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ABSTRACT: As COVID-19 continues, a safe, cost-effective treatment strategy demands continued inquiry. Chronic neuroinflammatory dis-
orders may appear to be of little relevance in this regard; often indolent and progressive disorders characterized by neuroinflammation (such as
Alzheimer’s disease (AD)) are fundamentally dissimilar in etiology and symptomology to COVID-19’s rapid infectivity and pathology. However,
the two disorders share extensive pathognomonic features, including at membrane, cytoplasmic, and extracellular levels, culminating in analo-
gous immunogenic destruction of their respective organ parenchyma. We hypothesize that these mechanistic similarities may extent to thera-
peutic targets, namely that it is conceivable an agent against AD’s immunopathymay have efficacy against COVID-19 and vice versa. It is notable
that while extensively investigated, no agent has yet demonstrated significant therapeutic efficacy against AD’s cognitive and memory declines.
Yet this very failure has driven the development of numerous agents with strongmechanistic potential and clinical characteristics. Having already
approved for clinical trials, these agents may be an expedient starting point in the urgent search for an effective COVID-19 therapy. Herein, we
review the overlapping Alzheimer’s/ COVID-19 targets and theorize several initial platforms.

RÉSUMÉ : La maladie d’Alzheimer et le chevauchement pathogène de la COVID-19 : implications pour le repositionnement des
médicaments employés. Alors que la pandémie de COVID-19 se poursuit, une stratégie de traitement sécuritaire et efficace par rapport au
coût exige des efforts continus en recherche. À cet égard, les troubles neuro-inflammatoires chroniques peuvent sembler peu pertinents.
Souvent indolents et progressifs, les troubles caractérisés par une neuro-inflammation, par exemple la maladie d’Alzheimer, sont fondamentale-
ment différents, dans leur étiologie et leur symptomatologie, de l’infectiosité rapide et de la pathologie de la COVID-19. Cependant, ces deux
maladies partagent des caractéristiques pathognomoniques étendues, y compris aux niveaux membranaire, cytoplasmique et extracellulaire, qui
aboutissent à une destruction immunogène analogue du parenchyme de leurs organes respectifs. Nous émettons donc l’hypothèse que ces simil-
itudesmécanistiques peuvent s’étendre à des cibles thérapeutiques, à savoir qu’il est concevable qu’un agent contre l’immunopathie de lamaladie
d’Alzheimer puisse être efficace contre une infection à la COVID-19 et vice-versa.Malgré des recherches approfondies en lamatière, il est à noter
qu’aucun agent n’a encore fait preuve d’une efficacité thérapeutique notable contre le déclin des fonctions cognitives et de la mémoire dans le cas
de lamaladie d’Alzheimer. C’est pourtant cet échec qui a conduit au développement de nombreux agents dotés d’un fort potentiel mécanistique et
de caractéristiques cliniques. Ayant déjà été approuvés pour des essais cliniques, ces agents peuvent constituer un point de départ avantageux dans
la recherche urgente d’une thérapie efficace contre les infections à la COVID-19. En somme, nous voulons ici passer en revue les cibles de la
maladie d’Alzheimer et de la COVID-19 qui se recoupent et théoriser, pour ce faire, plusieurs avenues initiales de recherche.
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Introduction

COVID-19 has emerged as the defining pandemic of our age. As
resurgent outbreaks continue to escalate prevalence and mortality,
and public patience for restrictive social health measures wanes,
the search for an effective therapy demands ongoing urgency.1,2

Currently, there are multiple strategies under continuing explora-
tion for the development of treatments, which include re-evaluation of
prior coronavirus (SARS and MERS) therapies;3,4 development of
novel antivirals, as well as adjunctive innovations in testing and pro-
phylaxis/vaccination. All are worthwhile and necessary avenues of
inquiry; yet an additional, and frequently disregarded, area of research
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is the repurposing of existing therapeutics among disorders sharing
etiological and pathological overlap with COVID-19. Like
Alzheimer’s disease (AD), COVID-19 is a global disease, demanding
cost-effective, available global solutions – drug repurposing is one
avenue to such solutions.

Disorders of neuroimmunology, such as AD, may appear to show
little relevance to therapydevelopment forCOVID-19.As aprogressive
disorder of neurodegeneration,marked by gradual declines ofmemory,
cognition, and executive function, AD bears remarkably little in
common to a rapid viral infection of the lung and other organs.
However, both diseases share an immunogenic destruction of their
respective organ parenchyma which bears substantial mechanistic
overlap. As we briefly outline in this perspective, this destruction
may also derive from similar cellular and signaling pathways.
Moreover, with a propensity for COVID-19 to induce severe disease
among the elderly, the diseases also share a common risk pool.

Herein, we present an argument that this pathological overlap
may be a viable, and yet unexplored, therapeutic avenue. Namely,
that therapies developed for Alzheimer’s immunopathy may have
utility against COVID-19. It is notable that currently no small mol-
ecule disease-modifying therapies against AD exist. However, the
very lack of a therapy has driven hundreds of clinical trials over the
past decades, affording a wide body of work – well evidenced and
rigorously assessed. Nonetheless, only a small number of those tri-
als have been positive, namely the β-amyloid (Aβ)-targeting mon-
oclonal antibodies, donanemab and lecanemab.5,6 Furthermore,
treatments against COVID-19 need not contend with the
blood–brain barrier, abstract variables such as memory or

cognition, or arresting disease processes which have preceded
the treatment by years, if not decades. It is therefore possible that
with sound mechanistic justification, a treatment candidate for
COVID-19 could be discerned from AD research. It is also con-
ceivable that in years to come, therapeutics devised for the
COVID-19 pandemic may have some utility in the development
of a treatment for the AD pandemic.

