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ON CHAIN CONDITIONS IN INTEGRAL DOMAINS 

BY 

V A L E N T I N A B A R U C C I * A N D D A V I D E . D O B B S f 

ABSTRACT. The following two theorems are proved. If R is an 
Archimedean conducive integral domain, then R is quasilocal and 
dimCR)<l. If each overring of an integral domain JR has ascending 
chain condition on divisorial ideals, then the integral closure of R is 
a Dedekind domain. Both theorems sharpen results already known 
in the Noetherian case. The second theorem leads to a strengthened 
converse of the Krull-Akizuki Theorem. We also investigate the 
effect of restricting the hypothesis in the second theorem to the 
proper overrings of R. 

1. Introduction. The two theorems in this note generalize some known facts 
concerning Noetherian integral domains by replacing "Noetherian" hypotheses 
with appropriate chain conditions. The first of these concerns the recent result 
of Dobbs-Fedder [4, Corollary 2.7] that a conducive Noetherian integral 
domain must be local and of (Krull) dimension at most 1. (All relevant 
definitions will be recalled below, as needed.) In Theorem 2.2, this result is 
sharpened by replacing "Noetherian" with the weaker "Archimedean" condi­
tion. 

Our second result concerns the converse of the Krull-Akizuki Theorem (cf. 
[10, Exercise 20, page 64]), in the version stating that if all overrings of an 
integral domain R are Noetherian then R', the integral closure of JR, is a 
Dedekind domain. Several recent papers have shown that by imposing various 
weak finiteness or divisibility conditions on the overrings of an integral domain 
R, one can ensure that R' is at least a Prufer domain. (See [1, Theorem 2.1] 
and Proposition 3.1 for some results in this direction.) Theorem 3.4 establishes 
that R' must in fact still be a Dedekind domain if one assumes only that the 
overrings of R each satisfy the ascending chain condition on divisorial ideals. 
One consequence, Proposition 3.7(b), is a further sharpening of the converse of 
the Krull-Akizuki Theorem. The concept of complete integral closure plays a 
central role in the proofs of both our theorems, producing results (Propositions 
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2.1 and 3.3) of some independent interest. Section 3 also sharpens some 
classification results in [11] and [1]; and treats related classes of integral 
domains, including i.a., those for which the ascending chain condition on 
divisorial ideals holds in all proper overrings. 

Throughout, R will denote an integral domain, with integral closure R', 
complete integral closure JR*, and quotient field K. Any unexplained material 
may be found in [1], [6], [10]. 

2. Archimedean conducive domains. Following [14], we say that an integral 
domain R is Archimedean in case f] Rrn = 0 for each nonunit reR. The most 
natural examples of Archimedean integral domains are arbitrary completely 
integrally closed integral domains; arbitrary one-dimensional integral domains 
(by [12, Corollary 1.4]); and, as a consequence of the Krull Intersection 
Theorem, arbitrary Noetherian integral domains. We next give a helpful 
characterization of such rings. As usual, U(A) will denote the group of units of 
a ring A. 

PROPOSITION 2.1. The following conditions on R are equivalent: 
(1) U(S)nR = U(R) for each overring S of R which is contained in R*; 
(2) U(R*)nR = U(R); 
(3) R is Archimedean. 

Proof. (1)4>(2): Trivial. 
(2)=>(3): Let r, d be nonzero elements of JR such that deC\Rrtl. As 

d ( r _ 1 ) n e l? for each n > 0 , r"1 is almost integral over R; that is, r_ 1e.R*. 
Then re U(R*)nR; so, by (2), reU(R), as desired. 

(3)=^(1): One inclusion is trivial. For the other inclusion, consider any 
element re U(S)DR. As S<^R*, r_1 is almost integral over R; that is, there 
exists a nonzero element deR such that d(r - 1 ) n e.R for each n > 0 . Since 
d e p | Rrn, (3) implies re U(R), completing the proof. 

