =\left(\ldots, a_{i k}, \ldots, a_{i l}, \ldots\right) \\
P_{j} & =\left(\ldots, a_{j k}, \ldots, a_{j l} \ldots\right)
\end{aligned}
$$

which contradicts part (a) of the definition of $n \in \mathfrak{D}$. Hence, this is a \mathfrak{E} decomposition for n. Therefore, $\mathfrak{D} \subseteq \mathfrak{C}$.

To show that $\mathfrak{C} \subseteq \mathfrak{D}$ reverse the previous steps.
Theorem 5. There exists a complete set of orthogonal latin squares of order n if and only if $n \in \mathfrak{D}$.

Proof. Assume we have a complete set of orthogonal latin squares, say A^{1}, \ldots, A^{n-1} that are in normal form, i.e. the first row is $123 \ldots n$.

Form the following $(n-1)$-tuple for each position $(i, j), i \neq 1$, of the set of latin squares:

$$
\left(a_{i j}^{1}, a_{i j}^{2}, \ldots, a_{i j}^{n-1}\right)
$$

where $a^{k}{ }_{i j}$ is the element in the i th row and j th column of the square A^{k}.
These give a set of $n^{2}-n(n-1)$-tuples with entries from $1, \ldots, n$ such that no two members appear in the same respective positions in any two of the $(n-1)$-tuples, since the squares are mutually orthogonal.

Now, extend these $(n-1)$-tuples to n-tuples by extending
to

$$
\left(a_{i j}^{1}, a_{i j}^{2}, \ldots, a_{i j}^{n-1}\right)
$$

$$
\left(j, a_{i j}^{1}, a_{i j}^{2}, \ldots, a_{i j}^{n-1}\right)
$$

Suppose (a) of the definition for \mathfrak{D} was now not true. Then we would have the following setup: for some i, j, k, and $l, i \neq l$,

$$
\begin{aligned}
& \left(j, a_{i j}^{1}, \ldots, a_{i j}^{k}, \ldots\right), \\
& \left(j, a_{l j}^{1}, \ldots, a_{l j}^{k}, \ldots\right)
\end{aligned}
$$

where $a^{k}{ }_{i j}=a^{k}{ }_{l \jmath}$. This, however, implies that the j th column of A^{k} has two entries the same-a contradiction. Therefore, (a) holds.

Now, list these n-tuples one under the other by the positions they came from in the following order:

$$
(2,1),(2,2), \ldots,(2, n),(3,1), \ldots,(3, n), \ldots,(n, n)
$$

The top $n n$-tuples form a latin square since
(i) the rows clearly have no repetitions;
(ii) if the same number appeared twice in the same column, say the i th column, then the second row of A^{i} would have a repetition-a contradiction. Therefore, $n \in \mathfrak{D}$.

To prove the converse, reverse the previous argument.

We can now replace Theorem 3 by our main result.
Theorem 6. Every finite projective plane can be extended to a uniform H-plane.
Proof. Let π be a projective plane of order n. Then $n \in \mathbb{C}$ by applying first the remark at the beginning of this section and then Theorems 5 and 4.

Lastly, we can combine all of these results in the following Theorem.
Theorem 7. The following statements are equivalent:
(a) $n \in \mathbb{C}$,
(b) there exists a projective plane of order n,
(c) there exists a uniform H-plane with $t=n$.

Proof.
(a) $\Leftrightarrow(\mathrm{b})$ as in proof of Theorem 6 .
(b) \Rightarrow (c) by Theorem 6 .
(c) \Rightarrow (b) the associated projective plane satisfies this.

One of the most important unanswered questions dealing with projective planes is: For what n do projective planes of order n exist? The only known projective planes have prime-power order and there is a projective plane for each of these prime-power orders (5). Moreover, Bruck and Ryser (2) have shown necessary conditions for n to be the order of a projective plane. However, there is a gap between the two as, for example, nothing is known for $n=10$.

Theorem 7 itself does not add anything to the final solution of this question. However, it suggests new methods of attack that are worthy of consideration.

References

1. J. W. Archbold and N. L. Johnson, A method of constructing partially balanced incomplete block designs, Ann. Math. Stat., 27 (1956), 624-632.
2. R. H. Bruck and H. J. Ryser, The nonexistence of certain finite projective planes, Can. J. Math., 1 (1949), 88-93.
3. Erwin Kleinfeld, Finite Hjelmslev planes, Ill. J. Math., 3 (1959), 403-407.
4. Wilhelm Klingenberg, Projektive und affine Ebenen mit Nachbarelementen, Math. Zeit., 60 (1954), 384-406.
5. Gunter Pickert, Projektive Ebenen (Berlin, 1955).

Fordham University, New York

