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EXTENDING JORDAN IDEALS AND JORDAN 
HOMOMORPHISMS OF SYMMETRIC ELEMENTS 

IN A RING WITH INVOLUTION 

KIRBY C. SMITH 

Introduction. In this work, we show how the ideas in [3, pp. 6-12] can be 
used to give conditions under which Jordan ideals in the set of symmetric 
elements in an associative ring R with involution extend to associative ideals 
of R in a natural way. We also give conditions under which a Jordan homo-
morphism of the set of symmetric elements will extend to an associative 
homomorphism of R. Such work has been done on matrix rings with involution 
in [5; 6]. An abstract definition of a Jordan ring may be found in [3] as well 
as other background information. 

Let R be an associative ring with involution r-^-r*; that is, a mapping 
r —» r* such that 

Oi + r2)* = ri* + r2*, 

(rir2)* = r2*^1*1 

(/-*)* = r% 

We will denote by 5 the set of *-symmetric elements of R, namely 
5 = {s G R\s* = s}. Likewise, let K = {k G R\k* = -k}, the set of *-skew 
symmetric elements of R. If / is an ideal of R then we will call / a *-ideal if / 
is invariant under the involution on R, i.e. if i* G I for every i G / . 

If juxtaposition denotes the multiplicative binary operation on R, then • , 
defined by si • s2 = Sis2 + s2Si, st G S, makes the additive group 5 into a 
Jordan ring. Similarly, K forms a Lie ring under [ki, k2] = k±k2 — k2ki, kt G K. 

Throughout this paper our assumptions on R are: 

(1) 2r = 0 implies r = 0, r G R; 
(2) A = {2a\a G A} for every *-ideal A of R and every Jordan ideal A of S. 

For example, R may be any algebra over a field of characteristic not two or R 
may be any finite ring satisfying (1). We note that condition (2) says that 
the mapping r —» 2r of R is an onto mapping for every *-ideal of R and every 
Jordan ideal of 5. Our use of conditions (1) and (2) will be to allow divisibility 
by 2. The notation \a will mean that element r G R such that 2r = a. 
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JORDAN IDEALS 51 

If r G R, then r = \{r + r*) + | ( r — r*) and so every element in R can 
be wri t ten as the sum of an element in 5 and one in K. Since S P\ K = {0}, 
this representation is unique. We will keep this property of R in mind by 
writing R = S + K. 

E x t e n d i n g Jordan ideals of S. Let / be a *-ideal of R. Then * induces an 
involution on the ring I. So I = U + L where U is the set of symmetr ic 
elements of I and L is the set of skew symmetric elements of I. An easy check 
shows t ha t U is a Jordan ideal of S and L is a Lie ideal of K. We now seek 
conditions under which a Jordan ideal U of S is the set of symmetric elements 
of a *-ideal I of R. If such is the case for a particular ideal U of S then we will 
say t ha t U extends to a *-ideal of R. 

Let E be the subring of the rationals generated by \. Using E we may, if R 
does not have a uni t element, imbed R in a ring R such t ha t 1 G R. Such a 
ring is R = {(e, r)\e G E , r G i^} under the usual operations. I t is easy to 
check t ha t R satisfies conditions (1) and (2). R is a ring with involution ' 
defined by (ra, r)r = (rn, r*) . We note tha t R = S + K where 

S = {(m, s)\m £ E,s e S} and K = {(0, k)\k Ç X } . 

If U is a Jordan ideal of 5 we can correspond U with Û = {(0, # ) | # Ç Î / } , 
a Jordan ideal of 5. I t is easy to see t ha t U extends in R if and only if Û extends 
in R. For easy reference we write this as the first lemma. 

LEMMA 1. If 1 G R = S + K, let R be the ring with 1 in which R is imbedded 
in the usual way. Then R = S + K is a ring with involution ' and if U is an 
ideal of S then U extends to a *-ideal of R if and only if its corresponding ideal 
Û of S extends to a '-ideal in R. 

