EXTENSION OF FINITE PROJECTIVE PLANES I. UNIFORM HJELMSLEV PLANES

ROBERT T. CRAIG

1. Introduction. In his paper (3) on finite *H*-planes, Kleinfeld has defined invariants s and t for an *H*-plane π as follows: let *P* and k be any point and line of π such that *P* is incident with k, then let s be the number of non-neighbour points to *P* on k and let t be the number of neighbour points to *P* on k. He has shown that s and t are independent of the choice of *P* and k, t divides s, π has $s^2 + st + t^2$ points (lines), π^* has order s/t, and, if $t \neq 1$, $s \leq t^2$. In the case $s = t^2$, π is called uniform and has the property that each pair of neighbour lines (points) has exactly t points (lines) in common.

The neighbour relation has been shown in (4) to be an equivalence relation on points as well as lines. Using this, Klingenberg constructed a projective plane π^* , as above, associated with each Hjelmslev plane π . The points (lines) of π^* are the equivalence classes of neighbour points (lines) of π . Furthermore, class \mathfrak{P} is incident with class \mathfrak{L} in π^* if and only if there exist a P in \mathfrak{P} and l in \mathfrak{L} such that P is incident with l in π .

Surely, we can find the incidence matrix A^* of π^* from the incidence matrix A of π by partitioning A into blocks of neighbours and by then replacing each of these submatrices by the appropriate 0 or 1. However, it has been unknown whether or not the incidence matrix A' of a finite projective plane could be extended or "blown up" to the incidence matrix A of an H-plane with $t \neq 1$.

In §2, a subset \mathfrak{C} of the positive integers is defined and we show that $n \in \mathfrak{C}$ is a necessary and sufficient condition for a projective plane of order n to be extended to not only an *H*-plane but in fact a uniform *H*-plane. In §3, this condition is removed as we show the equivalence of the existence question for projective planes to that of the uniform *H*-planes and also to the membership question for \mathfrak{C} .

2. Extension. The following definition was motivated by the structure of the incidence matrix of the uniform *H*-plane with t = 2, as in (1).

DEFINITION 1. $n \in \mathbb{C}$ if and only if the positive integers $1, 2, \ldots, n^2$ can be partitioned into n n-tuples in n + 1 distinct ways such that each pair of distinct numbers from $1, 2, \ldots, n^2$ occurs in exactly 1 of the n-tuples. The set of the n + 1 partitions will be called a \mathbb{C} -decomposition for n.

Received December 26, 1962.

ROBERT T. CRAIG

DEFINITION 2. A projective plane π' can be extended to an H-plane π , if π^* is isomorphic to π' .

This definition does not seem to say that π' is necessarily isomorphic to a subspace of π .

THEOREM 1. Let π' be a projective plane of order n. Then π' can be extended to a uniform H-plane π with t = n, if $n \in \mathfrak{C}$.

Proof. Let $\mathfrak{P}_1, \mathfrak{P}_2, \ldots, \mathfrak{P}_N$ and $\mathfrak{P}_1, \ldots, \mathfrak{P}_N$ be the points and lines of π' , where $N = n^2 + n + 1$. Let A' be the incidence matrix of π' , i.e.

$$A' = [a_{ij}'],$$

where $a_{ij}' = 1$ if \mathfrak{P}_i is on \mathfrak{P}_j , and $a_{ij}' = 0$ if \mathfrak{P}_i is not on \mathfrak{P}_j .

Since $n \in \mathfrak{C}$, we can form a \mathfrak{C} -decomposition for n. For each partition in this decomposition, we form an $n^2 \times n^2$ matrix by letting the (i, j)th entry be 1 if i and j appear in the same n-tuple in that partition; otherwise let the entry be 0. After this is done for each partition we have n + 1 distinct (0, 1) matrices, say M_1, \ldots, M_{n+1} .

Now, we extend A' by replacing a zero entry by the zero square matrix of order n^2 and replace each 1 in A' by one of the matrices M_1, \ldots , or M_{n+1} such that no two 1's in the same row (column) of A' are replaced by the same M_i . This is readily done by writing A' as the sum of n + 1 permutation matrices, $A' = A_1' + \ldots + A'_{n+1}$. Then replace the 1's in A' that come from A_i' by M_i .

We now have a matrix $A = [a_{ij}]$ which can be considered as the incidence matrix for a structure π with points P_1, \ldots, P_{Nn^2} and lines l_1, \ldots, l_{Nn^2} , where P_i is on l_j if and only if $a_{ij} = 1$. We now show that π is a uniform *H*plane by checking the axioms for an *H*-plane as they appear in (3).

I. Two points determine at least one line.

(a) If two points are in the same block, they have exactly n lines in common—the lines that result from the unique n-tuple they have in common.

(b) If two points are in different blocks, they have exactly one line in common—since two *n*-tuples in different partitions have exactly one number in common.

II. Two lines determine at least one point.

The dual of I holds as M_1, \ldots, M_{n+1} are symmetric.

Note that two points (lines) are neighbours if and only if they belong to the same block.