As in [4], we shall say that R is conducive if, for each overring T of R other 
than K, the conductor (R:T) = {ueK:uT^R} is nonzero. Familiar examples 
of conducive integral domains are arbitrary valuation domains and arbitrary 
D + M constructions. In [4, Corollary 2.7], it was shown that a Noetherian 
conducive integral domain must be local and of dimension at most 1. The proof 
used the main theorem in [4, section 2], the principal ideal theorem, and a 
result of Chevalley, itself a consequence of the Cohen structure theory for 
complete local rings. An alternative proof, sketched in [4], appealed to the 
main theorem in [4, section 2] and the Mori-Nagata Theorem. We next 
generalize [4, Corollary 2.7] with a result whose elementary proof avoids any 
appeal to deep facts about Noetherian rings. (For another instance where 
"Archimedean" reduces to "dimension at most 1", see [3, Proposition 3.5].) 
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THEOREM 2.2. Let R be conducive. Then R is Archimedean if and only if R is 
quasilocal and d im(l?)<l . 

Proof. By the above-cited result from [12], we need only prove the "only if" 
assertion. Assume R is Archimedean. It is enough to show that if P is a 
nonzero prime ideal of R, then R\P = U(R). Note first that (R : RP) j= 0, since 
JR is conducive. Thus, by [6, Lemma 26.5], RPc:R*. As R is Archimedean, 
Proposition 2.1 yields U(RP)PiR = U(R). Since U(RP)HR = R\P, the proof 
is complete. 

REMARK 2.3. It is interesting to note that Theorem 2.2 admits a proof in the 
spirit of that given for [4, Corollary 2.7]. Indeed, it is enough to show that 
M^N for any nonzero prime ideals M, N of R. If this fails, choose reM\N 
and consider I = (R :.R[r-1]). Since R is (simply) conducive, it follows that 
Ij= 0. As I = IRlr"1], we see that I <= rl, whence I <= p | Irn. Since R is Archime­
dean and r is a nonunit, 1 = 0, the desired contradiction, completing the proof. 

In view of the pullback characterization of seminormal conducive domains 
[4, Proposition 2.12(i)], Theorem 2.2 leads easily to a result which simultane­
ously generalizes [4, Corollaries 2.6 and 2.9]. We leave its formulation to the 
reader. 

3. Mori overrings. As usual, we shall take a Mori domain to be an integral 
domain satisfying the ascending chain condition on divisorial ideals. We shall 
be interested in knowing what happens if each overring of R is a Mori domain. 
Initially, one can assume less than "Mori", just the ascending chain condition 
on principal ideals, in short, accp. Of course, the accp condition is still strong 
enough to have useful consequences: Archimedean, for instance. 

Mott-Gilmer [11] characterized the integral domains whose proper overrings 
are all Noetherian; and Anderson-Anderson-Dobbs-Houston [1] classified the 
integral domains whose proper overrings are Krull domains. We next give an 
analogous Archimedean-theoretic classification result, and follow it with a 
contribution to the accp-theoretic situation. 

PROPOSITION 3.1. (a) Each overring of R is Archimedean if and only if Rf is a 
Prufer domain and d im(i?)<l . 

(b) Each proper overring of R is Archimedean if and only if one of the 
following two conditions holds: 

(i) R' is a Prùfer domain and dimCR)<l; 
(ii) R is a valuation domain and dimCR) = 2. 

Proof, (a) A valuation domain V is Archimedean if and only if d im(V)< l 
(cf. [3, Remark 3.2]). If each overring of R is Archimedean then dim^CR), the 
valuative dimension of R, is therefore at most 1, and [9, Corollaire 3, page 61] 
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(cf. also [7, Theorem 6]) then implies that R' is a Priifer domain (and 
dim(l?)<l) . 

Conversely, if JR' is a Priifer domain and dim(K) < 1, then [6, page 363, lines 
2-4] gives (the second equation in) 

dim,, (J?) = dim^CR') = dim(.R') = dim(l?) < 1, 

so that [12, Corollary 1.4] implies that each overring of R is Archimedean. 
(b) If JR is a valuation domain, then the proper (valuation) overrings of R 

are the rings RP, P ranging over the nonmaximal primes of R [6, Theorem 
26.1(1)]. Therefore, (b) follows from (a), to complete the proof. 

