
1 Introduction and Preliminaries

Monotone operator theory is an elegant and powerful tool for analyzing first-order
convex optimization methods and, as such, plays a central role in convex analysis and
convex optimization theory. In this book, we use this tool to provide a unified analysis
of many classical and modern convex optimization methods.
This book is organized into two parts. Part I presents analysis of convex optimization

methods via monotone operators, the core content. The content of Part I has sequential
dependence, so the chapters should be read in a linear order. Part II presents additional
auxiliary topics. The chapters can be read independently of each other. A diagram in
the preface illustrates the dependency of the chapters.

1.1 FIRST-ORDER METHODS IN THE MODERN ERA

Many convex optimizationmethods can be classified into first or second-ordermethods.
First-order methods can be described and analyzed with gradients and subgradients,
while second-order methods use second-order derivatives or their approximations.

In the early days of convex optimization, the 1970s through the 1990s, researchers
focused primarily on second-order methods, as they were more effective in solving the
relatively smaller optimization problems of the era. Within the past decade, however,
the demand to solve ever-larger problems grew, and so did the popularity of first-order
methods.

Second-order methods require relatively fewer iterations to solve the optimization
problem to high accuracy, even up to machine precision. However, the computational
cost per iteration quickly becomes expensive as the problem size grows. In contrast,
first-order methods have a much lower computational cost per iteration. For some
large-scale optimization problems, running even a single iteration of a second-order
method is infeasible, while first-order methods can solve such problems to acceptable
accuracy.

Another advantage of first-order methods is that they are extremely simple; we can
usually describe the entire method with two or three lines of equations. This is a signif-
icant advantage in practice, as simpler methods are easy for practitioners to implement
and try out quickly, and the simplicity tends to make efficient parallelization easier.
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2 1 Introduction and Preliminaries

The two classes of methods are usually not in competition. When a high-accuracy
solution is needed, second-order methods should be used. In large-scale problems, one
should use first-order methods and tolerate inaccuracy. After all, most engineering
applications require only a few digits of accuracy in their solution. If the problem size
is small, one should use second-order methods since there is little reason to forgo the
high accuracy.
The total cost of a method is

(cost per iteration) × (number of iterations).

We can analyze the cost per iteration by examining the computational cost of the indi-
vidual components of the method. We can analyze the number of iterations required
for convergence by analyzing the rate of convergence.
In convex optimization, arguments advocating one method over another are often

based on the cost per iteration. In fact, we just made this very argument in comparing
first-order and second-order methods. However, it is important to keep in mind that
these arguments are incomplete since the cost per iteration is only half of the equation,
literally. A method with a low cost per iteration has the potential, not a guarantee, to
be efficient.
Nevertheless, primarily focusing on the cost per iteration of a method is still a useful

simplification, so we adopt it in this book. With the exception of §12 and §13, this book
almost entirely focuses on establishing convergence without paying much attention to
the rate of convergence. We do prove convergence rates, but the rates are discussed
infrequently.

1.2 LIMITATIONS OF MONOTONE OPERATOR THEORY

One of the main goals of this book is to provide streamlined and simple convergence
proofs, and we only discuss results that fit this approach. Such results are simple but
often not the strongest. The strongest results in convex optimization usually involve
arguments that go beyond monotone operator theory.
Proofs based on monotone operator theory use monotonicity, rather than convexity,

as the key property. This line of analysis does not lead to results involving function val-
ues. For example, the gradient method xk+1 = xk − α∇f (xk) converges, under suitable
assumptions, with rate ‖∇f (xk)‖2 ≤ O(1/k) and f (xk) − f (x⋆) ≤ O(1/k). We can prove
the first result with properties of monotone operators, but the second result requires
properties of convex functions. Also, topics such as line searching, Frank–Wolfe, and
second-order methods are not explained very well with monotone operator theory.
Monotone operators do play a central role, but convex optimization theory does go
beyond monotone operators.

1.3 PRELIMINARIES

In this section, we quickly review preliminary topics. We simply state, without proof,
many of the results based on convex analysis and refer interested readers to standard
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1 Introduction and Preliminaries 3

references such as [Roc70d, Roc74, HL93, HL01, BV04, Nes04, BL06, NP06, Ber09,
BV10, BC17a].

1.3.1 Sets

A set is empty when it contains no element. Let ∅ denote the empty set. When a set
contains one element, we say it is a singleton.

A set S is convex if x,y ∈ S implies θx + (1 − θ)y ∈ S for all θ ∈ [0,1]. The empty set,
singletons, and Rn are also convex sets.
In this book, we overload the standard notation defined for points to sets. In

particular, when α ∈ R, x ∈ Rn, A,B ⊆ Rn, andM ∈ Rm×n, we write

αA = {αa | a ∈ A}
x +A = {x + a | a ∈ A}
MA = {Ma | a ∈ A}

A + B = {a + b | a ∈ A, b ∈ B}.

These operations preserve convexity; ifA andB are convex, all of these sets are convex.
The sum A + B is called theMinkowski sum.

1.3.2 Linear Algebra

Write Rn for the n-dimensional Euclidean space. For any x,y ∈ Rn, write

〈x,y〉 = x⊺y =
n∑
i=1

xiyi

for the standard inner product.
Given a matrix A ∈ Rm×n, write R(A) for the range of A and N(A) for the nullspace

ofA. IfA ∈ Rn×n, we sayA is a square matrix. IfA⊺ = A, which impliesA is square, we
say A is symmetric. If A is symmetric, the eigenvalues of A are real. Write λmax(A) and
λmin(A) respectively for the largest and smallest eigenvalues ofA, whenA is symmetric.

