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CONVEX DIRECTED SUBGROUPS OF A GROUP OF
DIVISIBILITY

JOE L. MOTT

Introduction. If D is an integral domain with quotient field K, the group
of divisibility G(D) of D is the partially ordered group of non-zero principal
fractional ideals with ¢D = 0D if and only if D contains 0D. If K* denotes
the multiplicative group of K and U (D) the group of units of D, then G(D) is
order isomorphic to K*/U (D), where aU(D) = bU(D) if and only if b/a € D.

The study of divisibility of elements of D amounts essentially to the study
of G(D). Infact, Disa UFD if and only if G (D) is a cardinal sum of copies of Z.

But, G (D) reflects more than the properties of factorization of elements of D.
Krull [14] observed that D is a valuation ring if and only if G(D) is totally
ordered. Then Jaffard [13] proved that D is a GCD domain if and only if G(D)
is lattice-ordered.

Furthermore, there are two theorems which establish one-to-one corres-
pondences between certain subsets of an integral domain D and certain subsets
of G(D). The first theorem ([14, p. 167; 8, p. 184], or [21, p. 40]) is of a rather
special character, yielding a correspondence between prime ideals of a valua-
tion ring D and convex subgroups of the totally ordered group G (D). The
second is more general [18], and establishes a correspondence between prime
ideals of a Bezout domain D and prime filters of the positive cone of G (D).
(In particular, the Krull dimension of a Bezout domain D is revealed by G (D).)

We ask: does there exist a similar correspondence for arbitrary integral
domains? If some correspondence exists, does it reduce to the familiar corres-
pondences for Bezout domains and for valuation rings?

Theorem 2.1 and its corollaries answer these questions. Theorem 2.1 estab-
lishes a one-to-one correspondence between saturated multiplicative systems
in an integral domain D and convex directed subgroups of the group of divisi-
bility of D. We define the dimension of a partially ordered group and prove
the Krull dimension of a Priifer domain D is equal to the dimension of G (D).
Since the dimension of an /-group G is equal to the prime filter dimension of
G+, we reach Sheldon’s conclusion [18]: there is a one-to-one correspondence
between prime ideals of a Bezout domain D and prime filters in the positive
cone of G(D).

In § 3 we obtain information about certain rings, not so much from knowl-
edge of their internal structure as from analysis of their groups of divisibility.
We compute the dimensions of two rings constructed by Heinzer [9] and
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Sheldon [18]. By the factorization theorem of Weirstrass, we can embed the
cardinal product of countably many copies of Z in the group of divisibility of
the ring E of entire functions. By this means, we achieve another proof that E
has infinite Krull dimension. Moreover, that each prime ideal of £ is contained
in a unique maximal ideal follows since G (£) is a complete I-group.

Acknowledgement. I wish to mention that this paper benefited from conversa-
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partially ordered groups. I express my gratitude to Professor Robert Gilmer
and to my students Kathleen Levitz and Mike Schexnayder.

1. Definitions and notations. The notation and terminology will essential-
ly be the same as that of Ohm’s paper [16]. In this paper, all groups are abelian;
an 0-group is partially ordered, and an /-group is lattice-ordered. A cartesian
product of O-groups Gy is called the cardinal product (sometimes called the
ordered direct product or vector group) if x = (xy) = y = () if and only if
xx = 9y for each N\. An 0-group G is a subcardinal product (usually called a
subdirect sum) of the groups Gy if there is an 0-embedding ¢ of G into 11,G,
such that py¢(G) = G, for each \, where p, is the canonical projection map of
I1,G) onto G\. The cardinal sum of the groups Gy, denoted by \Gy, is the
subset of II,Gy of all elements with finite support. Let G @z H denote the
lexicographic sum of the 0-groups G and H.

Let Z denote the group of integers under the natural order and let R denote
the additive group of real numbers.

If ao, @, . ..,a, are elements of an 0-group G, ao € sup(infeiay, ..., a,})
means a, is an upper bound of the set of all lower bounds of a,, ..., a, (in
Ohm’s notation a¢ = infe{ay, ..., a,}). If G is an l-group, let cup (V) and

cap (A) denote sups and infs. If ¢, b € G then «||b means ¢« € b and b < a.

The reader should consult Ohm’s paper [16] for the definition of semi-
valuation and Gilmer’s book [8] for the definition of GCD-domain, and
Priifer domain.

