EXTENDING JORDAN IDEALS AND JORDAN HOMOMORPHISMS OF SYMMETRIC ELEMENTS IN A RING WITH INVOLUTION

KIRBY C. SMITH

Introduction. In this work, we show how the ideas in [3, pp. 6-12] can be used to give conditions under which Jordan ideals in the set of symmetric elements in an associative ring R with involution extend to associative ideals of R in a natural way. We also give conditions under which a Jordan homomorphism of the set of symmetric elements will extend to an associative homomorphism of R. Such work has been done on matrix rings with involution in $[\mathbf{5} ; \mathbf{6}]$. An abstract definition of a Jordan ring may be found in [3] as well as other background information.

Let R be an associative ring with involution $r \rightarrow r^{*}$; that is, a mapping $r \rightarrow r^{*}$ such that

$$
\begin{aligned}
\left(r_{1}+r_{2}\right)^{*} & =r_{1}{ }^{*}+r_{2}{ }^{*}, \\
\left(r_{1} r_{2}\right)^{*} & =r_{2}{ }^{*} r_{1}{ }^{*}, \\
\left(r^{*}\right)^{*} & =r .
\end{aligned}
$$

We will denote by S the set of ${ }^{*}$-symmetric elements of R, namely $S=\left\{s \in R \mid s^{*}=s\right\}$. Likewise, let $K=\left\{k \in R \mid k^{*}=-k\right\}$, the set of ${ }^{*}$-skew symmetric elements of R. If I is an ideal of R then we will call I a *-ideal if I is invariant under the involution on R, i.e. if $i^{*} \in I$ for every $i \in I$.

If juxtaposition denotes the multiplicative binary operation on R, then \cdot, defined by $s_{1} \cdot s_{2}=s_{1} s_{2}+s_{2} s_{1}, s_{i} \in S$, makes the additive group S into a Jordan ring. Similarly, K forms a Lie ring under $\left[k_{1}, k_{2}\right]=k_{1} k_{2}-k_{2} k_{1}, k_{i} \in K$.

Throughout this paper our assumptions on R are:
(1) $2 r=0$ implies $r=0, r \in R$;
(2) $A=\{2 a \mid a \in A\}$ for every *-ideal A of R and every Jordan ideal A of S.

For example, R may be any algebra over a field of characteristic not two or R may be any finite ring satisfying (1). We note that condition (2) says that the mapping $r \rightarrow 2 r$ of R is an onto mapping for every ${ }^{*}$-ideal of R and every Jordan ideal of S. Our use of conditions (1) and (2) will be to allow divisibility by 2 . The notation $\frac{1}{2} a$ will mean that element $r \in R$ such that $2 r=a$.

[^0]If $r \in R$, then $r=\frac{1}{2}\left(r+r^{*}\right)+\frac{1}{2}\left(r-r^{*}\right)$ and so every element in R can be written as the sum of an element in S and one in K. Since $S \cap K=\{0\}$, this representation is unique. We will keep this property of R in mind by writing $R=S+K$.

Extending Jordan ideals of S. Let I be a ${ }^{*}$-ideal of R. Then * induces an involution on the ring I. So $I=U+L$ where U is the set of symmetric elements of I and L is the set of skew symmetric elements of I. An easy check shows that U is a Jordan ideal of S and L is a Lie ideal of K. We now seek conditions under which a Jordan ideal U of S is the set of symmetric elements of a *-ideal I of R. If such is the case for a particular ideal U of S then we will say that U extends to a^{*}-ideal of R.

Let E be the subring of the rationals generated by $\frac{1}{2}$. Using E we may, if R does not have a unit element, imbed R in a ring \bar{R} such that $1 \in \bar{R}$. Such a ring is $\bar{R}=\{(e, r) \mid e \in E, r \in R\}$ under the usual operations. It is easy to check that \bar{R} satisfies conditions (1) and (2). \bar{R} is a ring with involution ' defined by $(m, r)^{\prime}=\left(m, r^{*}\right)$. We note that $\bar{R}=\bar{S}+\bar{K}$ where

$$
\bar{S}=\{(m, s) \mid m \in E, s \in S\} \quad \text { and } \quad \bar{K}=\{(0, k) \mid k \in K\} .
$$

If U is a Jordan ideal of S we can correspond U with $\bar{U}=\{(0, u) \mid u \in U\}$, a Jordan ideal of \bar{S}. It is easy to see that U extends in R if and only if \bar{U} extends in \bar{R}. For easy reference we write this as the first lemma.

Lemma 1. If $1 \notin R=S+K$, let \bar{R} be the ring with 1 in which R is imbedded in the usual way. Then $\bar{R}=\bar{S}+\bar{K}$ is a ring with involution' and if U is an ideal of S then U extends to a^{*}-ideal of R if and only if its corresponding ideal \bar{U} of \bar{S} extends to a^{\prime}-ideal in \bar{R}.

Lemma 2. Let $R=S+K$ be a ring with involution *. A Jordan ideal U of S extends to a^{*}-ideal of R if and only if aub $+b^{*} u a^{*} \in U$ for every $u \in U, b \in R$.

Proof. We may assume that $1 \in R$; for, if we identify U with $\bar{U}=\{(0, u) \mid u \in U\}$ in \bar{R}, then \bar{U} satisfies the conditions of Lemma 2 (using assumption (2) on R), and by Lemma 1, \bar{U} extends in \bar{R} if and only if U extends in R.