LEMMA 2. Let R = S + K be a ring with involution *. A Jordan ideal U of S 
extends to a *'-ideal of R if and only if aub + b*ua* G U for every u G U, b G R-

Proof. W e may assume tha t 1 G R; for, if we identify U with 
U = {(0, u)\u G U} in R, then Û satisfies the conditions of Lemma 2 (using 
assumption (2) on R), and by Lemma 1, U extends in R if and only if U 
extends in R. 

Let L be the Lie ideal of K generated by {aub — b*ua*\a, b G R). K consists 
simply of all finite sums of its generators. We let / = U + L and proceed to 
show tha t / is a *-ideal of R. I t is clear t ha t the set / is invariant under the 
involution. For every h G L we know tha t 

h = J^iaiUfbi — bfuia*, 

a finite sum, where aub% G R,Ui G U. So if 5 G S, we have 

sh = i Y,i(sai)Uibi — bi*Ui(sai)* + J J^iaiUi(bis) — ( 6 ^ ) * ^ ^ ^ * 

+ h HiisaùUibi + bfui^sai)* + \ £ i — axui(})is) — (blutât*. 
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This means t h a t sh G / for every s £ S and h G L. For k G K we have 

kh •= \ Y,i(kai)uibi + bi*Ui(ka,i)* + \ Y^ & & i(b &) + (bik)*Ui(ii* 

+ I J^i(kai)uibi — b?Ui(kai)* + % X M M ) * ^ * * — a * « i ( M ) . 

This shows t h a t kh £ I for every k £ K, h £ L. For 5 f S, « Ç U, k £ K we 
have 

sw = |(sw + ws) + | (s^ — ws), 

&w = |(&w + uk*) + |(&zi — uk*), 

which show t h a t su and ku belong to L. Since R = 5 + K, all of the above 
calculations show t h a t / is a left ideal of i£. Since / is invar iant under the 
involution, / is also a r ight ideal and hence an ideal of R. 

W e let {sis2 . . . sn] = 1̂̂ 2 . • . sn + sn . . . s2Si, where each st G S. Clearly, 

{sis2 • • • sn} G 5 . Following Cohn [1], we will call {siS2S3s4}
 a Mra^ m 

Si , ^2) S3, S4. 

If U is a Jo rdan ideal of S then, clearly, {^5} = us + su £ S for every 
u £ U, s £ S. W e show now t h a t {wsis2} G U. For 2sz/s = [s(sw + us) + 
(sw + us)s] — [ A + ^s2] belongs to [ / and thus {si^s2} = Ĉ i + s2)u(si + s2) 
— S1US1 — s2us2 G U. So since {usis2} = {(us\ + Siu)s2} — {sius2}, we have 
{usis2} G U. W e will give examples later to show t h a t the te t rad {us2s^Si} need 
not be in U. This leads us to the main theorem of this section. 

T H E O R E M 1. Let R = S + K be an associative ring with involution * satisfying 
properties ( l ) - ( 2 ) and assume that the set of symmetric elements S generates R 
associatively. Then a Jordan ideal U of S extends to a *-ideal I of R if and only if 
{us2szs4} G U for every s2, s3, s4 G S, u G U. 

Proof. T h e necessity of {us2szs^} being in U is clear. For the converse, we 
note first t ha t since 5 generates R, Lemma 2 tells us t h a t it is enough to show 
t h a t {s2Sz • • • SfUSi+i . . . sn} G U for n = 2, 3, . . . . We proceed to do this 
by induction on n. Clearly, {us} = {su} G U which is the case n = 2. Now we 
assume t h a t we have shown tha t for every st G 5, u G U, we have 
{s2s% • • • SiUSi+i . . . sn-i} G U regardless of the position of u. T h e n we have 
{us2sz . . . sn} = {(us2 + s2u)sz . . . sn} — {s2usz . . . sn}. Since us2 + s2u G U 
as well as {(us2 + ^2^)53 . . . sn} G U (by induction hypothesis) , we conclude 
t h a t {us2s% . . . sn} G U if and only if {s2us% . . . sn} G U. Continuing, we get 
{us2s% . . . sn} G U if and only if {s2 . . . s ^ * + i . . . sn} G U. So to finish the 
proof of the theorem, it is enough to show t h a t {us2s% . . . sn} G U for every 
u G U, St G 5 . 