2. Main result. A multiplicative system .S in an integral domain D is
saturated if S contains along with an element x all divisors of x. If S'is saturated,
S is equal to U(Dg) M D, where U(Dy) is the set of units of the quotient ring
Dg. Moreover, each unit of Dg is of the form s;/ss where s; € S.

An O-group G is directed if for each pair of elements gy, g» € G there is an
element g exceeding both, or equivalently, if each g € G is the difference of
two elements of the positive cone G4 of G.

THEOREM 2.1. Suppose D is an integral and G (D) is its group of divisibility.
There is a one-to-one correspondence o between saturated multiplicative systems
in D and convex directed subgroups of G (D). Furthermore, if S and Gs correspond
under o, then the group of divisibility of Dgs is G/Gs.
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Proof. Suppose S is a saturated multiplicative system of D. Let v be the
canonical semi-valuation of K* onto G(D). Clearly, (S) is subsemigroup of
G,. Further, if 0 < g < v(s), then g = v(x) for some x € D, where xD D sD.
Thus, x divides s, and x € S since .S is saturated. If

Gs = {g1 — g:lg: € v(S)},

then Gg is a convex directed subgroup of G with positive cone v(S).

Next, suppose H is a convex directed subgroup of G. Let S = v=1(H,).
Clearly, S is a multiplicative system in D. If ¢D D sD for s € S, then
0 < v(a) = v(s), where v(s) € H. Since H is convex, v(¢) € H so that a € S.
Therefore, S is saturated.

Note that the correspondence as described is between saturated multipli-
cative systems and the positive cones of convex directed subgroups (there is
an obvious correspondence between positive cones and convex directed sub-
groups). If .S is a saturated multiplicative system, then

ST 0(S) = (Gs)y-

If H is a convex directed subgroup of G, then

H, 5o (H,).

We can show that the correspondence is one-to-one if we observe that o7 and
7o are identity maps on the set of positive cones of convex directed subgroups
and on the set of saturated multiplicative systems, respectively. Obviously,
o7 is the identity map. If S is a saturated multiplicative system, 7o (S) = .5’
is a saturated multiplicative system of D containing S. If x € S, then
v(x) € v(S) and v(x) = v(s) for some s € S. Consequently, x and s are
associates, and x € S since .S is saturated.

Finally, if S is a saturated multiplicative system of D, and if G is the convex
directed subgroup of G generated by v(S), observe that the group of divisibility
of Dgis G/Gg. Clearly G(Dg) is an order homorphic image of G (D) under the
map « defined by a(xD) = xDgs. Next, observe that the kernel of « is Gg.
Since each element x € .S becomes a unit in Dg, xDg = Dg, and a(v(S)) is
the identity element of G(Dgs). Hence, G is contained in the kernel of a.

If g € ker @ and if x € K* is such that v(x) = g, then xDs = Dgs and x is
a unit of Dg. Therefore, x = s;/s; where s; € S, v(x) is an element of Gs, and
Gs = ker a.

The correspondence, established in Theorem 2.1, generalizes Krull's corres-
pondence for valuation rings.

COROLLARY 2.2. If D is a valuation ring, there is a one-to-one correspondence
between prime ideals of D and convex subgroups of G(D).

Proof. In a valuation ring the only saturated multiplicative systems are
complements of prime ideals.
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Suppose D is an integral domain, G is its group of divisibility, and G/H is
totally ordered, where H is a convex directed subgroup of G. Theorem 2.1
implies that G/H is the value group of some valuation ring of the form Dy,
where S = v=1(H,). By [8, p. 319], S is the complement of a prime ideal P
of D. On the other hand, if P is a prime ideal of D, the multiplicative system
S = D\P corresponds to a convex subgroup H generated by »(S). If, in
addition, Dp is a valuation ring, then G/H = G(Dp) is totally ordered.
Motivated by this observation, we define a convex directed subgroup H of an
0-group G to be a prime subgroup of G if G/H is totally ordered under the order
inherited from G. Thus, Theorem 2.1 yields a one-to-one correspondence
between prime ideals P of D such that Dp is a valuation ring and prime
subgroups of G(D).

For a totally ordered group G, the dimension of G is # if G contains exactly »
distinct convex subgroups (#G); otherwise, the dimension of G is infinite.
For an arbitrary 0-group G, define the dimension of G by

dim G = sup{dim G/H|H is a prime subgroup of G}.