III. If $l \circ k$ and $k \notin m$ and l, k, m all contain P, then $m \notin l$.

Surely m is in a different block than the block containing k and, hence, l.

262

IV. If $l \circ j$ and $j \notin k$, then $kl \circ kj$.

Since k is in a different block, \Re , than the block \Re , containing l and j, then kl and kj have to be in the same block, namely $\Re \Re$.

V. If $P \circ Q$ and $Q \notin R$, then $RP \circ RQ$.

This is the dual of IV.

VI. There exist points R_1 , R_2 , R_3 , and R_4 which are pairwise non-neighbour and $R_iR_j \notin R_iR_k$ for *i*, *j*, and *k* all distinct as *i*, *j*, k = 1, 2, 3, 4.

Pick four points from π' , say \mathfrak{P}_{t_1} , \mathfrak{P}_{t_2} , \mathfrak{P}_{t_3} , and \mathfrak{P}_{t_4} , such that no three are collinear. Then pick a point of π from each of these classes, say R_1 , R_2 , R_3 , and R_4 , where $R_j \in \mathfrak{P}_{t_j}$ for j = 1, 2, 3, 4.

These four points satisfy the axioms since:

(a) they are in different blocks and hence are non-neighbour,

(b) if $R_i R_j \circ R_i R_k$ for *i*, *j*, and *k* all distinct, then $\mathfrak{P}_{t_i}, \mathfrak{P}_{t_j}$, and \mathfrak{P}_{t_k} would be collinear—a contradiction.

Hence, π is an *H*-plane. Furthermore, each pair of neighbour points (lines) have n = t lines (points) in common, which shows π is a uniform plane with t = n. Lastly, A' can be taken as the incidence matrix of π^* , i.e. π^* is isomorphic to π' . This completes the proof of Theorem 1.

THEOREM 2. If π is a uniform H-plane with t = n, then $n \in \mathbb{G}$.

Proof. Label the points and lines of π such that they are in blocks of neighbours as in Theorem 1. Form the incidence matrix A of π and look at its n + 1 non-zero submatrices formed by the first row block and its incident column blocks. Each of these submatrices determines a partition of $1, \ldots, n^2$ as follows: define the partition such that i and j are in the same n-tuple if and only if P_i and P_j have a line in common in this column block. Suppose, now, that some pair i and j never occur in the same n-tuple in any of these partitions. Then, for some k, i and k appear in at least two n-tuples. Hence, P_i and P_k have at least 2n = 2t lines in common—a contradiction. Therefore, these partitions form a \mathfrak{C} -decomposition for n.

Theorems 1 and 2 combine to yield the following theorem.

THEOREM 3. Let n be the order of a projective plane π' . Then π' can be extended to a uniform H-plane if and only if $n \in \mathfrak{C}$.

Furthermore, uniform H-planes are known to exist for all prime powers t (3). Therefore, we have the following corollary.

COROLLARY. All projective planes of prime-power order can be extended to uniform H-planes.

The extension of a projective plane to a uniform Hjelmslev plane may not

be unique, but Theorem 2 points out the importance of the method of extension in Theorem 1.

3. Existence. The definition of \mathfrak{G} is similar to the definition of orthogonal latin squares where each ordered pair must appear exactly once. Recall that there exists a complete set of orthogonal latin squares of order n if and only if there exists a projective plane of order n (5). The following was a successful attempt to unite and use these concepts with the previous material.

DEFINITION 3. Let \mathfrak{D} be the set of all positive integers n such that there exists a set of $n^2 - n$ n-tuples of the numbers $1, 2, \ldots, n$ where:

(a) no two numbers will appear in the same respective positions in any two distinct n-tuples;

(b) they can be listed one under the other, so as to yield n - 1 latin squares, also one under the other.

Theorem 4. $\mathfrak{D} = \mathfrak{C}$.

Proof. Let $n \in \mathfrak{D}$. To show that this implies $n \in \mathfrak{G}$, list $n^2 - n$ *n*-tuples which satisfy the definition of $n \in \mathfrak{D}$. In the order they are listed, name them P_{n+1}, \ldots, P_{n^2} .

Now start to construct a \mathcal{C} -decomposition for n in the standard way. That is, construct

$(1, 2, \ldots, n)$	$(n+1,\ldots,$	$(2n) \ldots (\ldots, n^2)$
(1,)	(2,) $(n,)$
) $(n,)$
•	•	•
•		•
(1,)	(2,) \ldots $(n,)$

Let $P_i = (a_{i1}, \ldots, a_{in})$ for $i = n + 1, \ldots, n^2$. Then, for each *i*, put *i* in the a_{ij} th "*n*-tuple" of the (j + 1)st partition.

Since $a_{ij} \neq a_{ik}$ for $j \neq k$, every number will appear once, and, therefore, only once, in each partition. Furthermore, since the P_i 's form n - 1 latin squares, each "*n*-tuple" will receive n - 1 new elements. Therefore, each partition will consist of n *n*-tuples of the numbers $1, 2, \ldots, n^2$.