Mechanistic Similarities between AD and COVID-19

AD and Its Immunopathy

AD is characterized by cytotoxic immuno-inflammation syner-
gised with concomitant neurotoxic protein misfolding of Aβ and
tau, culminating in parallel, interconnected proteopathic and
immunopathic pathogeneses (see Figure 1).7

The precise etiology of these events remains intensely contro-
versial with neither the proteopathies nor the immunopathies
definitively shown to precede the other; however, it is established
that once aggregated, AD’s proteopathies can recruit an expanded
innate immune response involving a complement cascade (initi-
ated by C1q); the production of inflammatory cytokines (interleu-
kins [IL], interferons [IFN]); and elevation of inflammation-
associated peptides: IL-1R1, IL-3, IL-4, IL-6, IL-10, IL-12, IL-13,
IFN-γ, intracellular adhesion molecule 1 (ICAM-1), macrophage
inflammatory proteins (MIP-1α/MIP-1β), S100 calcium-binding
protein B (S100β), and stromal cell-derived factor 1 (SDF-1).8

This hyper-inflammatory state can further promote
localized microglia-mediated dysregulation of innate immunity,

Figure 1: Alzheimer’s immunopathy. Multiple concurrent immunopathies are described in AD. These include complement activation via factor C1q, a pro-inflammatory cytokine
cascade (involving IL-1R1, IL-3, IL-4, IL-6, IL-10, IL-12, IL-13, IFN-γ, ICAM-1, MIP-1α/MIP-1β, S100β, and SDF-1); microglial dysregulation –mediated by TLR4 and CD14 stimulation
causing additional pro-inflammatory cytokine release (TNF-α and IL-1β); mTOR/GSK3β/CDK5 pathway activation. These reciprocally interact with Aβ and tau proteopathies, likely
in synergism, and contribute to neurotoxicity and cell death.
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co-operatively augmenting ongoing proteopathic–immuno-
pathic neurotoxicities. Converse activation of other cellular
pathways, including mammalian target of rapamycin
(mTOR), glycogen synthase kinase 3 beta (GSK3β), and cyclin
dependent kinase-5 (Cdk5) kinases, can reciprocally augment
neurotoxicities and inhibit neuroprotective mechanisms such
as autophagy. These pathological processes afford multiple
druggable targets against AD’s combined proteopathic–-immu-
nopathic assault. Other cellular targets, including membrane
lipids (especially cholesterol), mitochondria, endoplasmic
reticulum (ER), and synapses, also provide complementary
druggable targets within the pathogenic cascade of AD.

COVID-19 and Its Immunopathy

COVID-19 is typically the manifestation of SARS-CoV-2 viral
pneumonia. It arises both from infective destruction of local lung
parenchyma and principally from cytotoxic immuno-inflamma-
tion induced by dysregulated activation of lung and systemic
immune elements. This culminates in parallel, interconnected viral
and immunopathic pathogeneses (See Figure 2).

Viral pathology commences with binding of coronavirus S-pro-
tein to host cells via the angiotensin-converting enzyme 2 (ACE2)
receptors,9 with subsequent membrane fusion and viral RNA
release. As the virus replicates, an expanded innate immune
response that is promoted by pathogen-associated molecular pat-
terns (PAMPs) begins to accrue. As with AD immunopathy, this
can elicit a complement cascade and lead to the production of
inflammatory cytokines and inflammation-associated peptides,
including: IL-1, IL-2, IL-4, IL-6, IL-7, IL-10, IL-12, IL-13, IL-17,
granulocyte colony stimulating factor (GCSF), macrophage
colony-stimulating factor (MCSF), interferon γ-induced protein
10 (IP-10), monocyte chemoattractant protein-1 (MCP-1),
MIP-1α, hepatocyte growth factor (HGF), IFN-γ, and TNF-α.10

Among the pro-inflammatory cascade induced by this signal-
ing, a key element of COVID-19 is the immunogenic activation
of lung antigen presenting cells (dendritic cells and macrophages).
These cells can augment the existing inflammatory response;
moreover, they are also subject to direct infection by SARS-
CoV-2. Once infected, extensive dysregulation occurs, likely
involving toll-like receptors (TLR3, TLR7), activation of NF-κB
and interferon regulatory factor 3 (IRF3), the production of type

Figure 2: COVID-19 immunopathy. Upon adhesion and infection of cells, COVID-19 induces cytological damage, culminating in the release of PAMPs. These signals, in turn with
immunogenic reactions to the virion itself, lead to activation of complement, concomitant with a pro-inflammatory cytokine storm (involving IL-1, IL-2, IL-4, IL-6, IL-7, IL-10, IL-12,
IL-13, IL-17, GCSF, MCSF, IP-10, MCP-1, MIP-1 α, HGF, IFN-γ, and TNF-α). Cumulatively, these promote macrophage activation and dysregulation via the TLR3/TLR7 receptors,
mediating additional cytokine release. This can be accompanied by mTOR signaling with modulates the humoral response against the infection.
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I interferons (IFN-α /β), and additional pro-inflammatory cyto-
kines.11 A humoral response is also initiated via mTOR signaling
providing cross-protective immunity to virus particles.12,13

The pathology of COVID-19 is thus a dual viral and immuno-
pathic assault. Multiple additional elements, such as membrane/
receptor regulation, and mitochondrial/endoplasmic reticular
integrity contribute to COVID-19 pathology and inevitably com-
plicate the pathogenesis. However, from the simplified dual-hit
model, we derive two broad therapeutic avenues: an antiviral
approach and an immuno-regulatory approach. The latter shall
be the subject of this review due to its overlap with AD.