Let L be the Lie ideal of K generated by $\left\{a u b-b^{*} u a^{*} \mid a, b \in R\right\} . K$ consists simply of all finite sums of its generators. We let $I=U+L$ and proceed to show that I is a *-ideal of R. It is clear that the set I is invariant under the involution. For every $h \in L$ we know that

$$
h=\sum_{i} a_{i} u_{i} b_{i}-b_{i}{ }^{*} u_{i} a_{i}{ }^{*},
$$

a finite sum, where $a_{i}, b_{i} \in R, u_{i} \in U$. So if $s \in S$, we have

$$
\begin{aligned}
s h= & \frac{1}{2} \sum_{i}\left(s a_{i}\right) u_{i} b_{i}-b_{i}{ }^{*} u_{i}\left(s a_{i}\right)^{*}+\frac{1}{2} \sum_{i} a_{i} u_{i}\left(b_{i} s\right)-\left(b_{i} s\right)^{*} u_{i} a_{i}^{*} \\
& +\frac{1}{2} \sum_{i}\left(s a_{i}\right) u_{i} b_{i}+b_{i}^{*} u_{i}\left(s a_{i}\right)^{*}+\frac{1}{2} \sum_{i}-a_{i} u_{i}\left(b_{i} s\right)-\left(b_{i} s\right)^{*} u_{i} a_{i}^{*} .
\end{aligned}
$$

This means that $s h \in I$ for every $s \in S$ and $h \in L$. For $k \in K$ we have

$$
\begin{aligned}
k h & =\frac{1}{2} \sum_{i}\left(k a_{i}\right) u_{i} b_{i}+b_{i}^{*} u_{i}\left(k a_{i}\right)^{*}+\frac{1}{2} \sum_{i} a_{i} u_{i}\left(b_{i} k\right)+\left(b_{i} k\right)^{*} u_{i} a_{i}{ }^{*} \\
& +\frac{1}{2} \sum_{i}\left(k a_{i}\right) u_{i} b_{i}-b_{i}^{*} u_{i}\left(k a_{i}\right)^{*}+\frac{1}{2} \sum_{i}\left(b_{i} k\right)^{*} u_{i} a_{i}{ }^{*}-a_{i} u_{i}\left(b_{i} k\right) .
\end{aligned}
$$

This shows that $k h \in I$ for every $k \in K, h \in L$. For $s \in S, u \in U, k \in K$ we have

$$
\begin{aligned}
s u & =\frac{1}{2}(s u+u s)+\frac{1}{2}(s u-u s), \\
k u & =\frac{1}{2}\left(k u+u k^{*}\right)+\frac{1}{2}\left(k u-u k^{*}\right),
\end{aligned}
$$

which show that $s u$ and $k u$ belong to L. Since $R=S+K$, all of the above calculations show that I is a left ideal of R. Since I is invariant under the involution, I is also a right ideal and hence an ideal of R.

We let $\left\{s_{1} s_{2} \ldots s_{n}\right\} \equiv s_{1} s_{2} \ldots s_{n}+s_{n} \ldots s_{2} s_{1}$, where each $s_{i} \in S$. Clearly, $\left\{s_{1} s_{2} \ldots s_{n}\right\} \in S$. Following Cohn [1], we will call $\left\{s_{1} s_{2} s_{3} s_{4}\right\}$ a tetrad in $s_{1}, s_{2}, s_{3}, s_{4}$.

If U is a Jordan ideal of S then, clearly, $\{u s\}=u s+s u \in S$ for every $u \in U, s \in S$. We show now that $\left\{u s_{1} s_{2}\right\} \in U$. For $2 s u s=[s(s u+u s)+$ $(s u+u s) s]-\left[s^{2} u+u s^{2}\right]$ belongs to U and thus $\left\{s_{1} u s_{2}\right\}=\left(s_{1}+s_{2}\right) u\left(s_{1}+s_{2}\right)$ $-s_{1} u s_{1}-s_{2} u s_{2} \in U$. So since $\left\{u s_{1} s_{2}\right\}=\left\{\left(u s_{1}+s_{1} u\right) s_{2}\right\}-\left\{s_{1} u s_{2}\right\}$, we have $\left\{u s_{1} s_{2}\right\} \in U$. We will give examples later to show that the tetrad $\left\{u s_{2} s_{3} s_{4}\right\}$ need not be in U. This leads us to the main theorem of this section.

Theorem 1. Let $R=S+K$ be an associative ring with involution * satisfying properties (1)-(2) and assume that the set of symmetric elements S generates R associatively. Then a Jordan ideal U of S extends to a^{*}-ideal I of R if and only if $\left\{u s_{2} s_{3} s_{4}\right\} \in U$ for every $s_{2}, s_{3}, s_{4} \in S, u \in U$.

Proof. The necessity of $\left\{u s_{2} s_{3} s_{4}\right\}$ being in U is clear. For the converse, we note first that since S generates R, Lemma 2 tells us that it is enough to show that $\left\{s_{2} s_{3} \ldots s_{i} u s_{i+1} \ldots s_{n}\right\} \in U$ for $n=2,3, \ldots$. We proceed to do this by induction on n. Clearly, $\{u s\}=\{s u\} \in U$ which is the case $n=2$. Now we assume that we have shown that for every $s_{i} \in S, u \in U$, we have $\left\{s_{2} s_{3} \ldots s_{i} u s_{i+1} \ldots s_{n-1}\right\} \in U$ regardless of the position of u. Then we have $\left\{u s_{2} s_{3} \ldots s_{n}\right\}=\left\{\left(u s_{2}+s_{2} u\right) s_{3} \ldots s_{n}\right\}-\left\{s_{2} u s_{3} \ldots s_{n}\right\}$. Since $u s_{2}+s_{2} u \in U$ as well as $\left\{\left(u s_{2}+s_{2} u\right) s_{3} \ldots s_{n}\right\} \in U$ (by induction hypothesis), we conclude that $\left\{u s_{2} s_{3} \ldots s_{n}\right\} \in U$ if and only if $\left\{s_{2} u s_{3} \ldots s_{n}\right\} \in U$. Continuing, we get $\left\{u s_{2} s_{3} \ldots s_{n}\right\} \in U$ if and only if $\left\{s_{2} \ldots s_{i} u s_{i+1} \ldots s_{n}\right\} \in U$. So to finish the proof of the theorem, it is enough to show that $\left\{u s_{2} s_{3} \ldots s_{n}\right\} \in U$ for every $u \in U, s_{i} \in S$.