The reader will have noticed from the above proof that the Archimedean 
condition in Proposition 3.1(a) (resp., (b)) need only be imposed on the 
valuation (resp., proper valuation) overrings of R. Such a statement is given for 
the next result, for which we give a proof independent of Proposition 3.1. 

LEMMA 3.2. Assume that each proper valuation overring of JR satisfies accp. 
Then R' is a Priifer domain. In fact, (at least) one of the following three 
conditions holds: 

(i) R is a valuation domain and d im( i?)<l ; 
(ii) R is a valuation domain, dim(JR) = 2, and RP is a DVR, where P denotes 

the height 1 prime ideal of R ; 
(hi) R' is an almost Dedekind domain. 

Note that (i), (ii) each imply that the proper overrings of R are all Noeth-
erian. A classification result in the spirit of [11], [1] would require deeper 
analysis of case (iii). 

Proof of Lemma 3.2. A valuation domain V satisfies accp if and only if V is 
either a DVR or a field. So, if R is not a valuation domain, [6, Theorem 36.2] 
yields (iii). Without loss of generality, R can thus be assumed a valuation 
domain. Since the proper (valuation) overrings of JR are the rings JRP, P ranging 
over the nonmaximal primes of R [6, Theorem 26.1(1)], it is easy to see then 
that either (i) or (ii) holds. 

PROPOSITION 3.3. Assume that each proper simple overring of JR satisfies accp. 
Then: 

(a) Either R is integrally closed or R* = R'. 
(b) Assume, in addition, that R satisfies accp. (For instance, assume that R is 

not quasilocal.) Then JR* = £ ' . 

Proof, (a) Suppose that JR is not integrally closed. Of course, R' <= R*. If the 
reverse inclusion fails, consider s e R*\R', and set T = Rls'1]. We claim that T 
is a proper overring of JR. Otherwise, select ueR'\R, set S = i?[w], observe 
that S is Archimedean (since it satisfies accp by hypothesis), and conclude via 
Proposition 2.1 that s _ 1 e l / (S*)nS = U(S), whence seR', a contradiction. 
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Note next that s£Rf forces s£T (cf. [10, Theorem 15]). Moreover, since 
s 6 JR*, there exists a nonzero element d e R such that dsn eR for each n > 0 . 
Then {Tdsn} forms a strictly ascending chain of principal ideals of T, contrary 
to hypothesis. Thus, as desired, no such s exists. 

(b) If R satisfies accp, one can argue as in (a), ignoring u and S, since it is 
immaterial for present purposes whether the overring T is proper. 

As for the parenthetical assertion, if R is not quasilocal, there exist nonunits 
/, g in £ such that (/, g) - R. Then R = R[f~l] H R[g~x] (cf. [1, Lemma 2.10]), 
an intersection of two integral domains each satisfying accp. Hence R also 
satisfies accp, and the proof is complete. 

To place the next result in perspective, recall that the integral closure of a 
Mori domain need not even be a Krull domain [2, Examples 3.8(b)]. 

THEOREM 3.4. If each overring of R is a Mori domain, then R' is a Dedekind 
domain and dimCR)<l. 

Proof. Since R' inherits the hypotheses from R, applying Proposition 3.3 to 
R' reveals that R' is completely integrally closed. As R' is a Mori domain by 
hypothesis, JR' is therefore a Krull domain. However, by Proposition 3.1 or 
Lemma 3.2, R' is also a Priifer domain. An application of [6, Theorem 43.16] 
now establishes the first assertion, and the second follows by integrality (cf. [10, 
Theorem 48]). 

Since each overring of a Dedekind domain is also a Dedekind domain, hence 
Noetherian and integrally closed, we immediately infer 

COROLLARY 3.5. R is a Dedekind domain if and only if R is integrally closed 
and each overring of R is a Mori domain. 

We recall the next useful result of Querré, as a companion for Corollary 3.5. 
In conjunction with Lemma 3.2, it can lead to an alternate proof of Theorem 
3.4 which avoids mentioning JR*. 

PROPOSITION 3.6 (cf. [13, Corollaire 2]). R is a Dedekind domain if and only 
if R is both a Prufer domain and a Mori domain. 