Targeting Shared AD/COVID-19 Molecular Pathogeneses

AD and COVID-19’s shared immunogenic pathologies yield
multiple molecular targets at the extracellular (macrophage/micro-
glial, cytokine) and cellular (membrane, cytoplasmic organelle)
levels; particularly, the immune-mediated destruction of their
respective organ parenchyma yields substantial mechanistic over-
lap. We conjecture that it is these congruent disease mechanisms
which may offer mutual druggable targets (see Figure 3).

Targeting Macrophages/Microglia and Cytokine Release

Macrophages (microglia) and cytokines play key roles in disease
progression in both AD and COVID-19. In AD, many years of
slow, indolent pro-inflammatory cytokine secretion contribute
to chronic neuronal damage; in COVID-19, a rapid release of
pro-inflammatory cytokines culminates in an acute lung-damag-
ing hypercytokinemia (“cytokine storm”), a self-targeting injurious
inflammatory response syndrome.14

In AD, the contributions of immuno-inflammatory processes
to disease progression are being increasingly understood.
Reactive gliosis, microglial dysfunction, and neuroinflammation,
collectively termed “microgliopathy,” are now accepted pathologi-
cal hallmarks of AD. Microgliopathy-associated molecules include
two important contributors: the triggering receptor protein
expressed on myeloid cells-2 (TREM2), and the 12 kDa DNAX
activating protein (DAP12).15 Upon stimulation, TREM2 engages
DAP12, causing the two tyrosines on its immunoreceptor tyrosine-
based activation motif to become phosphorylated, activating a sig-
naling cascade promoting cellular functions such as phagocytosis,
pro-inflammatory cytokine production, and cytoskeletal
rearrangement.

Figure 3: Overlapping therapeutic targets between AD and COVID-19. Similarities in the pathogenesis of Alzheimer’s disease and COVID-19 suggest the possibility of repurposing
existing AD research and therapeutics against COVID-19. These include elevated inflammation via macrophage/microglial dysregulation – possibly mediated via TREM2/ DAP12
pathways; membrane and lipid dysregulation; mitochondrial dysregulation –mediated via the TPSO pathway in AD, and the MAVS pathway in COVID-19, converging on the VDAC1
channel; and endoplasmic reticular dysfunction – targeting stress or ER-phagy.
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Microglial regulation has received considerable attention
among AD therapeutics due to putative associations with Aβ
and tau.16 Notably, DAP12 also plays a significant general role
in coronavirus systemic viral infections.17 It has been shown to
have activating effects on myeloid, natural killer (NK), and T
helper cell function during immune responses to an infectious
pneumonia.18,19 Consequently, DAP12 may be a potential AD/
COVID-19 overlapping target.

In addition to macrophages/microglia, the pro-inflamma-
tory cytokines are themselves extracellular targets. IL-6 and
TNF-α are two pro-inflammatory cytokines significantly impli-
cated in AD and COVID-19. In AD, cytokines, such as IL-6,
IL-18, IL-10, TNF-α, and TGF-β1, can affect the metabolism
of amyloid precursor protein (APP), augmenting APP expres-
sion and impacting Aβ production/deposition.20 IL-6 has pleio-
tropic effects inducing APP expression and ultimately extensive
chronic gliosis.21 TNF-α, also actively produced by microglia
during inflammation, stimulates BACE1 (Beta-Secretase 1)
expression, induces APP mRNA expression in a dose-depen-
dent manner via NF-κB activation, and enhances amyloidogenic
processing from APP expressing astrocytes and cortical neu-
rons. In COVID-19, IL-6 and TNF-α are two of the principal
cytokines participating in the pulmonary hyper-inflammatory
macrophage activation cytokine release syndrome. In accor-
dance with these observations, therapeutics targeting TNF-α
have been evaluated in animal models and small human trials
suggesting some efficacy against AD;22 biologics targeting
IL-6 (tocilizumab, sarilumab) were evaluated in open label trials
suggesting efficacy against COVID-19.

AD and COVID-19 both involve extensive pro-inflammatory
contributions to their pathogenesis. DAP12 and cytokines such
as IL-6 and TNF-α represent key opportunities for exploiting
AD/COVID-19 target overlap when selecting therapeutics for
repurposing.

Targeting Membrane Lipids

Membrane structural components, such as lipid rafts and choles-
terol, are involved in endocytosis and modulate the processes
whereby misfolded neurotoxic peptides such as Aβ and toxic
viruses attach and penetrate cells. Accordingly, lipid metabolism
is a target-rich opportunity when seeking to exploit AD/
COVID-19 pathogenic overlaps.

In AD, lipids play essential roles in disease pathogenesis, particu-
larly through lipid raft macromolecular aggregates.23 Lipid rafts are
membrane microdomains, enriched in cholesterol and sphingolipids
(ceramide, sphingomyelin, and glycosphingolipids). They function as
cell-signaling mediators and participate in the pathology of AD by
promoting the generation, aggregation, and insertion of amyloid into
neuronal membranes, as well as enabling the toxic signaling mecha-
nisms that underlie synaptic dysfunction. Beyond altered raft struc-
ture, dysregulated lipid homeostasis contributes to AD
pathogenesis via various mechanisms involving alterations in intes-
tinal microbiota, the gut–brain axis, neuronal signaling pathways,
blood–brain barrier integrity, mitochondrial function, and pro/anti-
inflammation balances.24 Although multiple different lipids individu-
ally contribute, cholesterol is especially relevant. Excess brain choles-
terol is linked to increased formation and deposition of β-amyloid
from APP, through BACE1 and γ-secretase activities. Moreover,
elevated cholesterol levels in mid-life are an AD risk factor; choles-
terol-lowering statins may reduce this risk.25,26 Thus, accumulating

animal and human studies evidences a mechanistic link between
lipid/cholesterol metabolism and AD disease progression.