For this goal we need the following general identities found in [1] : 

(4) { OiS2 + S2Si)s5 . . . Sn} = {SiS2Sz . . . Sn} + {s2S!Sz . . . Sn}\ 

(5) {S1S2S3 . • • Sn-l} ' $n = {SlS2Sz . . . Sn} + {V*iS2 * * ' Sn-l] » 

( 6 ) {SiS2S3S4} ' {S5 . . . Sn} = { $ » . . . 555453525i} + {s4S3S2SiSw . . . ^5} 

+ {^i5253545n . . . S5} + {Sn . . . SbS!S2SZS4}. 
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Finally, relative to the ideal U of S we have, using our induction hypothesis, 

(7) {us2sz. . . sn] = {—l)a{hh . . . Q modulo U, 

where the tt are some permutation of u, s2, s$, . . . , sn and a = 0 or 1 depending 
on whether the permutation is even or odd, respectively. 

Case 1. Suppose that n is odd. Let S\ — u in (5) and get (using the induction 
hypothesis) 

(8) \us2sz . . . sn] = — {snus2 . . . sn-i] modulo U. 

Permuting u, s2, Sa, . . . , sn to sn, u, s2, . . . , sn-i is an even permutation, 
since n is odd. So by (7) we have 

(9) {us2s%. . . sn} = {snus2. . . sn-i} modulo U. 

Addition of equations (8) and (9) gives 2{us2sz . . . sn} £ U and thus 
{us2sz. . . sn} G U. 

Case 2. Suppose that n is even. Let S\ = u in (6) and get 

(10) {Sn . . . S5S4S3S2W} + {s±SzS2USn . . . 55} = — {sw . . . 55^525354} 

— {us2ssSiSn . . . 55} modulo Z7, 

where we have used the assumption that {us2SzS^\ £ U. Since 

Sn, . . . , S5, S4, ^ 3 , S2 , W a n d S4, ^3> S2 , U, Sn, . . . , S5 

differ by an even permutation, as do 

sn, . . . , 55, %, $2, S3, 4̂ and u, s2, sZf 54, sni . . . , 55, 

we have from (7) and (10) 

(11) {us2Sz . . . sn} = —{sn... sbus2s%Si} modulo U. 

If u, s2, S3, . . . , sn and sn, . . . , s5, ^, s2, s3, £4 differ by an even permutation, 
which will be the case if 4 divides n, then (7) and (11) imply that 
{us2sz . . . sn} 6 U. If 4 does not divide w, then u, s2, sz, . . . , sn and 
j w , sn-i, . . . , si differ by an odd permutation and so (7) says 

(12) {us2sz •••$»} = ~~ {sn • • • ̂ 3̂ 2̂ } modulo £/. 

On the other hand, we always have 

(13) {US2S9 . . . Sn} = { * „ . . . 5 3 5 2 ^}. 

Comparing (12) and (13) gives {^s2s3 • • • sn} ë £A completing the proof of 
Theorem 1. 

Let [5, 5] denote the additive subgroup of K generated by 

{SfSj s ^ ï p ï , Sj G o ) 

Using this notation we have the following corollary. 
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COROLLARY 1. If R = 5 + K such that [5, S] = K, then every Jordan ideal U 
of S extends to a *-ideal of R. 

Proof. We are assuming that 5 generates R in a special way. For 
si, s2 G S,u G U we have 

(S\S2 — S2Si)u — u(SiS2 — S2S1) = [(S2U + US2)Si + Si(s2U + US2)] 

— [s2(siu + usi) + (siu + usi)s2], 

and hence (s±s2 — s2Si)u — u(sis2 — s2Si) G U. Since [S,S] = K, every 
element of K is a sum of elements of the form S\s2 — s2s\. Thus, [K, U] C U. 
Since U is a Jordan ideal, we have S • U C U. This shows that rw + ur* G t/ 
for every r G i£. Hence, u(sis2s%) + (s1s2Sz)*u = {̂ 51̂ 2̂ 3} G C/. Now we apply 
Theorem 1. 

COROLLARY 2. Le/ i? = 5 + K such that S generates R. If U is a Jordan ideal 
of S having the property that U'2 = U, then U extends to a *-ideal of R = S + K. 