For this goal we need the following general identities found in [1]:

$$
\begin{align*}
& \left\{\left(s_{1} s_{2}+s_{2} s_{1}\right) s_{3} \ldots s_{n}\right\}=\left\{s_{1} s_{2} s_{3} \ldots s_{n}\right\}+\left\{s_{2} s_{1} s_{3} \ldots s_{n}\right\} \tag{4}\\
& \left\{s_{1} s_{2} s_{3} \ldots s_{n-1}\right\} \cdot s_{n}=\left\{s_{1} s_{2} s_{3} \ldots s_{n}\right\}+\left\{s_{n} s_{1} s_{2} \ldots s_{n-1}\right\} \tag{5}\\
& \left\{s_{1} s_{2} s_{3} s_{4}\right\} \cdot\left\{s_{5} \ldots s_{n}\right\}=\left\{s_{n} \ldots s_{5} s_{4} s_{3} s_{2} s_{1}\right\}+\left\{s_{4} s_{3} s_{2} s_{1} s_{n} \ldots s_{5}\right\} \tag{6}\\
& \quad+\left\{s_{1} s_{2} s_{3} s_{4} s_{n} \ldots s_{5}\right\}+\left\{s_{n} \ldots s_{5} s_{1} s_{2} s_{3} s_{4}\right\} .
\end{align*}
$$

Finally, relative to the ideal U of S we have, using our induction hypothesis,

$$
\begin{equation*}
\left\{u s_{2} s_{3} \ldots s_{n}\right\} \equiv(-1)^{\sigma}\left\{t_{1} t_{2} \ldots t_{n}\right\} \text { modulo } U \tag{7}
\end{equation*}
$$

where the t_{i} are some permutation of $u, s_{2}, s_{3}, \ldots, s_{n}$ and $\sigma=0$ or 1 depending on whether the permutation is even or odd, respectively.

Case 1 . Suppose that n is odd. Let $s_{1}=u$ in (5) and get (using the induction hypothesis)

$$
\begin{equation*}
\left\{u s_{2} s_{3} \ldots s_{n}\right\} \equiv-\left\{s_{n} u s_{2} \ldots s_{n-1}\right\} \text { modulo } U \tag{8}
\end{equation*}
$$

Permuting $u, s_{2}, s_{3}, \ldots, s_{n}$ to $s_{n}, u, s_{2}, \ldots, s_{n-1}$ is an even permutation, since n is odd. So by (7) we have

$$
\begin{equation*}
\left\{u s_{2} s_{3} \ldots s_{n}\right\} \equiv\left\{s_{n} u s_{2} \ldots s_{n-1}\right\} \text { modulo } U \tag{9}
\end{equation*}
$$

Addition of equations (8) and (9) gives $2\left\{u s_{2} s_{3} \ldots s_{n}\right\} \in U$ and thus $\left\{u s_{2} s_{3} \ldots s_{n}\right\} \in U$.

Case 2. Suppose that n is even. Let $s_{1}=u$ in (6) and get

$$
\begin{align*}
\left\{s_{n} \ldots s_{5} s_{4} s_{3} s_{2} u\right\}+\left\{s_{4} s_{3} s_{2} u s_{n} \ldots s_{5}\right\} \equiv & -\left\{s_{n} \ldots s_{5} u s_{2} s_{3} s_{4}\right\} \tag{10}\\
& -\left\{u s_{2} s_{3} s_{4} s_{n} \ldots s_{5}\right\} \text { modulo } U
\end{align*}
$$

where we have used the assumption that $\left\{u s_{2} s_{3} s_{4}\right\} \in U$. Since

$$
s_{n}, \ldots, s_{5}, s_{4}, s_{3}, s_{2}, u \quad \text { and } s_{4}, s_{3}, s_{2}, u, s_{n}, \ldots, s_{5}
$$

differ by an even permutation, as do

$$
s_{n}, \ldots, s_{5}, u, s_{2}, s_{3}, s_{4} \quad \text { and } \quad u, s_{2}, s_{3}, s_{4}, s_{n}, \ldots, s_{5}
$$

we have from (7) and (10)

$$
\begin{equation*}
\left\{u s_{2} s_{3} \ldots s_{n}\right\} \equiv-\left\{s_{n} \ldots s_{5} u s_{2} s_{3} s_{4}\right\} \text { modulo } U \tag{11}
\end{equation*}
$$

If $u, s_{2}, s_{3}, \ldots, s_{n}$ and $s_{n}, \ldots, s_{5}, u, s_{2}, s_{3}, s_{4}$ differ by an even permutation, which will be the case if 4 divides n, then (7) and (11) imply that $\left\{u s_{2} s_{3} \ldots s_{n}\right\} \in U$. If 4 does not divide n, then $u, s_{2}, s_{3}, \ldots, s_{n}$ and $s_{n}, s_{n-1}, \ldots, s_{1}$ differ by an odd permutation and so (7) says

$$
\begin{equation*}
\left\{u s_{2} s_{3} \ldots s_{n}\right\} \equiv-\left\{s_{n} \ldots s_{3} s_{2} u\right\} \text { modulo } U \tag{12}
\end{equation*}
$$

On the other hand, we always have

$$
\begin{equation*}
\left\{u s_{2} s_{3} \ldots s_{n}\right\}=\left\{s_{n} \ldots s_{3} s_{2} u\right\} \tag{13}
\end{equation*}
$$

Comparing (12) and (13) gives $\left\{u s_{2} s_{3} \ldots s_{n}\right\} \in U$, completing the proof of Theorem 1.

Let $[S, S]$ denote the additive subgroup of K generated by

$$
\left\{s_{i} s_{j}-s_{j} s_{i} \mid s_{i}, s_{j} \in S\right\}
$$

Using this notation we have the following corollary.

Corollary 1. If $R=S+K$ such that $[S, S]=K$, then every Jordan ideal U of S extends to a^{*}-ideal of R.