If P is a prime ideal of an arbitrary domain D such that Dp is a valuation
ring, then dim G(Dp) = height of P. Corollary 2.2 implies that the Krull
dimension of a valuation ring D is equal to the dimension of G(D). In parti-
cular, for a Priifer domain D the above can be summarized: there is a one-to-
one correspondence between prime ideals of D and prime subgroups of G(D).
Then, the following corollary to Theorem 2.1 is immediate.

COROLLARY 2.3. If D is a Priifer domain, the Krull dimension of D is equal
to the dimension of the group of divisibility of D.

In [8, p. 348], Gilmer defines the valuative dimension of an integral domain
D as the supremum of the dimension of all valuative overrings of D. Clearly
for a Priifer domain D, the valuative dimension of D is equal to the dimension
of G(D). Thus, a result implicitly contained in Corollary 2.3 is that the Krull
dimension of a Priifer domain D is equal to the valuative dimension of D.

The notion of a prime subgroup of an /-group is not new [2; 5]. The definition
can also be given in terms of prime filters [2, p. 114]. If G is an /-group and G,
is the positive cone of G, a filter in G is a non-void subset F of G, such that

(1) x Ay € Fforall x,y € F, and

2) x € Fifx Zyandy € F.

A proper filter in G, is contained in G \{0}. A proper filter in G, is a prime
Sfilter if

(B) x+ vy € F,xand y in G4, impliesx € Fory € F.

Here, we use the term ‘‘prime’’ with respect to the group operation rather
than the lattice operation of forming join. However, a prime filter in this sense
is also prime with respect to join since x +y = x V y.

Let us summarize what is known. In an [-group G, there is a one-to-one
correspondence between prime subgroups of G and prime filters in G,. If H
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is a prime subgroup of G, G.\H is a prime filter in G;. If F is a prime filter,
H = {a — bla, b € G4\ F} is a prime subgroup of G.

In the proof of Corollary 2.3, we observed a one-to-one correspondence
between prime ideals of a Priifer domain D and prime subgroups of G(D).
There is a second one-to-one correspondence between prime subgroups of an
l-group G and prime filters in G;. The composition of both correspondences
establishes Sheldon’s correspondence. Combining this result (Corollary 2.4)
with Corollary 2.2, we conclude: the correspondence of Theorem 2.1 extends
each of the familiar correspondences.

COROLLARY 2.4 (Sheldon). If D is a Bezout domain, there is « one-to-one corre-
spondence between prime ideals of D and prime filters in the positive cone of G (D).

Added in proof. An earlier proof of this fact is due to I. Yakabe, On semi-
valuations 11, Mem. Fac. Sci. Kyushu Univ. Ser. A 17 (1963), 10-28.

Following Sheldon [18], we define the prime filter dimension of an [-group G
to be the number of terms in the longest finite chain of prime filters in G, or
infinity if there is no such longest chain. The one-to-one correspondence
between prime subgroups of G and prime filters shows that the dimension of G
is equal to the prime filter dimension. A conclusion follows at once: for a
Bezout domain D, the Krull dimension of D = dimension of G(D) = prime
filter dimension of the positive cone of G (D).

Each proper filter of an /-group G is contained in an ultrafilter of G,, a
maximal proper filter. Moreover, an ultrafilter is a prime filter. In the corres-
pondence of Corollary 2.4, maximal ideals of a Bezout domain correspond to
ultrafilters and hence to prime subgroups H such that G.\H is an ultrafilter.
Such a prime subgroup is designated a minimal prime subgroup by Conrad
and McAlister in [5, p. 198]. (In the case where D is a valuation ring, the ultra-
filter corresponding to the maximal ideal of D is G:\{0}.) If G is a lattice-
ordered group and g € G, g # 0, then a value of g is a convex /-subgroup M,
such that for any convex /-subgroup H D M,, ¢ € H. A Zorn’s lemma argu-
ment shows the existence of a value for any non-zero g € G. It is well-known
that M, is a prime subgroup of G [5, p. 188]. In the correspondence between
prime ideals of a Bezout domain D and prime subgroups of G (D), observe
that minimal prime ideals of a principal ideal xD correspond to values of
v(x) in G(D).