Proof. For every u G U, k G K we have u2k — ku2 G Z7 since u2k — ku2 = 
{uk — ku)u + u(uk — ku). Also, u2s + su2 G Z7. This means that 
ru2 + wV* G U for every r G R, u G £/. Linearization gives r(uiu2 + ^2^1) + 
(wiw2 + u2U\)r* G Z7. Since [7'2 = £/, we have ru + ur* G U, so Theorem 1 
applies. 

COROLLARY 3. If R = S + K is generated by two symmetric elements, then 
every Jordan ideal U of S extends to an invariant associative ideal of R. 

Proof. Choose u G U, Si, s2, s% G S. If {us±s2Sz} G U, then the same is true 
of any tetrad obtained from a permutation of u, s\, s2, s3 and conversely, as 
seen in the proof of Theorem 1. Suppose that 53 = x±x2 + x2x± where 
Xi, x2 G <5. Then 

{uSiS2(XiX2 + X2Xi)} = {{uSiS2Xi}x2} + {{uSiS2X2}Xi} — {xiUSiS 2X2} 

— {XiS2SiUX2} + {{uSiS2Xi}X2} + { {uSiS2X2}Xi} — {Xi{uSiS2} ^2} . 

This shows, since {xi{usiS2}x2} G Uy that {usis2s^} G U if both {usiS2Xi} and 
{usis2X2} are in U. 

Now let v and w be two symmetric generators of R. It is known [1, pp. 305-
306] that v and w generate S solely by the Jordan product. Thus, by the above 
argument, {usiS2S^\ G U if {utit2h} G U for tt = v or w, i = 1, 2, 3. Since a 
duplication of either v or w must occur, it is easy to check that {utfah) G U. 

Corollary 3 fails for more than two symmetric generators. For, let 
R = F[xi, X2, Xz], the free algebra over a field F generated by three independent 
elements Xif X2, X3. Let * be the involution on R which reverses the order of 
the generators; for example, (xix2 + x3x2#i)* = 2̂X1 + X\X2x%. Let U be the 
Jordan ideal of 5 in R generated by X\X2 + x2x±. Then it has been shown 
[1, pp. 307-308] that {(xix2 + x2xi)xix2x3} £ U. So U does not extend to a 
*-ideal of R. 
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For an easy example of a Jordan ideal which does not extend, let R be an 
algebra over F generated by xi, x2, x3, x± such that xtXj + XjXt = 0 ii i j* j . 
Let the involution in R be the one that reverses the order of the generators, as 
before. Let U be the Jordan ideal of 5 generated by It is clear, 
since xtXj + XjXt = 0 if i ^ j , that {xix2x3x4} (? U, so U does not extend. 

THEOREM 2. Le£ i? = S + K be a ring with involution *. Let U be the maximal 
nilpotent ideal of S. Then U extends to the maximal nilpotent ideal I of R. 

Proof. A Zorn's lemma argument applied to the set of all nilpotent ideals 
of 5 proves the existence of a maximal nilpotent ideal U. Since the sum of 
two nilpotent Jordan ideals is another nilpotent Jordan ideal, U must be 
unique. Similarly, we can show the existence of a unique nilpotent ideal I ol R 
which must necessarily be a *-ideal of R. Hence, I = U± + L where U\ is a 
nilpotent ideal of 5. We must have Ui Q U due to the maximality of U. To 
show that U Q Ui, we adapt an argument by Herstein [2, p. 633]. Consider 
R/I, the associative ring having an involution induced by *. R/I has no non
zero nilpotent ideals. For every f G R = U/I, û G Û we have (û2)f + 
(f*)(û2) G Û, the image of U, as seen in the proof of Corollary 2. So if n is 
the exponent of nilpotency of Û, then [(û2)? + (r*)(û2)~]n = Ô. Let û have 
exponent m. If m > 2, then there is an even integer t such that û1 9^ S but 
(û1)2 = Ô. We Jiave [(ût/2)2(f) + (f*)(ût/2)2] G U and hence [(V /2)2(f) + 
(f*)(ût/2)2]n = 0. So f[(w'/2)2f + (f*)(«^2)2]n («) ' = 0, which means that 
?[(w*)f]n(w*) = 0. Therefore, [?(ût)~]n+1 = 0 and the left ideal of R generated 
by û\ Rû\ is nilpotent. It is well-known that the sum of all nilpotent left 
ideals of R is a nilpotent two-sided ideal, which is a contradiction, unless 
û2 = 0. We may therefore assume that û2 = 0 for every û G Û. Since û\û2 + 
û2û\ = (ûi + W2)2 — ^i2 — û2