Proof. We are assuming that S generates R in a special way. For $s_{1}, s_{2} \in S, u \in U$ we have

$$
\begin{aligned}
&\left(s_{1} s_{2}-s_{2} s_{1}\right) u-u\left(s_{1} s_{2}-s_{2} s_{1}\right)=\left[\left(s_{2} u+u s_{2}\right) s_{1}+s_{1}\left(s_{2} u+u s_{2}\right)\right] \\
&-\left[s_{2}\left(s_{1} u+u s_{1}\right)+\left(s_{1} u+u s_{1}\right) s_{2}\right]
\end{aligned}
$$

and hence $\left(s_{1} s_{2}-s_{2} s_{1}\right) u-u\left(s_{1} s_{2}-s_{2} s_{1}\right) \in U$. Since $[S, S]=K$, every element of K is a sum of elements of the form $s_{1} s_{2}-s_{2} s_{1}$. Thus, $[K, U] \subset U$. Since U is a Jordan ideal, we have $S \cdot U \subset U$. This shows that $r u+u r^{*} \in U$ for every $r \in R$. Hence, $u\left(s_{1} s_{2} s_{3}\right)+\left(s_{1} s_{2} s_{3}\right)^{*} u=\left\{u s_{1} s_{2} s_{3}\right\} \in U$. Now we apply Theorem 1.

Corollary 2. Let $R=S+K$ such that S generates R. If U is a Jordan ideal of S having the property that $U^{\cdot 2}=U$, then U extends to a^{*}-ideal of $R=S+K$.

Proof. For every $u \in U, k \in K$ we have $u^{2} k-k u^{2} \in U$ since $u^{2} k-k u^{2}=$ $(u k-k u) u+u(u k-k u)$. Also, $u^{2} s+s u^{2} \in U$. This means that $r u^{2}+u^{2} r^{*} \in U$ for every $r \in R, u \in U$. Linearization gives $r\left(u_{1} u_{2}+u_{2} u_{1}\right)+$ $\left(u_{1} u_{2}+u_{2} u_{1}\right) r^{*} \in U$. Since $U^{\cdot 2}=U$, we have $r u+u r^{*} \in U$, so Theorem 1 applies.

Corollary 3. If $R=S+K$ is generated by two symmetric elements, then every Jordan ideal U of S extends to an invariant associative ideal of R.

Proof. Choose $u \in U, s_{1}, s_{2}, s_{3} \in S$. If $\left\{u s_{1} s_{2} s_{3}\right\} \in U$, then the same is true of any tetrad obtained from a permutation of u, s_{1}, s_{2}, s_{3} and conversely, as seen in the proof of Theorem 1. Suppose that $s_{3}=x_{1} x_{2}+x_{2} x_{1}$ where $x_{1}, x_{2} \in S$. Then

$$
\begin{aligned}
&\left\{u s_{1} s_{2}\left(x_{1} x_{2}+x_{2} x_{1}\right)\right\}=\left\{\left\{u s_{1} s_{2} x_{1}\right\} x_{2}\right\}+\left\{\left\{u s_{1} s_{2} x_{2}\right\} x_{1}\right\}-\left\{x_{1} u s_{1} s_{2} x_{2}\right\} \\
&-\left\{x_{1} s_{2} s_{1} u x_{2}\right\}+\left\{\left\{u s_{1} s_{2} x_{1}\right\} x_{2}\right\}+\left\{\left\{u s_{1} s_{2} x_{2}\right\} x_{1}\right\}-\left\{x_{1}\left\{u s_{1} s_{2}\right\} x_{2}\right\} .
\end{aligned}
$$

This shows, since $\left\{x_{1}\left\{u s_{1} s_{2}\right\} x_{2}\right\} \in U$, that $\left\{u s_{1} s_{2} s_{3}\right\} \in U$ if both $\left\{u s_{1} s_{2} x_{1}\right\}$ and $\left\{u s_{1} s_{2} x_{2}\right\}$ are in U.

Now let v and w be two symmetric generators of R. It is known [1, pp. 305306] that v and w generate S solely by the Jordan product. Thus, by the above argument, $\left\{u s_{1} s_{2} s_{3}\right\} \in U$ if $\left\{u t_{1} t_{2} t_{3}\right\} \in U$ for $t_{i}=v$ or $w, i=1,2,3$. Since a duplication of either v or w must occur, it is easy to check that $\left\{u t_{1} t_{2} t_{3}\right\} \in U$.

Corollary 3 fails for more than two symmetric generators. For, let $R=F\left[x_{1}, x_{2}, x_{3}\right]$, the free algebra over a field F generated by three independent elements x_{1}, x_{2}, x_{3}. Let ${ }^{*}$ be the involution on R which reverses the order of the generators; for example, $\left(x_{1} x_{2}+x_{3} x_{2} x_{1}\right)^{*}=x_{2} x_{1}+x_{1} x_{2} x_{3}$. Let U be the Jordan ideal of S in R generated by $x_{1} x_{2}+x_{2} x_{1}$. Then it has been shown [1, pp. 307-308] that $\left\{\left(x_{1} x_{2}+x_{2} x_{1}\right) x_{1} x_{2} x_{3}\right\} \notin U$. So U does not extend to a *-ideal of R.

For an easy example of a Jordan ideal which does not extend, let R be an algebra over F generated by $x_{1}, x_{2}, x_{3}, x_{4}$ such that $x_{i} x_{j}+x_{j} x_{i}=0$ if $i \neq j$. Let the involution in R be the one that reverses the order of the generators, as before. Let U be the Jordan ideal of S generated by $x_{1}, x_{2}, x_{3}, x_{4}$. It is clear, since $x_{i} x_{j}+x_{j} x_{i}=0$ if $i \neq j$, that $\left\{x_{1} x_{2} x_{3} x_{4}\right\} \notin U$, so U does not extend.

Theorem 2. Let $R=S+K$ be a ring with involution *. Let U be the maximal nilpotent ideal of S. Then U extends to the maximal nilpotent ideal I of R.