Suppose that D is a GCD-domain and that » is the canonical semi-valuation
from K* onto G(D). It is easy to see that D is a Bezout domain if and only if
2(Q*) is a filter for each ideal Q of D. We communicated this result to Sheldon
and he responded that he had observed that Theorem 2.1 could be used to
prove the following extension of Corollary 2.4. If D is a GCD-domain, then
these are equivalent:

(1) D is Bezout.

(2) v(P*) is a prime filter for each prime ideal P of D.

(3) v(M*) is an ultrafilter for each maximal ideal M of D.
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Indeed, this is obvious from Theorem 2.1 for (3) implies that D, is a valuation
ring for each maximal ideal M of D. Sheldon has obtained several results on
the prime ideal structure of GCD-domains including the following corollary
to Theorem 2.1.

COROLLARY 2.5. Suppose that D is ¢« GCD-domain such that for each pair of
prime ideals P and Q of D either P C Q, Q C P,or P+ Q = D. Then D is a
Bezout domain.

Proof. The conclusion follows if we show that D is a Priifer domain. If M is
a maximal ideal of D, the prime ideals of D,, are linearly ordered by contain-
ment. Thus, the set of saturated multiplicative systems in D, is linearly
ordered by containment. Theorem 2.1 implies the convex directed subgroups
of the lattice ordered group G(D,,) are linearly ordered by containment.
Therefore, G(D,,) is totally ordered, D, is a valuation ring, and D is Priifer.

3. Examples. In this section we will compute the dimensions of some
lattice-ordered groups. All examples have appeared in the literature, and, in
some cases (Examples 2 and 3), their dimensions are known.

1. The cardinal product of countably many copies of Z: If P = II,, Z, is
the cardinal product of countably many copies of Z, then P is infinite dimen-
sional. Actually, we prove that

G=11 2,/ X Z

i<w i<w

is infinite dimensional. For any integer # = 0, define g, € P by g (1) =
for each integer 1 < 7 < w.

Let ¢ denote the canonical homomorphism of P onto G. For each positive
integer k and all positive integers #, **!1 > ni* except for a finite number of
values of 7. Thus no(g;) = o(gry1) for all positive integers 7.

If M, is a value of a(go) in G, then G1 = G/M,,, is totally ordered and
infinite dimensional since G; contains infinitely many positive elements
{g/}%1 such that ng,’ = gi41/ for each positive integer », and g,/ ¢ M, for
| = k, where M, is the value of g/ in G.

2. Complete integral closure and the examples of Heinzer and of Sheldon:
If G is an 0-group and g is a non-zero element of G, then g is said to be bounded
if there is an element 2 € G such that ng = & for each positive integer n. The
set of all bounded elements forms a convex semigroup of G, and generates
a convex directed subgroup,

B(G) = {a — bla, b are bounded elements of G},

called the bounded closure of G. (Note that if G is an archimedean /-group,
then B(G) = 0.) Thus, if D is an integral domain, G (D) its group of divisibility,
and 2 the canonical semi-valuation, define x € D to be bounded if v(x) is a
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bounded element of G (D). Theorem 2.1 implies the set B(D) of all bounded
elements of D is a saturated multiplicative system and G/B(G) is the group
of divisibility of Dppy. A slight modification of the proof of a theorem of
Sheldon [18] shows that if the complete integral closure D* of D is a quotient
ring of D, then D* = D). Since every overring of a Bezout domain D is a
quotient ring of D, we conclude the following corollary of Theorem 2.1.

CoOROLLARY 2.6. If D is a Begout domain, G is its group of divisibility, and
B(G) 1is the bounded closure of G, then G/B(G) is the group of divisibility of the
complete integral closure of D.

Obviously, the complete integral closure of a Bezout domain D is completely
integrally closed if and only if G/B(G) has trivial bounded closure.
Define the groups G™ recursively by

Gt = G™ /B(G™)

for each non-negative integer n (G° = G).

Corollary 2.6 has particular relevance to two integral domains—-one con-
structed by Heinzer [9] and the other by Sheldon [18].

These domains are similar in several respects. Each domain D; (i = 1, 2)
is constructed using the Krull-Kaplansky-Jaffard-Ohm Theorem [13, p. 64]
and an /-group G; such that G;¥ has nontrivial bounded closure; thus, each
example shows that the complete integral closure of a Bezout domain need not
be completely integrally closed. Moreover, each group G; is such that G
has trivial bounded closure; thus, D ** is completely integrally closed for each i.