It remains to show that each pair of distinct numbers occurs in exactly one of the *n*-tuples.

If this is not the case, then some pair of distinct numbers, i and j, will appear in the same *n*-tuple in at least two different partitions. Surely neither i nor j can be less than n + 1. So we can assume that $i, j \ge n + 1$. Suppose they appear in the same *n*-tuple in both the *k*th and *l*th partitions, $k \ne l$. Then, by the construction, we have

$$a_{ik} = a_{jk}$$
 and $a_{il} = a_{jl}$.

However, this gives

$$P_i = (\dots, a_{ik}, \dots, a_{il}, \dots),$$
$$|| \qquad ||$$
$$P_j = (\dots, a_{jk}, \dots, a_{jl}, \dots),$$

which contradicts part (a) of the definition of $n \in \mathfrak{D}$. Hence, this is a \mathfrak{C} -decomposition for n. Therefore, $\mathfrak{D} \subseteq \mathfrak{C}$.

To show that $\mathfrak{C} \subseteq \mathfrak{D}$ reverse the previous steps.

THEOREM 5. There exists a complete set of orthogonal latin squares of order n if and only if $n \in \mathfrak{D}$.

Proof. Assume we have a complete set of orthogonal latin squares, say A^1, \ldots, A^{n-1} that are in normal form, i.e. the first row is $1 \ 2 \ 3 \ldots n$.

Form the following (n - 1)-tuple for each position (i, j), $i \neq 1$, of the set of latin squares:

$$(a_{ij}^1, a_{ij}^2, \ldots, a_{ij}^{n-1}),$$

where a_{ij}^{k} is the element in the *i*th row and *j*th column of the square A^{k} .

These give a set of $n^2 - n$ (n - 1)-tuples with entries from $1, \ldots, n$ such that no two members appear in the same respective positions in any two of the (n - 1)-tuples, since the squares are mutually orthogonal.

Now, extend these (n - 1)-tuples to *n*-tuples by extending $(n^{1} - n^{2}) = (n^{n-1})$

$$(a_{ij}^1, a_{ij}^2, \dots, a_{ij}^{n-1})$$

 $(j, a_{ij}^1, a_{ij}^2, \dots, a_{ij}^{n-1}).$

to

Suppose (a) of the definition for \mathfrak{D} was now not true. Then we would have the following setup: for some i, j, k, and $l, i \neq l$,

$$(j, a_{ij}^1, \ldots, a_{ij}^k, \ldots),$$

 $(j, a_{lj}^1, \ldots, a_{lj}^k, \ldots),$

where $a^{k}{}_{ij} = a^{k}{}_{lj}$. This, however, implies that the *j*th column of A^{k} has two entries the same—a contradiction. Therefore, (a) holds.

Now, list these n-tuples one under the other by the positions they came from in the following order:

 $(2, 1), (2, 2), \ldots, (2, n), (3, 1), \ldots, (3, n), \ldots, (n, n).$

The top n n-tuples form a latin square since

(i) the rows clearly have no repetitions;

(ii) if the same number appeared twice in the same column, say the *i*th column, then the second row of A^i would have a repetition—a contradiction. Therefore, $n \in \mathfrak{D}$.

To prove the converse, reverse the previous argument.

ROBERT T. CRAIG

We can now replace Theorem 3 by our main result.

THEOREM 6. Every finite projective plane can be extended to a uniform H-plane.

Proof. Let π be a projective plane of order n. Then $n \in \mathbb{C}$ by applying first the remark at the beginning of this section and then Theorems 5 and 4.

Lastly, we can combine all of these results in the following Theorem.

THEOREM 7. The following statements are equivalent:
(a) n ∈ G,
(b) there exists a projective plane of order n,
(c) there exists a uniform H-plane with t = n.
Proof.
(a) ⇔ (b) as in proof of Theorem 6.
(b) ⇒ (c) by Theorem 6.
(c) ⇒ (b) the associated projective plane satisfies this.

One of the most important unanswered questions dealing with projective planes is: For what n do projective planes of order n exist? The only known projective planes have prime-power order and there is a projective plane for each of these prime-power orders (5). Moreover, Bruck and Ryser (2) have shown necessary conditions for n to be the order of a projective plane. However, there is a gap between the two as, for example, nothing is known for n = 10.

Theorem 7 itself does not add anything to the final solution of this question. However, it suggests new methods of attack that are worthy of consideration.

References

- J. W. Archbold and N. L. Johnson, A method of constructing partially balanced incomplete block designs, Ann. Math. Stat., 27 (1956), 624–632.
- R. H. Bruck and H. J. Ryser, The nonexistence of certain finite projective planes, Can. J. Math., 1 (1949), 88-93.
- 3. Erwin Kleinfeld, Finite Hjelmslev planes, Ill. J. Math., 3 (1959), 403-407.
- Wilhelm Klingenberg, Projektive und affine Ebenen mit Nachbarelementen, Math. Zeit., 60 (1954), 384–406.

5. Gunter Pickert, Projektive Ebenen (Berlin, 1955).

Fordham University, New York

266