Proof. A Zorn's lemma argument applied to the set of all nilpotent ideals of S proves the existence of a maximal nilpotent ideal U. Since the sum of two nilpotent Jordan ideals is another nilpotent Jordan ideal, U must be unique. Similarly, we can show the existence of a unique nilpotent ideal I of R which must necessarily be a ${ }^{*}$-ideal of R. Hence, $I=U_{1}+L$ where U_{1} is a nilpotent ideal of S. We must have $U_{1} \subseteq U$ due to the maximality of U. To show that $U \subseteq U_{1}$, we adapt an argument by Herstein [2, p. 633]. Consider R / I, the associative ring having an involution induced by *. R / I has no nonzero nilpotent ideals. For every $\bar{r} \in \bar{R}=U / I, \bar{u} \in \bar{U}$ we have $\left(\bar{u}^{2}\right) \bar{r}+$ $\left(\bar{r}^{*}\right)\left(\bar{u}^{2}\right) \in \bar{U}$, the image of U, as seen in the proof of Corollary 2 . So if n is the exponent of nilpotency of \bar{U}, then $\left[\left(\bar{u}^{2}\right) \bar{r}+\left(\bar{r}^{*}\right)\left(\bar{u}^{2}\right)\right]^{n}=\overline{0}$. Let \bar{u} have exponent m. If $m>2$, then there is an even integer t such that $\bar{u}^{t} \neq \overline{0}$ but $\left(\bar{u}^{t}\right)^{2}=\overline{0}$. We have $\left[\left(\bar{u}^{t / 2}\right)^{2}(\bar{r})+\left(\bar{r}^{*}\right)\left(\bar{u}^{t / 2}\right)^{2}\right] \in U$ and hence $\left[\left(\bar{u}^{t / 2}\right)^{2}(\bar{r})+\right.$ $\left.\left(\bar{r}^{*}\right)\left(\bar{u}^{t / 2}\right)^{2}\right]^{n}=\overline{0}$. So $\bar{r}\left[\left(\bar{u}^{t / 2}\right)^{2} \bar{r}+\left(\bar{r}^{*}\right)\left(\bar{u}^{t / 2}\right)^{2}\right]^{n}(\bar{u})^{t}=\overline{0}$, which means that $\bar{r}\left[\left(\bar{u}^{t}\right) \bar{r}\right]^{n}\left(\bar{u}^{t}\right)=\overline{0}$. Therefore, $\left[\bar{r}\left(\bar{u}^{t}\right)\right]^{n+1}=\overline{0}$ and the left ideal of \bar{R} generated by $\bar{u}^{t}, \bar{R} \bar{u}^{t}$, is nilpotent. It is well-known that the sum of all nilpotent left ideals of \bar{R} is a nilpotent two-sided ideal, which is a contradiction, unless $\bar{u}^{2}=0$. We may therefore assume that $\bar{u}^{2}=0$ for every $\bar{u} \in \bar{U}$. Since $\bar{u}_{1} \bar{u}_{2}+$ $\bar{u}_{2} \bar{u}_{1}=\left(\bar{u}_{1}+\bar{u}_{2}\right)^{2}-\bar{u}_{1}^{2}-\bar{u}_{2}^{2}=\overline{0}$, we have $\bar{U}^{2}=\{\overline{0}\}$. If $\bar{u} \in \bar{U}, \bar{s} \in S$ then $\bar{u} \bar{s} \bar{u}=\overline{0}$ since $\bar{u}(\bar{s} \bar{u}+\bar{u} \bar{s})+(\bar{s} \bar{u}+\bar{u} \bar{s}) \bar{u}=\overline{0}$. Hence, if $\bar{r}=\bar{s}+\bar{k}$ then $\bar{u} \bar{r} \bar{u} \bar{r} \bar{u}=\bar{u}(\bar{s}+\bar{k}) \bar{u}(\bar{s}+\bar{k}) \bar{u}=\bar{u}(\bar{k} \bar{u} \bar{k}) \bar{u}=\overline{0}$. So $\bar{R} \bar{u}$ is a left ideal of \bar{R} in which every element cubes to $\overline{0}$. Again, this leads to a nilpotent associative ideal of \bar{R}. This shows that $\bar{U}=\{\overline{0}\}$ and $U \subseteq U_{1}$. So U extends to I.

Corollary 1. If $R=S+K$ is an associative ring with involution * such that S is nilpotent, then R is nilpotent.

Proof. By Theorem 2, S extends to the maximal nilpotent *-ideal I of R. If $R \neq I$, consider R / I. R / I contains no nilpotent ideals, since I is maximal. On the other hand, R / I has an involution induced by * and the only symmetric element is $\overline{0}$. This means that R / I contains only skew elements which must square to $\overline{0}$; i.e., R / I is nil. Moreover, $\overline{1}_{1} \bar{k}_{2}+\bar{k}_{2} \bar{k}_{1}=\overline{0}$ and thus $\bar{k}_{1} \bar{k}_{2} \bar{k}_{1}=\overline{0}$ for every $\bar{k}_{1}, \bar{k}_{2} \in \bar{R}=R / I$. Since $\left\{\bar{k}_{1} \bar{k}_{2} \bar{k}_{3}\right\}=\left(\bar{k}_{1}+\bar{k}_{3}\right) \bar{k}_{2}\left(\bar{k}_{1}+\bar{k}_{3}\right)-\bar{k}_{1} \bar{k}_{2} \bar{k}_{1}-$ $\bar{k}_{3} \bar{k}_{2} \bar{k}_{3}$, we have

$$
\begin{equation*}
\left\{\bar{k}_{1} \bar{k}_{2} \bar{k}_{3}\right\}=\overline{0} \tag{14}
\end{equation*}
$$

Also, $\bar{k}_{1} \bar{k}_{2} \bar{k}_{3}-\bar{k}_{3} \bar{k}_{2} \bar{k}_{1}$ is symmetric and so

$$
\begin{equation*}
\bar{k}_{1} \bar{k}_{2} \bar{k}_{3}-\bar{k}_{3} \bar{k}_{2} \bar{k}_{1}=0 \tag{15}
\end{equation*}
$$

Adding (14) and (15) shows that $\bar{k}_{1} \bar{k}_{2} \bar{k}_{3}=\overline{0}$ for every $\bar{k}_{1}, \bar{k}_{2}, \bar{k}_{3} \in \bar{R}$. Hence, \bar{R} is nilpotent, which is a contradiction. So $\bar{R}=\{\overline{0}\}$ and R is nilpotent.