In COVID-19, multiple veterinary and human studies are like-
wise indicating a relationship between lipid/cholesterol metabo-
lism and coronavirus infections. This is not surprising given the
importance of membrane lipid composition to the processes of
viral attachment, penetration, repackaging, and release.
Membrane-based cholesterol and in particular species localized
to lipid rafts are indispensable biomolecules for coronavirus infec-
tion; modulation of levels of host cholesterol facilitates viral entry,
replicative complex formation, assembly, egress, and control of the
interferon type I response.27 Clinically, a 12-year follow-up survey
of 25 patients who recovered from SARS-CoV infection found that
68% had hyperlipidemia.28 Among COVID-19 populations, lipide-
mia and LDL levels also exhibit strong correlations to disease
severity and prognosis, though the precise directionality of the
trend remains controversial.29,30

As dysregulated lipid metabolism and elevated cholesterol are
risk factors for both AD and COVID-19, this may be yet another
druggable area of AD/COVID-19 overlap.25,26 This suggests that
HMG-CoA (3-hydroxy-3-methyl-glutaryl-CoA reductase) reduc-
tase enzyme competitive inhibitors, such as rosuvastatin and
related compounds, should be considered in both AD and
COVID-19. Moreover, extending beyond conventional agents
for cholesterol control, new shared targets for other lipids likewise
merit consideration.

Targeting Cytoplasmic Organelles

Among the many organelles contained within the cytoplasm, mito-
chondria, endoplasmic reticula, and the mitochondrial–endoplasmic
physical interface provide target-rich opportunities at the AD/
COVID-19 pathogenesis overlap.

Mitochondria
Mitochondria from AD patients differ from those of non-AD indi-
viduals morphologically, functionally, and in terms of gene expres-
sion.31 Extensive data suggest that mitochondria instigate and/or
mediate diverse AD pathologies. Debate continues over the origin
of these AD mitochondrial changes.32 Some data suggest mito-
chondrial dysfunction temporally occurs upstream from proteopa-
thies, indicating a primary mitochondrial pathology may
supersede amyloid and tau pathologies; other data suggest that
mitochondrial dysfunction is a consequence of amyloid proteop-
athy but nonetheless contributes to ongoing neural damage once
triggered. In terms of specific molecular targets, recent work has
implicated translocator protein (TSPO), an outer membrane mito-
chondrial protein that locates cytosol cholesterol to mitochondrial
membranes.33 TPSO is present in the glial cells that respond to
neuroinflammation and regulate the opening of the mitochondrial
permeability transition pores controlling entry of molecules neces-
sary for mitochondrial function. TSPO is a pro-apoptotic protein
which functions via its interaction with the voltage-dependent
anion channel 1 (VDAC1) protein, the most abundant outer mem-
brane mitochondrial protein; VDAC1 is the organelle’s gatekeeper
for the passage of ions, nucleotides, and metabolites, playing a cen-
tral role in apoptosis regulation through its interaction with apop-
totic and anti-apoptotic proteins of the Bcl-2 (B-cell CLL/
lymphoma 2) protein family.34 Notable, TSPO is upregulated in
the brain of AD patients and is generally thought to be conclusively
linked to AD.
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In viral infections such as COVID-19, mitochondria are well
recognized as pivotal organelles in controlling signaling pathways
essential to the host response in restraining viral infections.35

Specifically, a major role in antiviral defense is played by mito-
chondrial antiviral signaling (MAVS) protein, an adaptor protein
that coordinates the activation of interferon-inducing pathways
and autophagy at the mitochondrial level by involving activation
of NF-κB and (IRF3 leading to the production of type I interferons
(IFN-α /β) and additional pro-inflammatory cytokines.36,37 Co-
localized with Bcl-2 proteins and essential for antiviral innate
immunity, MAVS is a 540 amino acid outer membrane mitochon-
drial protein that consists of three components, an N-terminal cas-
pase activation recruitment domain, a proline-rich domain, and a
transmembrane C terminal domain, which induce apoptosis in vir-
ally infected host cells by interacting with the caspase 8 protease.38

Recently, it was demonstrated that mitochondrial-located MAVS
protein mediates its pro-apoptotic activity by associating with
VDAC1 and modulates VDAC1 protein stability via the ubiqui-
tin-proteasome pathway.

The significance of mitochondrial changes in AD and COVID-
19 is an evolving area of interest, and mitochondrial dysfunction
represents a reasonable therapeutic target in the realm of AD/
COVID-19 overlap, with particular focus on outer mitochondrial
membrane proteins such as VDAC1.