2 = Ô, we have Û2 = {Ô}. If zZ G Z7, S G 5 
then usû = 0 since ù(sù + ws) + (sw + ûs)û = Ô. Hence, if f = 5 + k then 
ûfûfû = û(s + k)ù(s + £)w = û(kûk)û = Ô. So ^ ^ is a left ideal of R in 
which every element cubes to Ô. Again, this leads to a nilpotent associative 
ideal of R. This shows that Û = {0} and [7 £ U\. So Z7 extends to / . 

COROLLARY 1. If R = S + K is an associative ring with involution * such 
that S is nilpotent, then R is nilpotent. 

Proof. By Theorem 2, S extends to the maximal nilpotent *-ideal / of R. 
If R 9^ I, consider R/I. R/I contains no nilpotent ideals, since / is maximal. 
On the other hand, R/I has an involution induced by * and the only symmetric 
element is 0. This means that R/I contains only skew elements which must 
square to 0; i.e., R/I is nil. Moreover, kik2 + k2ki = 0 and thus &i£2£i = 0 
for every ki, k2 G R = R/I. Since {kik2kz} = (£1 + k%)k2(ki + £3) — £1*2*1 — 
*3*2*3, we have 

(14) {«1*2*8} = 0. 
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Also, kik2kz — kzk2ki is symmetr ic and so 

(15) k\k2kz — &3&2&1 = 0. 

Adding (14) and (15) shows t h a t k\k2k% = 0 for every ku k2, k% G R. Hence, 
R is nilpotent, which is a contradiction. So R = {0} and R is nilpotent. 

COROLLARY 2. Let R = S -\- K have a nil Jacob son radical N. Then the 
maximal nil ideal U of S extends to N. 

Proof. N is a *-ideal of R, so N = Ui + L and the maximali ty of U implies 
t h a t Ui C U. W e let i? = R/I and let £7 be the image of U in R. If c? ^ {0}, 
the proof of Theorem 2 shows t ha t either Z7 is ni lpotent or else there exists a 
û 6 [7 and an even integer / such t ha t ^ ' ^ 0 and the left ideal Ru1 is nil. In 
either case, we are led to a contradict ion of the fact t h a t R has zero Jacobson 
radical. Hence, Û = {0} and U Q Ui. So U = U\ and U extends to N. 

E x t e n d i n g J o r d a n h o m o m o r p h i s m s of S. Le t $ be a Jo rdan homomor-
phism of S. In other words, $ is a mapping of 5 such t h a t 

$(Sl + s2) = $(Sl) + $(s2), 
$(SiS2 + S2Si) = $ (S i )$ ( s 2 ) + $(s2)&(Si). 

Let Rf be an associative ring generated by {<ï>(s)|s £ S}. W e seek conditions 
on R' and $ which will insure an extension of <£ to an associative homo-
morphism of R = S + K onto R'. W e note t h a t if the elements of 5 generate 
R associatively, and if <£ extends to an associative homomorphism of R onto 
R', then this extension is unique. 

T H E O R E M 3. Let R = S + K be a ring with involution such that the elements 
of S generate R. Then any Jordan homomorphism $ of S into an associative 
ring Rr generated by {§{s) = sr] can be extended to a unique associative homo
morphism of R onto R' if: 

(i) {̂ î 2̂ 3< 4̂}/ = {sis2sz s4'}, the tetrad identity; and 
(ii) R' contains no nilpotent central elements. 

Proof. If r G R, then since S generates R, we have r = YLisnszi • • • sm- If 
$> extends, we mus t have $(r) = S ^ 1 / ^ 2 / . • • sni

r. I t suffices to prove t h a t 
this extension is well-defined; in other words, we will show t h a t J^jTLisij = 0 
implies t h a t X ^ I I ^ z / = 0' if conditions (i) and (ii) are satisfied. 