Corollary 2. Let $R=S+K$ have a nil Jacobson radical N. Then the maximal nil ideal U of S extends to N.

Proof. N is a *-ideal of R, so $N=U_{1}+L$ and the maximality of U implies that $U_{1} \subseteq U$. We let $\bar{R}=R / I$ and let \bar{U} be the image of U in \bar{R}. If $\bar{U} \neq\{0\}$, the proof of Theorem 2 shows that either \bar{U} is nilpotent or else there exists a $\bar{u} \in \bar{U}$ and an even integer t such that $\bar{u}^{t} \neq \overline{0}$ and the left ideal $\bar{R} \bar{u}^{t}$ is nil. In either case, we are led to a contradiction of the fact that \bar{R} has zero Jacobson radical. Hence, $\bar{U}=\{\overline{0}\}$ and $U \subseteq U_{1}$. So $U=U_{1}$ and U extends to N.

Extending Jordan homomorphisms of S. Let Φ be a Jordan homomorphism of S. In other words, Φ is a mapping of S such that

$$
\begin{aligned}
\Phi\left(s_{1}+s_{2}\right) & =\Phi\left(s_{1}\right)+\Phi\left(s_{2}\right) \\
\Phi\left(s_{1} s_{2}+s_{2} s_{1}\right) & =\Phi\left(s_{1}\right) \Phi\left(s_{2}\right)+\Phi\left(s_{2}\right) \Phi\left(s_{1}\right)
\end{aligned}
$$

Let R^{\prime} be an associative ring generated by $\{\Phi(s) \mid s \in S\}$. We seek conditions on R^{\prime} and Φ which will insure an extension of Φ to an associative homomorphism of $R=S+K$ onto R^{\prime}. We note that if the elements of S generate R associatively, and if Φ extends to an associative homomorphism of R onto R^{\prime}, then this extension is unique.

Theorem 3. Let $R=S+K$ be a ring with involution such that the elements of S generate R. Then any Jordan homomorphism Φ of S into an associative ring R^{\prime} generated by $\left\{\Phi(s)=s^{\prime}\right\}$ can be extended to a unique associative homomorphism of R onto R^{\prime} if:
(i) $\left\{s_{1} s_{2} s_{3} s_{4}\right\}^{\prime}=\left\{s_{1}{ }^{\prime} s_{2}{ }^{\prime} s_{3}{ }^{\prime} s_{4}{ }^{\prime}\right\}$, the tetrad identity; and
(ii) R^{\prime} contains no nilpotent central elements.

Proof. If $r \in R$, then since S generates R, we have $r=\sum_{i} s_{1 i} s_{2 i} \ldots s_{n i}$. If Φ extends, we must have $\Phi(r)=\sum_{i} s_{1 i}{ }^{\prime} s_{2 i}{ }^{\prime} \ldots s_{n i}{ }^{\prime}$. It suffices to prove that this extension is well-defined; in other words, we will show that $\sum_{j} \prod_{i} s_{i j}=0$ implies that $\sum_{j} \Pi_{i} s_{i j}{ }^{\prime}=0^{\prime}$ if conditions (i) and (ii) are satisfied.

Suppose that $s_{1} s_{2} \ldots s_{n}$ is the longest term in a given expression $\sum_{j} \Pi_{i} s_{i j}=0$ and assume that $n>4$. Because $s_{1} s_{2} \ldots s_{n}=\left(s_{1} s_{2}+s_{2} s_{1}\right) s_{3} \ldots s_{n}-$ $s_{2} s_{1} s_{3} \ldots s_{n}$, we can change $s_{1} s_{2} \ldots s_{n}$ into $-s_{2} s_{1} s_{3} \ldots s_{n}$ plus a term of smaller length, since $s_{1} s_{2}+s_{2} s_{1} \in S$, without disturbing the value of $\sum_{j} \prod_{i} s_{i j}$ under Φ. Similarly, we may then change $-s_{2} s_{1} s_{3} \ldots s_{n}$ into $s_{2} s_{3} s_{1} s_{4} \ldots s_{n}$ plus another term of smaller length without changing the value of $\sum_{j} \Pi_{i} s_{i j}$ under Φ. Continuing in this fashion, we ultimately change $s_{1} s_{2} s_{3} s_{4} \ldots s_{n}$ into $s_{4} s_{3} s_{2} s_{1} \ldots s_{n}$ plus many terms of smaller length. We do this with every term in $\sum_{j} \prod_{i} s_{i j}$ of
maximal length n. Adding the original expression $\left(\sum_{j} \prod_{i} s_{i j}\right)$ and the resulting expression, we obtain an expression for 0 having terms of the form $\left\{s_{1} s_{2} s_{3} s_{4}\right\} s_{5} \ldots s_{n}$ as well as other terms of length less then n. Since $\left\{s_{1} s_{2} s_{3} s_{4}\right\}^{\prime}=$ $\left\{s_{1}{ }^{\prime} s_{2}{ }^{\prime} s_{3}{ }^{\prime} s_{4}{ }^{\prime}\right\}$ the new expression of terms of length less then n will have the same value under Φ as $\sum_{j} \prod_{i} s_{i j}$ does. This shows that we may assume that $\sum_{j} \prod_{i} s_{i j}$ is an expression of terms of length less than or equal to 3 . Since $R=S+K$, we may also assume that $\sum_{j} \Pi_{i} s_{i j}$ is either skew-symmetric or symmetric.