Endoplasmic Reticulum
The ER is increasingly recognized as a molecular contributor to the
pathogenesis of AD.39 ER stress has been observed in postmortem
AD brains, and ER stress is known to arise with the accumulation
of misfolded or unfolded proteins, such as Aβ and tau. These
mechanisms may be mediated by inositol-requiring enzyme 1
(IRE1), protein kinase R-like endoplasmic reticulum kinase
(PERK), and activating transcription factor 6 (ATF6) stress sen-
sors.40 In addition to these stress responses, cross-talk between
the ER and adjacent mitochondria may also be impacted in AD.
Sub-compartments of ER are in physical and biochemical contact
with mitochondria via raft-like lipid regions referred to as mito-
chondria-associated membranes (MAMs), which play important
roles in lipid synthesis, calcium homeostasis, and apoptotic signal-
ing.41Within the ER-mitochondria, MAMs bridging complex, ino-
sitol-1,4,5-triphosphate receptors facilitate biochemical cross-talk.
Upregulated MAM-associated proteins are found in AD brains as
well as (APP) Swe/Lon mouse models and can be detected before
the appearance of plaques.42

In COVID-19, vesicle trafficking within the ER of host cells is
important in coronavirus replication;43 the replicase-transcriptase
machinery and other viral structural proteins assemble within the
host ER, making it an essential cellular component for viral
genome replication and capsid assembly in the formation of
new virus particles, which germinate in the ER-Golgi intermediate
compartment prior to fusion with the plasma membrane and viral
release.44,45 This process induces ER stress analogous to that occur-
ring in association with AD pathology, involving both MAVS and
MAM proteins, and mimicking many pathognomonic elements of
an unfolded protein response.46

In both AD and COVID-19, ER function and stress are inti-
mately linked to autophagy, a catabolic process involving the
engulfment of cellular material by a double-membrane structure,
the phagophore, which subsequently closes into an autophago-
some vesicle sequestering cargo and debris which is degraded fol-
lowing fusion with a lysosome. Autophagy is a bulk process that

unselectively degrades cellular material as required for cellular
upkeep. However, autophagy can also selectively target distinct
organelles requiring turnover. The specific elimination of the ER
via a selective form of autophagy is now recognized as a unique
biochemical process termed ER-phagy.47 ER-phagy is specifically
involved in both AD and COVID-19 and constitutes another
potentially druggable area of biochemical overlap between these
two disorders.

Repurposing Drugs

Over the course of the past 25 years, there have been over 200 clini-
cal trials assessing agents as either symptomatic or disease modi-
fying for the treatment of AD. Although almost all have failed to
show efficacy against AD’s symptomatology, they provide a num-
ber of chemical entities which have been well studied and deemed
safe for human exposure. As representative examples, we discuss
curcumin, pioglitazone, scyllo-inositol (SI), tramiprosate, furose-
mide, ibuprofen, and sildenafil as potential agents against
COVID-19.

Therapeutic Agents Repositioned for AD

Curcumin
Derived from the rhizomatous, ginger-like plant Curcuma longa,
curcumin is a natural polyphenol with well-evidenced anti-inflam-
matory and anti-microbial activities. Its anti-inflammatory prop-
erties are thought to derive from a series of synergistic
mechanisms, ranging from free-radical scavenging, the modula-
tion of antioxidant enzymes as well as the inhibition of free-radical
generating systems including cyclooxygenases.48,49 It may also
downregulate activation of NF-κB signaling cascades and thus
mediate a broader, systemic anti-inflammatory effect.50,51 In AD
models, curcumin was also shown to be a potent inhibitor and
destabilizer of neurotoxic amyloid species, even reducing the senile
plaque burden in APPswe/PS1dE9 mouse models.52,53 It may also
be effective in the chelation of metal species and reducing choles-
terol esters – both potent risk factors in the aggravation of AD pro-
tein and immune pathologies.53

These emerging associations, aided by a relative ease of access
and the less stringent regulations surrounding natural supple-
ments, have driven a sensationalized, and largely unevidenced,
belief of a potential therapeutic benefit in AD. Yet, no trial has
demonstrated any significant effect on either disease onset or prog-
nosis with curcumin or its derivatives. This may be partly attrib-
utable to the poor bioavailability of the bulky curcuminmolecule in
the aqueous extracellular environment. These same characteristics
also compromise its ability to cross the blood–brain barrier and
thus limit its efficacy as a neurological agent.

In the treatment of COVID-19, however, formulations of cur-
cumin have shown some promise. When packaged in nanomi-
celles, Saber-Moghaddam et al. report 160 mg of curcuminoids
daily was able to resolve COVID symptoms, including fever, chills,
tachypnea, and myalgia significantly more expediently, and that
hospitalization, supplemental oxygenation parameters as well as
overall disease resolution were meaningfully improved.54

Multiple trials on various forms of curcumin remain ongoing.
Though curcumin has yet to effective in the treatment of AD,
the extensive data on its anti-inflammatory roles and its optimal
formulation, both for efficacy and bioavailability, may be of rel-
evance in the trials of COVID-19.
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Pioglitazone
Pioglitazone is a thiazolidinedione, originally developed as an anti-
hyperglycemic adjunct in the 1980s and 90s.55 It targets peroxi-
some proliferator-activated receptors to reduce the effects of
insulin resistance in tissues. In the brain, modulating these insulin
signaling pathways was associated with a reduction of multiple
inflammatory, cell death, and proliferation associated pathways,
including IR, IRS-1, AKB, p-CREB, and Bcl-2.56–58 Crucially, in
animal models, pioglitazone also mediated amyloid plaque clear-
ance, reduced tau hyperphosphorylation, and aided synaptic plas-
ticity.59–61 These outcomes, along with robust safety and
pharmacologic profiles, motivated a pair of large phase III trials;
both, however, were terminated for lack of efficacy. It remains
unclear why the trails failed, though in accord with the complexity
and chronicity of all dementia trials, it is conceivable that multiple
study and clinical parameters, especially themany years of indolent
disease progression preceding the development of symptoms, have
been contributory to trial failures.