Suppose t h a t Sis2 . . . sn is the longest term in a given expression YljUisij = 0 
and assume t h a t n > 4. Because s\s2 . . . sn = (s\S2 + s2Si)s% . . . sn — 
s2S\Sz . . . sn, we can change Sis2 • . • sn into —s2s±s^ . . . sn plus a term of smaller 
length, since Sis2 + s2Si £ Sy wi thout disturbing the value of ^jYliSij under <ï>. 
Similarly, we m a y then change — s2SiSs . . . sn into s2SzSiSi . . . sn plus another 
term of smaller length wi thout changing the value of J^jYIiSij under <ï>. 
Continuing in this fashion, we ul t imately change SiS^zS^. . . sn into s±SzS2Si. . . sn 

plus m a n y terms of smaller length. W e do this with every term in 'EjYIiSij of 
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maximal length n. Adding the original expression (J^jYl^ij) and the resulting 
expression, we obtain an expression for 0 having terms of the form 
{ î̂ 2^3^4}^5 . . . ^ as well as other terms of length less then n. Since {s iWs^} ' = 
{sis2s/s/} the new expression of terms of length less then n will have the 
same value under <i> as ^3YLisij does. This shows tha t we may assume tha t 
HjTlisij is a n expression of terms of length less than or equal to 3. Since 
R = S + K, we may also assume tha t YijTLiSij is either skew-symmetric or 
symmetric. 

Suppose t ha t J^jTL^ij is symmetric. Then (sis2 + ^ î ) ' = s / ^ ' + s2Si 
and (sis2sz + SzS2Si)' = (sis2s/ + s^s2Si). (The lat ter is t rue since ss±s = 
[s(ssi + sis) + (ssi + Sis)s] — [s2si + sis2] => (ssis)' = s'si's', and 

Ol + S3)s2(>l + SZ) = SiS2Si + S3S2S3 + {$1*2*3} => {$1*2*3}' = {S1S2S3}.) 

This shows t ha t <i> is well defined on 5 . 
Suppose t ha t Y,jUisij is skew-symmetric. For any s G S we have 

0' = [*(E J L * „ ) - (LjUiSiM = s'ÇEjUiSi/) - ( E J W ) * ' , 

since sC^jYltSij) ~~ (5Z*TL*^)* € S. This shows tha t YljYlisi/ belongs to 
the centre of R'. Also, since ( £ JI***^)2 G S, we have 0' = [ ( £ J I * * ^ ) 2 ] ' = 
( E j T I ^ i / ) 2 ) and so E/TI***/ is nilpotent. But by assumption, Rf contains 
no non-zero nilpotent central elements, so J^jYl^t/ = 0' and $ is well defined 
onK. 

COROLLARY 1. Suppose that the symmetric elements of R = S + K generate R. 
Let I be a Jordan homomorphism of S into an associative ring Rf generated by 
{$(5) = s'}. Furthermore, assume that $ satisfies the tetrad identity. Then $ 
extends uniquely to an associative homomorphism of R onto a homomorphic 
image of Rf. 

Proof. As in the proof of Theorem 3, we first t ry to extend $ to a homo
morphism of R onto R' by defining ^ ( Z ^ I I ^ o ) = ]C J I*** / - We see in the 
proof of Theorem 3 tha t the te t rad identi ty implies t ha t if J^3YLisij is sym
metric, then ^jTLiSij = 0 means tha t S y l l ï * * / = 0'. On the other hand, if 
^LjYliSij is skew symmetric, then J2jYLisij = 0 means t ha t E^TL**/ is a 
central nilpotent element a' of R'. Let Hf be the ideal of Rr generated by the 
set of all such a' G Rf* Then R!/H' is generated by the equivalence classes 
sf + Hf, and considering $ as a Jordan homomorphism of 5 into Rf/Hf, we 
have tha t <ï> extends to a Jordan homomorphism of R onto R'/H'. 