Suppose that $\sum_{j} \prod_{i} s_{i j}$ is symmetric. Then $\left(s_{1} s_{2}+s_{2} s_{1}\right)^{\prime}=s_{1}{ }^{\prime} s_{2}{ }^{\prime}+s_{2}{ }^{\prime} s_{1}{ }^{\prime}$ and $\left(s_{1} s_{2} s_{3}+s_{3} s_{2} s_{1}\right)^{\prime}=\left(s_{1}{ }^{\prime} s_{2}{ }^{\prime} s_{3}{ }^{\prime}+s_{3}{ }^{\prime} s_{2}{ }^{\prime} s_{1}{ }^{\prime}\right)$. (The latter is true since $s s_{1} s=$ $\left[s\left(s s_{1}+s_{1} s\right)+\left(s s_{1}+s_{1} s\right) s\right]-\left[s^{2} s_{1}+s_{1} s^{2}\right] \Rightarrow\left(s s_{1} s\right)^{\prime}=s^{\prime} s_{1} s^{\prime}$, and

$$
\left.\left(s_{1}+s_{3}\right) s_{2}\left(s_{1}+s_{3}\right)=s_{1} s_{2} s_{1}+s_{3} s_{2} s_{3}+\left\{s_{1} s_{2} s_{3}\right\} \Rightarrow\left\{s_{1} s_{2} s_{3}\right\}^{\prime}=\left\{s_{1}^{\prime} s_{2}^{\prime} s_{3}^{\prime}\right\} .\right)
$$

This shows that Φ is well defined on S.
Suppose that $\sum_{j} \prod_{i} s_{i j}$ is skew-symmetric. For any $s \in S$ we have

$$
0^{\prime}=\left[s\left(\sum_{j} \Pi_{i} s_{i j}\right)-\left(\sum_{j} \Pi_{i} s_{i j}\right) s\right]^{\prime}=s^{\prime}\left(\sum_{j} \Pi_{i} s_{i j}{ }^{\prime}\right)-\left(\sum_{j} \Pi_{i} s_{i j}{ }^{\prime}\right) s^{\prime}
$$

since $s\left(\sum_{j} \Pi_{i} s_{i j}\right)-\left(\sum_{j} \Pi_{i} s_{i j}\right) s \in S$. This shows that $\sum_{j} \Pi_{i} s_{i j}{ }^{\prime}$ belongs to the centre of R^{\prime}. Also, since $\left(\sum_{j} \Pi_{i} s_{i j}\right)^{2} \in S$, we have $0^{\prime}=\left[\left(\sum_{j} \Pi_{i} s_{i j}\right)^{2}\right]^{\prime}=$ ($\left.\sum_{j} \prod_{i} s_{i j}{ }^{\prime}\right)^{2}$, and so $\sum_{j} \Pi_{i} s_{i j}{ }^{\prime}$ is nilpotent. But by assumption, R^{\prime} contains no non-zero nilpotent central elements, so $\sum_{j} \Pi_{i} s_{i j}^{\prime}=0^{\prime}$ and Φ is well defined on K.

Corollary 1. Suppose that the symmetric elements of $R=S+K$ generate R. Let I be a Jordan homomorphism of S into an associative ring R^{\prime} generated by $\left\{\Phi(s)=s^{\prime}\right\}$. Furthermore, assume that Φ satisfies the tetrad identity. Then Φ extends uniquely to an associative homomorphism of R onto a homomorphic image of R^{\prime}.

Proof. As in the proof of Theorem 3, we first try to extend Φ to a homomorphism of R onto R^{\prime} by defining $\Phi\left(\sum_{j} \Pi_{i} s_{i j}\right)=\sum_{j} \Pi_{i} s_{i j}{ }^{\prime}$. We see in the proof of Theorem 3 that the tetrad identity implies that if $\sum_{j} \Pi_{i} s_{i j}$ is symmetric, then $\sum_{j} \Pi_{i} s_{i j}=0$ means that $\sum_{j} \Pi_{i} s_{i j}{ }^{\prime}=0^{\prime}$. On the other hand, if $\sum_{j} \Pi_{i} s_{i j}$ is skew symmetric, then $\sum_{j} \Pi_{i} s_{i j}=0$ means that $\sum_{j} \Pi_{i} s_{i j}{ }^{\prime}$ is a central nilpotent element a^{\prime} of R^{\prime}. Let H^{\prime} be the ideal of R^{\prime} generated by the set of all such $a^{\prime} \in R^{\prime}$. Then R^{\prime} / H^{\prime} is generated by the equivalence classes $s^{\prime}+H^{\prime}$, and considering Φ as a Jordan homomorphism of S into R^{\prime} / H^{\prime}, we have that Φ extends to a Jordan homomorphism of R onto R^{\prime} / H^{\prime}.

For an example to illustrate Theorem 3 and its Corollary 1, we use one that is given in [4, p. 483]. Let $R=F[x, y]$ be the polynomial algebra over the field F in two commuting indeterminants. R is a ring with involution using the identity involution, so $S=R$. Let $R^{\prime}=F[X, Y, Z]$ be the algebra over F generated by X and Y subject to the relations $Z=X Y-Y X, Z^{2}=0$,
$X Z=Z X, Y Z=Z Y$. It is shown in [4] that the linear mapping Φ that sends $x^{k} y^{l}$ into $\frac{1}{2}\left(X^{k} Y^{l}+Y^{l} X^{k}\right)$ is a Jordan homomorphism of R into R^{\prime} which is not an associative homomorphism. Note that Z is a central nilpotent element of R^{\prime}. Let H^{\prime} be the ideal of R^{\prime} generated by Z. Then R^{\prime} / H^{\prime} is isomorphic with R, and Φ becomes as associative isomorphism of R onto R^{\prime} / H^{\prime}.