Nevertheless, the two domains have some different characteristics. In
particular, Heinzer’s example is infinite dimensional, while Sheldon’s is two-
dimensional. We proceed to compute their dimensions.

Heinzer [9] considers the group H of all functions f: Z, — Z @, Z such
that if f(n) = (ay, b,), then a, = 0 for all but a finite number of values of n.
Alternately, H is a subgroup of the cardinal product of countably many copies
of Z @ Z containing the cardinal product P of countably many copies of Z
such that H/P is a cardinal sum of copies of Z. More precisely, if (Z @, Z);
is generated by positive elements ¢; and d;, where d; generates the only non-
trivial convex subgroup of (Z @, Z), then P is the cardinal product of the
groups (d;), and H/P is the cardinal sum of the groups (c;).

That H is infinite dimensional follows since P is infinite dimensional. In
fact, if G is any lattice-ordered group containing an infinite dimensional sub-
group K as a sublattice, then G is infinite dimensional. We translate the
problem to the more familiar totally ordered situation. Thus, if # is any positive
integer, there is an element &, of K and a value K, of k, in K such that K /&,
is totally ordered of dimension =#. Thus, if G, is a value of K, in G such that
K, = G, N\ K, then G/G, is totally ordered and contains K/K,. That G/G,
has dimension =7 is clear since each convex subgroup of K/K, is the inter-
section of a convex subgroup of G/G, with K/K,,.
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In [18] Sheldon considered the group .S of all functions f:Z, - Z @, Z
for which there exists ¢, b € Z such that f(rn) = (0, an + b) for all positive
integers n outside a finite set. Sheldon showed that .S is two-dimensional by
exhibiting all possible prime filters of the group. We offer an easier proof that
S is two-dimensional.

We observe that .S is a subcardinal product of (Z @, Z); for 7 € Z* and
contains Y. ; (Z @1 Z), (for let « = 0 and b = 0 in the above description of
an f € S). Furthermore, S/>.; (Z @, Z); is isomorphic to Z @; Z since the
map o : S—Z @y Z, where o(f) = (a,d) if f(n) = (0, an + b) for n outside
a finite set, is an /-map with kernel >_; (Z @, Z)..

That S is two-dimensional follows from the following general proposition.

ProrositioN 3.1. Suppose G is a lattice-ordered subcardinal product of G
such that 3"\ Hx C G, where Hy is a convex subgroup of the totally ordered group
G\ for each . If each totally ordered I-homorphic image of G/ >\ Hy is an I-homo-
morphic image of some Gy, then the same 1is true for G.

Proof. Suppose ¢ is an -homomorphism of G onto a totally ordered group T
with kernel K. If K D 3 H,, then T is an 0-homomorphic image of G/3 "\ H,.
If K 2 X\ Hy, then Hy, £ K for some \o. Then if ki, € Hy,\K and if h, is
positive, let H be the subgroup of I1, G\ of all elements with A, coordinate 0.
Note that #y, A B = 0 for any & € H and, in particular, for any 2 € H N G.
Thus, o(hy,) A o(h) = 0 and o(k) = 0 since 7" is totally ordered. Hence,
HNGC K and T" = G/K is an image of G/H M G. Furthermore, since G
is a subcardinal product of Gy, G/H N G = p,(G) = Gy, where p,, is the
projection of I1, G, onto Gy,. Consequently, 7" is an image of some G, and
the proposition is proved.

3. Eventually constant real sequences: By Proposition 3.1, the /-group G
of all eventually constant real sequences is one-dimensional since G/>_; R;~R
where R and R; denote the group of reals.

The I-group H of all integral valued eventually constant sequences is also
one-dimensional. Since H/Y; Z; ~ Z, Proposition 3.1 implies that all totally
ordered homomorphic images of H are isomorphic to Z. One can also compute
all prime subgroups of H as in [5, p. 202].