In spite of these failures, pioglitazone is a well-established
inflammatory mediator. Xie et al. demonstrated that even amongst
individuals without hyperglycemia, pioglitazone significantly
reduced IL-6 and TNF-α.62 With extended use, astrocyte, lympho-
cyte, and other inflammatory cytokine production modalities were
attenuated.61 Especially relevant in the management of SARS-
CoV-2, pioglitazone may also act on pulmonary inflammation
and fibrosis, with multiple studies observing diminished inflam-
matory markers in animal lung and lavage samples.63

A major barrier in the treatment of COVID-19 is the manage-
ment of acute symptomology. Typically, low even subclinical dos-
ing of pioglitazone was administered for weeks to observe a gradual
clinical effect. As it was intended for the treatment of chronic and
progressive diseases, this is expected. However, the acute manage-
ment of COVID-19 will inevitably require breakthrough dosing
and emergent management. The secondary outcome profile will
also be critical; if high-dose administration leads to uncontrolled
hypoglycemia or hypersensitivity to insulin, these may complicate
the management of infection.

Inositol
Inositol is a carbocyclic sugar that mediates cell signal transduction
in response to a variety of chemical messengers, hormones, and
growth factors. Structurally, inositol is a hexa-substituted alcohol
of cyclohexane; epimerization of the six hydroxyl groups generates
nine stereoisomers (see Figure 4). Myo-inositol (MI) is the most
prominent stereoisomer and plays a central role as the structural
platform for a number of inositol phosphate secondary messen-
gers. It also serves as an important structural component of mem-
brane phospholipids, such as phosphatidylinositol.

In AD, a 1H magnetic resonance spectroscopy study demon-
strated elevated brain MI levels in the pre-dementia in adults with

Down’s syndrome, suggesting a role for MI as an AD diagnostic.64

SI, another stereoisomer that is relatively rare in nature, has also
been considered as a therapeutic for AD. SI has been reported
to stabilize the nontoxic oligomers of Aβ and to inhibit their toxic
aggregation, by coating the surface of Aβ protofibrils and dis-
rupting their stacking into fibrillar aggregates; an analog series
of SI derivatives was synthesized and evaluated revealing that all
six inositol hydroxyl groups were involved in fibrillar aggregation
inhibition.65 In the late 1990s, McLaurin and coworkers pursued a
clinical trial of SI in AD which failed to show improvement.66

In COVID-19, Bizzarri et al. have postulated that MI could be
used to ameliorate the toxic pulmonary inflammatory response.67

This suggestion is based on the observation that MI has been suc-
cessfully used to treat newborn respiratory distress syndrome,
achieving this goal by downregulating the inflammatory response
via reduction of IL-6 levels known to mediate the inflammatory
cascade. Since MI is essentially devoid of major side effects, they
have speculated regarding its utility in the treatment of critically
ill COVID-19 patients.

Glycosaminoglycan Mimics
Glycosaminoglycans (GAGs) are long linear mucopolysaccharides
consisting of repeating disaccharide units; the repeating unit typ-
ically consists of an amino sugar, along with a uronic sugar or gal-
actose. GAGs are essential molecules, covalently connecting to
proteins to form proteoglycans. GAGs are highly negatively
charged polymers that can also sequester physiologically impor-
tant proteins and strongly bind water and ions. Heparan sulfate
is a prototypic GAG with a polyanionic structure arising from
multiple geometrically positioned sulfate groups.

In AD, GAGs (specifically with sulfate moieties) are important
molecular co-conspirators facilitating protein misfolding and oli-
gomerization. They facilitate interactions between monomeric or
oligomeric Aβ and neuronal/glial cell surfaces possibly involving
the serpin-enzyme complex receptor, the alpha7nicotinic acetyl-
choline receptor (alpha7nAChR), the receptor for advanced glyco-
sylation end-products, and formyl peptide receptor-like 1.68 Our
group further observed that at an atomistic level, Aβ may interact
directly with GAGs via its HHQK domain to mediate portion of
neuronal membranes.69

Since heparin is an already available GAG mimetic, various
groups have demonstrated its capacity to bind to Aβ and prevent
subsequent oligomerization. However, heparin is a potent antico-
agulant and inappropriate for chronic use in AD’s elderly cohorts.
Accordingly, in the 1990s, we synthesized numerous polysulfo-
nated small molecule GAG mimetics, ultimately pursuing clinical
trials with tramiprosate (3-amino-1-propanesulfonic acid) for AD
and eprodisate (1,3-propanedisulfonic) for renal failure in systemic
amyloidosis – both failed to show efficacy in Phase III human trials
(see Figure 5).70

For COVID-19, Mycroft-West et al. have suggested repurpos-
ing heparin as a GAGmimetic for uses as a coronavirus antiviral.71

They put forth this suggestion after using surface plasmon reso-
nance and circular dichroism to measure the interaction between
the SARS-CoV-2 Spike S1 protein receptor-binding domain
(SARS-CoV-2 S1 RBD) and heparin.72 Coronavirus contains four
structural proteins, including spike (S), envelope (E), membrane
(M), and nucleocapsid (N) proteins, with the S protein mediating
viral entry into host cells by binding to the host receptor through
the RBD in the S1 subunit and then fuzing the viral and host mem-
branes through the S2 subunit.73 SARS-CoV recognizes the ACE2
enzyme as its receptor. However, full pathological expression of

Figure 4: Molecular structures of inositol isomers. Inositol (A) is a collection of nine
different stereoisomers of a hexa-substituted cyclohexane polyol. The most common
isomer is myo-inositol (B), which is cis-1,2,3,5-trans-4,6-cyclohexanehexol. Scyllo-ino-
sitol (C) has undergone trials as an amyloid anti-aggregant in AD.
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coronavirus attachment and entry requires not only ACE2 but also
viral binding to host cell heparan sulfate GAG adjacent to and part
of the expanded ACE2 receptor complex. Mycroft-West et al.
exploited structural similarities between heparan sulfate and hep-
arin, using heparin as a small molecule GAGmimetic to bind to the
virus, thereby blocking its capacity to bind to host cells. Based upon
this molecular interaction they postulated the rapid implementa-
tion of a first-line therapeutic by repurposing heparin whilst tailor-
made, GAG-mimetic antivirals are being developed. Heparin is a
well-known agent, but its use is complicated by its significant anti-
coagulant activity, especially in individuals critically ill with
COVID-19. Accordingly, there may be a place for failed GAG-
mimetic agents, such as eprodisate, as safer substitutes for heparin.