We next give a strengthened version of the converse of the Krull-Akizuki 
Theorem. Recall first that an integral domain S is called coherent in case I CM 
is a finitely generated ideal of S for each choice of finitely generated ideals I, J 
of S. Natural examples of coherent integral domains include arbitrary Noeth­
erian domains and arbitrary Prùfer domains. 

PROPOSITION 3.7. (a) If R is a coherent Mori domain, then each divisorial 
ideal of R is finitely generated. 

(b) Each overring of R is a coherent Mori domain if and only if R is 
Noetherian and dimCR)<l. 
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Proof, (a) Let I be a divisorial ideal of R. Since R is a Mori domain, 
(R : I) = (R : / ) for some finitely generated ideal J of R which is contained in I 
[13, Théorème 1]. Write J = YJRat for some finite generating set, {at}. Since R 
is coherent, (R : J) = fl (R : a,) is a finitely generated JR-submodule of K, hence 
of the form b~xD for some bejR and finitely generated ideal D of R. Then 

I = (R:(R:I)) = (R: b~xD) = b(R:D) = (R:D) 

is indeed finitely generated. 
(b) We need only tend to the "only if" half. As each overring of R is a Mori 

domain, Theorem 3.4 (or Proposition 3.1(a)) assures that dim(i?) = dim(I?') — 
1. By the criterion of Cohen (cf. [10, Theorem 8]), it is therefore enough to 
prove that each height 1 prime ideal P of R is finitely generated. However, 
since R is a Mori domain, [13, Proposition 1] shows that any such P is 
divisorial, and so an appeal to (a) completes the proof. 

A principal consequence of [11] is the following classification result. Each 
integral domain whose proper overrings are all Noetherian must be (at least) 
one of the following three types: Noetherian of dimension at most one, 
valuation domain of dimension one, or two-dimensional valuation domain with 
a DVR overring. By Proposition 3.7(b), this result can be sharpened, for we 
now see that the same catalogue classifies the integral domains whose proper 
overrings are all coherent Mori domains. 

It seems worthwhile to indicate next that the hypotheses of Theorem 3.4 
accommodate more rings .R than the union of the earlier-mentioned catalogues 
in [11] and [1]. First, recall from [8] that a pseudo-valuation domain is a 
(necessarily quasilocal) integral domain which has a (uniquely determined) 
valuation overring with the same set of prime ideals. 

REMARK 3.8. (a) Let F/fc be an infinite-dimensional algebraic field extension 
and let V = F + M be a DVR with maximal ideal M. (For instance, V = F[[X]], 
M = XV.) Set S = k + M. Then each overring of S is a Mori domain. Moreover, 
if ueF\k, then T=k(u) + M is an overring of S which is neither Noetherian 
nor a Krull domain. 

Being Noetherian, V and the quotient field of S are certainly Mori domains. 
The only other overrings of S take the form A=L + M, where L ranges over 
the fields intermediate between k and F. As such a ring A is a pseudo-
valuation domain, [8, Corollary 2.15] shows that the nonprincipal divisorial 
ideals of A are just the nonzero ideals of its canonically associated valuation 
overring V It is easy to show that A satisfies accp: cf. [3, page 373, lines 5-8]. 
Thus A is a Mori domain. (Another way to see this is by appeal to [2, Theorem 
3.2]: A inherits the "Mori" property from V since Spec(A) = Spec( V) as sets.) 
Finally, T is not Noetherian since [F:k(w)] = oo (cf. [6, Exercise 8(3), page 
270]); and T is not a Krull domain since T' = V ^ T. 
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(b) As surveyed in [5], arbitrary pseudo-valuation domains admit a tracta­
ble, though not necessarily D + M, pull back structure. One may therefore 
adapt the argument in (a), to prove the following generalization. Let S be a 
pseudo-valuation domain, with maximal ideal M and canonically associated 
valuation domain V. Assume that VIM is an infinite-dimensional algebraic 
extension of SIM. Then each overring of S is a Mori domain, and S has a 
proper simple overring which is neither Noetherian nor a Krull domain. 