4. Free l-groups: Weinberg [20] has shown that a free abelian /-group of
rank « exists. The definition and construction are as follows. If F is free abelian
group on « generators, then a free abelian /-group over F is an Il-group F’
together with an isomorphism f : F — F’, such that for each /-group G and each
homomorphism ¢ : F — G, there is an /-homomorphism 7 : /' — G such that
7f = ¢. The traditional model is obtained by taking all possible total orders
Ty on F and letting F’ be the /-subgroup of the cardinal product of the totally
ordered groups (F, 7)) generated by the diagonal [4, p. 49]. Then, in this
context, F is identified with the diagonal of I, (F, 7)) under the map f.
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Each element of F’ is of the form

A V ay, wherea; € F.
i
ProrositioN 3.2. If n is a positive integer, then any free abelian l-group on n
generators has dimension n.

Proof. Clearly, if F is free on n generators the totally ordered group 7' of
dimension # with the lexicographic ordering is a homomorphic image of F.
This map can be lifted to a lattice homomorphism of F’ onto 7. Thus,
dim F’ = n. On the other hand, if ¢ is an [-map of F’ onto a totally ordered
group 77, then | F’ the restriction of ¢ to F, is a homomorphism of F into 1”.
Moreover, any x € [/ is of the form

AV A 14y where (127 E F,
iJ

and
U(x) = /\ V O'(U/”').
i

For some 7 and j, o(x) = o(ay,), since 7”7 is totally ordered. Therefore, o|F
maps F onto 77 and the rational rank of 7" is less than or equal to n. By
[21, p. 50], dim 7 =< n, and dim F’ = #n.

5. The ring E of entire functions: The question of the dimensionality of E
has an interesting history. Helmer [10] showed that E is a Bezout domain in
1940. In 1946, Schilling [17] claimed to have shown that £ is one-dimensional,
but, in 1952, Kaplansky showed that its dimension was at least two (Kaplan-
sky’s proof appears in [11]). Henriksen studied the ideal structure in [11; 12],
and in [12], he showed that P, the set of prime ideals contained in a free
maximal ideal M, is linearly ordered by inclusion and has cardinality at least
281, This should have settled the question; but in 1965, Fuster [7] claimed to
show that E is one-dimensional. Enochs reviewed Fuster’s paper for Zentral-
blatt and, in 1969 [6], published another proof that E is at least two-dimen-
sional. Laplaza [15] offers yet another proof that E is infinite dimensional.
Other proofs have been obtained by Alling [1] and Banaschewski [3].

We prove that E is infinite dimensional by embedding in G(E) a cardinal
product of countably many copies of Z. The factorization theorem of Weir-
strass [19, p. 298] is the clue to this embedding.

Iff€E,let

Z(f) = {(3, k)|z is a zero of f of multiplicity k}.

ProrositioN 3.3. The group of divisibility of the ring of entire functions
contains a cardinal product of countably many copies of L. In particular, the ring
of entire functions is infinite dimensional.
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Proof. Choose a countable set of points {w,};1 in C that satisfy the
hypothesis of Weirstrass’ Factorization Theorem, that is, {w,} is closed,
discrete subset of G. Then, Weirstrass’ Theorem implies that for any countable
set of non-negative integers {k,}; =1, there is an entire function f such that
Z(f) = {(wy, ky)}we1. Furthermore, for g € E, Z(f) = Z(g) if and only if
f and g are associates in E.

Now, if p = (p1,-+. ., Pu,--.) is an element of the cardinal product P of
countably many copies of Z, let p; = k; — [;, where k; and /; are non-negative
integers. Then, let f; and fs be entire functions such that Z(f1) = {(w,, k,)}m1
and Z(f2) = {(wy, l,)}ne1. Define ¢ : P — G(E) by o(p) = f/gE. Then, ¢ is
an /-isomorphism of P into G(E), and the proposition is proved.

In [10, p. 349], Helmer showed that G(E) is a complete /-group. For an
arbitrary integral domain D, it is easy to see that G(D) is complete if and
only if each non-zero v-ideal of D is principal, and, in this case, D must be
completely integrally closed.

In a complete [-group each prime filter contains a unique ultrafilter
[2, p. 121]. Thus, Corollary 2.4 leads immediately to Proposition 3.4 and
subsequently to a result of Henriksen [12].

ProposITION 3.4. If D is a Bezout domain with complete group of divisibility,
then each non-zero prime ideal of D 1is contained 1n a unigue maximal ideal.

CoroLLARY 3.5 (Henriksen). Each non-zero prime ideal of the ring of entire
functions 1s contained in a unigue maximal ideal.
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