Furosemide
Furosemide is a Food and Drug Administration approved loop
diuretic used in the treatment of hypertension and associated
edema in cardiac, renal, and hepatic failures.74 Through inhibition
of the Na(þ)-K(þ)-2Cl(-) cotransporter (NKCC2),75 furosemide
works by blocking sodium and chloride tubular reabsorption in
the proximal and distal tubules, and the thick ascending loop of
Henle, resulting in decreased extracellular accumulation of fluid
in cardiac and renal pathologies.76

Previous reports have indicated that antihypertensive use is
associated with a reduced risk of AD and similar dementing dis-
orders.77 In in vivo models of AD, furosemide was found to
enhance kidney-mediated clearance of Aβ, rescue cognitive
impairments, and attenuate astrogliosis and neurodegeneration.78

Moreover, in vitro studies using Tg2576 mice identified furose-
mide to reduce oligomerization of Aβ40 and Aβ42 and dissociate
aggregated oligomers of Aβ42 to prevent AD pathologies.79 Wang
et al. further observed the potential of furosemide as a probe mol-
ecule in alleviating neuroinflammation in AD.80 Furosemide
induced the anti-inflammatory microglial M2 phenotype through
reduced production of pro-inflammatory markers such as TNF-α,
IL-6, NO, COX-2, and inducible nitric oxide synthase (iNOS), pro-
motion of phagocytosis, and elevated secretion of anti-inflamma-
tory IL-1RA and arginase. They then synthesized and optimized
furosemide analogs to inhibit Aβ aggregation and

neuroinflammation, demonstrating the therapeutic potential of
furosemide-like drugs in AD.80

Following COVID-19-induced hypercytokinemia, excessive
production of pro-inflammatory cytokines, including IL-6 and
TNF-α, underlies the resulting multi-organ pathologies.
Furosemide treatment on peripheral blood mononuclear cells
(PBMCs) derived from normal subjects was shown to reduce pro-
duction levels of pro-inflammatory cytokines IL-6, IL-8, and TNF-
α.81 Moreover, increasing doses of furosemide were found to
reduce secretion of IL-6 and TNF-α by placentas and PBMCs in
normal pregnancy.82 It has also been reported that furosemide
drives macrophages towards an anti-inflammatory cytokine pro-
file, hinting at its immunomodulatory effects.83 The beneficial
clinical effects of furosemide are further supported by multiple
clinical trials which have identified alleviated production of pro-
inflammatory cytokines in patients with pulmonary pathologies
including chronic lung disease, bronchopulmonary dysplasia,
and tachypnea.84–88

Considering that pulmonary edema is thought to be due to the
cytokine storm, a retrospective observational study was conducted
on patients with COVID-19; tomographic evidence of pulmonary
edema and volume overload justified a standard treatment using
furosemide and a Negative Fluid Balance (NEGBAL) approach.89

Promising clinical responses to NEGBAL have been reported.90

Moreover, Kevorkian et al. have suggested repurposing furosemide
in combination with early short-course corticosteroids for use in
non-critically ill COVID-19 patients to reduce the risk of mechani-
cal ventilation and/or mortality.91 In addition, an ongoing Phase 2/
3 clinical trial is assessing the efficacy of nebulized furosemide for
treatment of pulmonary inflammation and respiratory failure in
intubated and mechanically ventilated COVID-19 patients.92

The need for a widely available therapeutic to address the
urgent need for ameliorating COVID-19 hypercytokinemia is
growing rapidly. While current biological therapeutics such as sil-
tuximab (an IL-6 antagonist) may target similar inflammatory
pathways as furosemide, they have a relatively high immunogenic
potential.93 Therefore, as serum levels of IL-6 and TNF-α are dom-
inant predictors of COVID-19 severity and death94 and the fact
that furosemide has been reported to be an inhibitor of both,

Figure 5: Molecular structures of heparan sulfate, heparin sulfate, eprodisate. Heparan sulfate (A) (HS) is a linear polysaccharide that occurs as a proteoglycan (HSPG) in which
two or three HS chains are attached in close proximity to cell surface or extracellular matrix proteins. Heparin (B) is a smaller glycosaminoglycan polysaccharide polymer, struc-
turally related to heparan, and consists of a variably sulfated repeating disaccharide unit; themost common disaccharide unit is composed of a 2-O-sulfated iduronic acid and 6-O-
sulfated, N-sulfated glucosamine, IdoA(2S)-GlcNS(6S). Eprodisate (C) (1,3-propanedisulfonate) is a negatively charged, sulfonated small molecule that has structural similarities to
heparin and heparan sulfate; it is a glycosaminoglycan mimetic with sulfate group positioned geometrically to mimic those in heparin and heparan.
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repurposing this approved drug renders an optimistic therapeutic
approach.