COROLLARY 3.9. If each proper overring of R is a Mori domain, then (at least) 
one of the following three conditions holds: 

(i) R is a valuation domain and dim(jR)<l; 
(h) Ris a valuation domain, dim(R) = 2, and RP is a DVR, where P denotes 

the height 1 prime ideal of R ; 
(iii) R' is a Dedekind domain. 

Proof. Suppose first that R is not integrally closed. Then JR' is a Mori 
domain by hypothesis and, by Proposition 3.1 or Lemma 3.2, R' is also a 
Priifer domain. An application of Proposition 3.6 yields (iii). (An alternate 
proof for this case proceeds by applying Theorem 3.4 to Rf.) 

Thus we may assume that R is integrally closed and, by Lemma 3.2, actually 
an almost Dedekind domain. Let T be any proper overring of R other than K. 
By [6, Corollary 36.3], T is also an almost Dedekind domain and, a fortiori, 
integrally closed. Then by applying Theorem 3.4 to T, we conclude that T is a 
Dedekind domain. In other words, each proper overring of R is a Dedekind 
domain. Mott-Gilmer have also catalogued this situation, and an application of 
their result [11, Theorem 2] completes the proof. 

Let P be one of the following six properties: Krull domain, Dedekind 
domain, PID, UFD, GCD-domain, Bézout domain. In [1, Theorem 3.4, 
Proposition 3.5, Corollary 3.6], it was proved that if each proper simple 
overring of R has P, then so does each proper overring of R. We next show 
that the property considered in Corollary 3.9 behaves differently. 

REMARK 3.10. There exists an integral domain S such that each proper 
simple overring of S is a (coherent) Mori domain but not every proper overring 
of S is a Mori domain. 

To see this, it is enough to let S be any Noetherian UFD of dimension n > 2, 
for instance the regular local ring fc[[Xl5..., Xn]]. The assertion regarding 
proper simple overrings follows from Hilbert Basis Theorem. Moreover, Corol­
lary 3.9 shows that not all proper overrings of S are Mori domains, since S = S' 
is not a Priifer domain. 

Our final result sharpens some work done in [1]. It is a classification result, in 
the spirit of [11] and [1]. Recall first that a proper overring T of JR is said to be 

https://doi.org/10.4153/CMB-1984-053-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1984-053-1


358 VALENTINA BARUCCI AND DAVID E. DOBBS [September 

the unique minimal overring of R in case T is contained in each proper overring 
of R. 

PROPOSITION 3.11. The following four conditions on R are equivalent: 
(1) Each proper simple overring of R is an integrally closed Mori domain; 
(2) Each proper overring of R is an integrally closed Mori domain; 
(3) Each proper overring of R is a Dedekind domain; 
(4) At least one of the following four conditions holds: 

(i) R is a valuation domain and dim(jR)<l; 
(ii) R is a valuation domain, dim(R) = 2, and RP is a DVR where P 

denotes the height 1 prime ideal of R; 
(iii) R is a Dedekind domain; 
(iv) R is quasilocal and Rf is a Dedekind domain which is the unique 

minimal overring of R. (Moreover, R is a one-dimensional Noetherian 
integral domain and R' is a PID). 

Proof. The reader may easily verify that (4) => (3) => (2) =̂> (1). 
For the parenthetical assertion in (4, iv), note that R inherits the Noetherian 

property from R', by virtue of Eakin's Theorem; and R' is a semilocal [10, 
Exercise 21, page 64] Dedekind domain, hence a PID. 

It remains to show (1) => (4). Assume (1). Since each proper simple overring 
of R is integrally closed, [1, Corollary 3.2] shows that each proper overring of 
R is integrally closed and JR' is a Priifer domain. By Proposition 3.6, each 
proper simple overring of R (must contain R' and so) is a Dedekind domain. 
We easily infer (3). The proof may now be completed in either of two ways. 
The first is by appeal to [1, Proposition 2.11, Theorems 2.12 and 3.4]. 
Alternatively, use Corollary 3.9, noting in case R^ R' that R is quasilocal, lest 
R be the intersection of integrally closed (localization) overrings. 
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