For an example to illustrate Theorem 3 and its Corollary 1, we use one t ha t 
is given in [4, p . 483]. Let R = F[x, y] be the polynomial algebra over the 
field F in two commuting indeterminants . R is a ring with involution using the 
identi ty involution, so S = R. Let Rf = F[X, Y, Z] be the algebra over F 
generated by X and Y subject to the relations Z = XY — YX, Z2 = 0, 
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XZ = ZX, YZ = ZY.lt is shown in [4] t ha t the linear mapping <£ t h a t sends 
xkyl into \{XkYl + YlXk) is a Jordan homomorphism of R into R' which is 
not an associative homomorphism. Note t h a t Z is a central ni lpotent element 
of Rr. Le t H' be the ideal of Rr generated by Z . Then R'/Hr is isomorphic with 
R, and <£ becomes as associative isomorphism of R onto R'/H'. 

For another example of a Jo rdan homomorphism which does not extend, 
let R be the algebra over the field F generated by Si, s2, s2, SA subject to the 
relations SiSj + SjSt = 0 if i ^ j and st

2 = atl ^ 0, at £ F- R is a Clifford 
algebra, 16 dimensional over F, with a basis consisting of the 16 elements of 
the form Si(3ls2

02s/3S40i where each fit equals 0 or 1. T h e involution in R reverses 
the order of the s/s. Hence, 5 has a basis consisting of 1, sif s2, S3, s A, {SIS2S3SA} . 
Let R' = R and define <£ on the basis elements of S by $ ( 1 ) = 1, $($*) = st, 
i = 1 , 2 , 3 , 4 and $({^i^2^3^4}) = —ÎS1S2S3S4}. W e extend <ï> linearly to all 
of S and check t h a t $ is a Jo rdan automorphism of S. I t is clear t h a t <£ cannot 
extend to an automorphism of R since 

^ ( { S l ^ S ^ } ) = -{S1S2S3S4} ^ {S\S2SZSA\, 

violating the te t rad identi ty. We note t ha t associatively we have <È>(s ;̂-) = 
^(Si)^(sj) and $(siSjSk) = $(Si)$(Sj)$(sk) which means t ha t <£> m a y be 
extended uniquely to the subspace of R spanned by a t most three of the 
generators si, s2, S3, s4. W e may extend this example by lett ing R be the 
associative algebra over ^ g e n e r a t e d by si, s2, S3, . . . , sn where n = 1 modulo 4, 
subject to the following conditions: 

(i) SiSj + SjSt = 0, if i 9^ j ; 
(ii) s2i

2 = — 1, s2
2i+i = 1; 

(iii) if St, Sj, sk, s 1 are four dist inct generators such t h a t i < j < k < I then 
SiSjSkSi equals the product of all the other generators in order; t h a t is, if 
m < q then sm precedes sg. For example, if n = 9 then 

S1S2S3S4 = S5SQS^S$S9, S1S3S4S6 == S2S5S^S8Sg, CtC. 

We let Rr be the Clifford algebra over F generated by s/, . . . , sn' where n 
is the same as above. So we have s/s/ + s/s/ = 0' for i ^ j and let 
(s2/)

2 = — 1, ( ^ 2 Ï + I ) 2 = 1. T h e involutions in R and Rr reverse the orders of 
the generators. Since S is generated by the Jo rdan products of S\, s2, . . . , sn 

and all their te t rads (see [1]), it suffices to define a Jo rdan homomorphism 
QiS-tR' by $(st) = s/ for i = 1, 2, . . . ,n and if 

n— 4 

{s^-s&Sz} = 1 1 sm{ 

where i < j < k < I and nti < m2 < . . . < mw_4, then 
n-4 

A check will show t h a t $ is a Jo rdan homomorphism of 5 into Rf which does 
not extend. Once more the te t rad ident i ty is violated. 
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Finally, we give another corollary of Theorem 3 similar to Corollary 3 of 
Theorem 1, and since the proofs are similar we omit the proof here. 

COROLLARY 2. If R = S + K is generated by three symmetric elements, then 
any Jordan homomorphism $ of S into Rf satisfies the tetrad identity. Hence, 
<ï> extends to a homomorphism of R onto perhaps a homomorphic image of R'. 
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