Non-Steroidal Anti-Inflammatory Drugs
Non-steroidal anti-inflammatory drugs (NSAIDs) such as ibupro-
fen are used in the treatment of mild-to-moderate pain and inflam-
mation.95 Mostly via nonselective and reversible inhibition of the
cyclooxygenase enzymes COX-1 and COX-2, NSAIDs exert their
analgesic and anti-inflammatory properties. A study by Zhang
et al. found that ibuprofen treatment in a mouse model of AD
led to suppression of inflammatory factors normally upregulated
in AD including TNF-α, IL-1β, and NF-κB. They also found that
through suppression of inflammation, the function of P-glycopro-
tein (P-gp) causing Aβ efflux was also increased, suggesting that
ibuprofen may reduce AD pathology through a P-gp-mediated
mechanism.96 Interestingly, in an aged mouse model of AD, ibu-
profen treatment led to a reduction in the levels of oxidative dam-
age and ultimately reduced microglial activation and plaque
deposition.97 Moreover, the beneficial effects of ibuprofen on cog-
nition have also been demonstrated using a transgenic mouse
model of AD in which treated mice achieved similar scores as con-
trol normal mice on complex visual-spatial learning tasks.98 A bio-
informatic analysis also revealed that ibuprofen treatment was
associated with altered expression of genes associated with AD,
suggesting that it may be a beneficial long-term therapeutic.99

While during early stages of the pandemic there were concerns
of exacerbated COVID-19 through use of NSAIDs, recent evidence
suggests otherwise. As COVID-19 pathogenesis is largely driven by
mediators of inflammation, repurposing NSAIDs which have anti-
inflammatory effects is a potential therapeutic approach. A num-
ber of studies have suggested that early administration of NSAIDs
may reduce the COVID-19 hyper-inflammatory response.100,101

Moreover, as NSAIDs have been shown to reduce numerous
pro-inflammatory cytokines involved in the initiation of cytokine
storm,102 their use in COVID-19 may be of benefit. Other mech-
anisms by which NSAIDs may be beneficial include its effects on
dampening of the NF-κB pathway,103 inhibition of caspases,104

reducing prostaglandin-mediated edema,105 and via modulatory
effects on iNOS inflammatory cascades.106 Repurposing NSAIDs
for therapeutic use in both AD and COVID may therefore be a
rational approach.

Sildenafil
Sildenafil is a selective cGMP-specific phosphodiesterase-5 inhibi-
tor used primarily for the treatment of erectile dysfunction and
pulmonary arterial hypertension.107 Considering that SARS-
CoV-2 disrupts pulmonary perfusion regulation, oral administra-
tion of sildenafil to reduce pulmonary vascular resistance and
inflammation may be a rational therapeutic approach in mild to
severe cases.108–110 A recent study observed that sildenafil treat-
ment for COVID-19-induced acute respiratory distress syndrome
was well tolerated and led to enhanced cardiac biomarkers as well
as echocardiographic outcomes.111 Thus, sildenafil may be a poten-
tial therapeutic in pulmonary complications of COVID-19 due to
its easier use compared to nebulized vasodilator therapies such as
inhaled NO which are unstable and difficult to administer.108

As sildenafil affects vascular function through its activation of
the NO signaling cascade,112 it may be a promising pharmaceutical
intervention in AD. A single use of sildenafil in AD patients was
demonstrated to improve cerebral oxygen metabolism and func-
tion.113 Using an endophenotype disease methodology for AD
drug repurposing, it was identified that sildenafil use was

associated with a 69% decreased risk of AD, even in patients with
coronary artery disease, hypertension, and type 2 diabetes.
Sildenafil was also shown to reduce expression of phospho-tau
in neuron models derived from AD patients.114 In a mouse model
of AD, sildenafil was shown to reduce hippocampal levels of Aβ,
reverse memory, and cognitive deficits and induce an anti-inflam-
matory response to prevent neuroinflammation.115 A separate
study also reported similar findings using an AD mouse model
in which sildenafil reverse cognitive deficits reduced hippocampal
tau hyperphosphorylation and increased the expression of brain-
derived neurotrophic factor.116 Additionally, in rats it was identi-
fied that sildenafil reduced levels of vascular cell adhesion mol-
ecule-1 (VCAM-1), TNF-α, and oxidative stress, while
increasing levels of vascular endothelial growth factor, thereby
hinting at its potential modulatory effects.117 Thus, there is strong
evidence for the dual beneficial effects of sildenafil on AD pathol-
ogy and COVID-19 and may be a rational drug repurposing
strategy.

Conclusions

AD and COVID-19 are both pandemics in their own right. Over
6.5 million North Americans presently have AD, and this will
increase by more than 500,000 by 2025.118 Following current
trends, the prevalence is projected to reach 13.8 million by
2060.118 COVID-19 on the other hand may be lethal within 2
weeks of its first symptoms, with approximately 500,000 new
cases and 30,000 deaths per month worldwide over the first 3
months of 2020. By November 2022, there have been more than
630 million cases of COVID-19 worldwide with over 6.5 million
deaths. Arising from its rapid infectivity, lethality, unpredict-
ability, and changeability, the need for effective therapies for
COVID-19 is an ongoing pharmacological urgency for which
the standard protracted drug development timelines accepted
in AD research are not feasible. Although fundamentally differ-
ent diseases, AD and COVID-19 share a wide range of patho-
genic commonalities at the membrane, cytoplasmic, and
extraneuronal (microglial, cytokine) levels. These may extend
to the druggability of these targets enabling cross-over appli-
cability of the corresponding drugs to both diseases. Arising
from the AD/COVID-19 overlap, in the short term, agents
developed for the Alzheimer’s pandemic might be repurposed
for the COVID-19 pandemic; conversely in future years, agents
developed for the COVID-19 pandemic may be viable platforms
for the Alzheimer’s pandemic.
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