For another example of a Jordan homomorphism which does not extend, let R be the algebra over the field F generated by $s_{1}, s_{2}, s_{2}, s_{4}$ subject to the relations $s_{i} s_{j}+s_{j} s_{i}=0$ if $i \neq j$ and $s_{i}{ }^{2}=\alpha_{i} 1 \neq 0, \alpha_{i} \in F . R$ is a Clifford algebra, 16 dimensional over F, with a basis consisting of the 16 elements of the form $s_{1}{ }^{\beta}{ }_{1} S_{2}{ }^{\beta 2} S_{3}{ }_{3}{ }^{\beta} S_{4}{ }^{\beta_{4}}$ where each β_{i} equals 0 or 1 . The involution in R reverses the order of the $s_{i}{ }^{\prime} s$. Hence, S has a basis consisting of $1, s_{1}, s_{2}, s_{3}, s_{4},\left\{s_{1} s_{2} s_{3} s_{4}\right\}$. Let $R^{\prime}=R$ and define Φ on the basis elements of S by $\Phi(1)=1, \Phi\left(s_{i}\right)=s_{i}$, $i=1,2,3,4$ and $\Phi\left(\left\{s_{1} s_{2} s_{3} s_{4}\right\}\right)=-\left\{s_{1} s_{2} s_{3} s_{4}\right\}$. We extend Φ linearly to all of S and check that Φ is a Jordan automorphism of S. It is clear that Φ cannot extend to an automorphism of R since

$$
\Phi\left(\left\{s_{1} s_{2} s_{3} s_{4}\right\}\right)=-\left\{s_{1} s_{2} s_{3} s_{4}\right\} \neq\left\{s_{1} s_{2} s_{3} s_{4}\right\},
$$

violating the tetrad identity. We note that associatively we have $\Phi\left(s_{i} s_{j}\right)=$ $\Phi\left(s_{i}\right) \Phi\left(s_{j}\right)$ and $\Phi\left(s_{1} s_{j} s_{k}\right)=\Phi\left(s_{i}\right) \Phi\left(s_{j}\right) \Phi\left(s_{k}\right)$ which means that Φ may be extended uniquely to the subspace of R spanned by at most three of the generators $s_{1}, s_{2}, s_{3}, s_{4}$. We may extend this example by letting R be the associative algebra over F generated by $s_{1}, s_{2}, s_{3}, \ldots, s_{n}$ where $n \equiv 1$ modulo 4 , subject to the following conditions:
(i) $s_{i} s_{j}+s_{j} s_{i}=0$, if $i \neq j$;
(ii) $s_{2 i}{ }^{2}=-1, s^{2} 2_{i+1}=1$;
(iii) if $s_{i}, s_{j}, s_{k}, s_{l}$ are four distinct generators such that $i<j<k<l$ then $s_{i} s_{j} s_{k} s_{l}$ equals the product of all the other generators in order; that is, if $m<q$ then s_{m} precedes s_{q}. For example, if $n=9$ then

$$
s_{1} s_{2} s_{3} s_{4}=s_{5} s_{6} s_{7} s_{8} s_{9}, s_{1} s_{3} s_{4} s_{6}=s_{2} s_{5} s_{7} s_{8} s_{9}, \text { etc. }
$$

We let R^{\prime} be the Clifford algebra over F generated by $s_{1}{ }^{\prime}, \ldots, s_{n}{ }^{\prime}$ where n is the same as above. So we have $s_{i}{ }^{\prime} s_{j}^{\prime}+s_{j}{ }^{\prime} s_{i}{ }^{\prime}=0^{\prime}$ for $i \neq j$ and let $\left(s_{2 i}\right)^{2}=-1,\left(s^{\prime}{ }_{2 i+1}\right)^{2}=1$. The involutions in R and R^{\prime} reverse the orders of the generators. Since S is generated by the Jordan products of $s_{1}, s_{2}, \ldots, s_{n}$ and all their tetrads (see [1]), it suffices to define a Jordan homomorphism $\Phi: S \rightarrow R^{\prime}$ by $\Phi\left(s_{i}\right)=s_{i}{ }^{\prime}$ for $i=1,2, \ldots, n$ and if

$$
\left\{s_{i} s_{j} s_{k} s_{l}\right\}=\prod_{i=1}^{n-4} s_{m_{i}}
$$

where $i<j<k<l$ and $m_{1}<m_{2}<\ldots<m_{n-4}$, then

$$
\Phi\left(\left\{s_{i} s_{j} s_{k} s_{l}\right\}\right)=\prod_{i=1}^{n-4} s_{m_{i}}^{\prime}
$$

A check will show that Φ is a Jordan homomorphism of S into R^{\prime} which does not extend. Once more the tetrad identity is violated.

Finally, we give another corollary of Theorem 3 similar to Corollary 3 of Theorem 1, and since the proofs are similar we omit the proof here.

Corollary 2. If $R=S+K$ is generated by three symmetric elements, then any Jordan homomorphism Φ of S into R^{\prime} satisfies the tetrad identity. Hence, Φ extends to a homomorphism of R onto perhaps a homomorphic image of R^{\prime}.

References

1. P. M. Cohn, Universal algebra (Harper and Row, New York, 1965).
2. I. N. Herstein, Lie and Jordan systems in simple rings with involution, Amer. J. Math. 78 (1956), 629-649.
3. N. Jacobson, Structure and representation of Jordan algebras, Amer. Math. Soc. Colloq. Publ., Vol. 39 (Amer. Math. Soc., Providence, R.I., 1968).
4. N. Jacobson and C. E. Rickart, Jordan homomorphisms of rings, Trans. Amer. Math. Soc. 69 (1950), 479-502.
5. —_Homomorphisms of Jordan rings of self-adjoint elements, Trans. Amer. Math. Soc. 72 (1952), 310-322.
6. W. S. Martindale, III, Jordan homomorphisms of the symmetric elements of a ring with involution, J. of Algebra, 5 (1967), 232-249.
7. J. M. Osborn, Jordan and associative rings with nilpotent and invertible elements, J. of Algebra 15 (1970), 301-308.

University of Oklahoma, Norman, Oklahoma

[^0]: Received May 11, 1971 and in revised form, October 4, 1971. Part of this work is a portion of the author's doctoral dissertation written at the University of Wisconsin under the direction of Professor J. Marshall Osborn. Research was supported in part by National Science Foundation contracts GP-3993 and GP-7235.