If all eigenvalues of a symmetric matrix A are nonnegative, we say A is symmetric
positive semidefinite and write A � 0. If all eigenvalues of a symmetric matrix A are
strictly positive, we say A is symmetric positive definite and write A � 0. We write
A � B and A � B if A − B � 0 and A − B � 0, respectively.
Given M � 0, write M1/2 for the matrix square root, the unique symmetric positive

semidefinite matrix that satisfies (M1/2)2 = M. If M � 0, then M1/2 � 0, and we write
M−1/2 = (M1/2)−1.
Consider a symmetric matrix X ∈ R(m+n)×(m+n) partitioned as

X =
[
A B
B⊺ C

]
,

whereA = A⊺ ∈ Rm×m, B ∈ Rm×n, and C = C⊺ ∈ Rn×n. WhenA is invertible, we call the
matrix

S = C − B⊺A−1B
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4 1 Introduction and Preliminaries

the Schur complement of A in X. Note that S ∈ Rn×n is symmetric. Given A � 0, X
is positive (semi)definite if and only if S is positive (semi)definite. Likewise, when C is
invertible,

T = A − BC−1B⊺

is the Schur complement of C in X. Given C � 0, X is positive (semi)definite if and
only if T is positive (semi)definite. We use the Schur complement to assess whether a
symmetric matrix is positive (semi)definite.
The 2-norm or the Euclidean norm is

‖x‖ = ‖x‖2 =
√
〈x,x〉.

In some cases, we will use the 1-norm and the ∞-norm respectively defined as

‖x‖1 =
n∑
i=1

|xi |, ‖x‖∞ = max
i=1,...,n

|xi |.

Given A � 0, define the A-norm as

‖x‖A =
√
x⊺Ax.

Given A � 0, define the A-seminorm as

‖x‖A =
√
x⊺Ax.

Since this is a seminorm, the triangle inequality ‖x + y‖A ≤ ‖x‖A + ‖y‖A and absolute
homogeneity ‖αx‖A = |α |‖x‖A hold, but ‖x‖A = 0 is possible when x , 0.
Given a matrix A ∈ Rm×n, write

σmax(A) =
√
λmax(A⊺A) = max

x,0

‖Ax‖
‖x‖

for the maximum singular value of A and

σmin(A) =
√
λmin(A⊺A) = min

x,0

‖Ax‖
‖x‖

for the minimum singular value of A. While a real eigenvalue can be negative, all
singular values are nonnegative.
We say V ⊆ Rn is a (linear) subspace if 0 ∈ V, x,y ∈ V implies x + y ∈ V, and x ∈ V

implies αx ∈ V for any α ∈ R. Under this definition, {0} and Rn are also subspaces. For
any A ∈ Rm×n, R(A) and N(A) are subspaces.

1.3.3 Analysis

For L > 0, we say that a mapping � : Rn → Rm is L-Lipschitz (continuous) if

‖�(x) − �(y)‖ ≤ L‖x − y‖ ∀x,y ∈ Rn.

We say � is Lipschitz (continuous) if � is L-Lipschitz for some unspecified L ∈ (0,∞).
(One could say that a constant function is 0-Lipschitz, but we exclude this degenerate
case from our definition, since we will later encounter quantities like 2/L.)
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1 Introduction and Preliminaries 5

If a mapping is Lipschitz, it is a continuous mapping. If�1 and�2 are respectivelyL1-
and L2-Lipschitz, then �1 ◦ �2 is L1L2-Lipschitz since

‖�1(�2(x)) − �1(�2(y))‖ ≤ L1‖�2(x) − �2(y)‖ ≤ L1L2‖x − y‖.

If�1 and�2 are respectivelyL1- andL2-Lipschitz, then α1�1+α2�2 is (|α1 |L1+ |α2 |L2)-
Lipschitz.
A matrix A ∈ Rm×n can be viewed as a mapping from x to Ax. Since

‖Ax‖ ≤ σmax(A)‖x‖,

we can view A as a σmax(A)-Lipschitz mapping.
Write

B(x, r) = {y ∈ Rn | ‖y − x‖ ≤ r}

for the closed ball of radius r centered at x. Define the interior of a set C as

intC = {x ∈ C |B(x, r) ⊆ C for some r > 0}.

Denote the closure of a set C as clC. Define the boundary of C as clC\intC.
An affine set A can be expressed as

A = x0 + V,

where x0 ∈ Rn and V ⊆ Rn is a subspace. The affine hull of C is defined as

affC = {θ1x1 + · · · + θkxk | x1, . . . ,xk ∈ C, θ1 + · · · + θk = 1, k ≥ 1}.

The affine hull is the smallest affine set containing C; if C ⊆ A and A is affine, then
aff clC ⊆ A.
Define the relative interior of a set C as

riC = {x ∈ C |B(x, r) ∩ affC ⊆ C for some r > 0}.

The relative interior of a nonempty convex set is nonempty. Under this definition, the
relative interior of a singleton is the singleton itself. Define the relative boundary ofC as
clC\riC. When we are dealing with low-dimensional sets placed in higher-dimensional
spaces, the notion of relative interior is useful.

Example 1.1 Consider the line segment

S =
{
(x,y) ∈ R2 | x ∈ [0.5,1], y = 4x − 3

}
.

The relative interior is the line segment with the end points excluded.
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6 1 Introduction and Preliminaries

Define the distance of a point x ∈ Rn to a nonempty set X ⊆ Rn as

dist(x,X) = inf
z∈X

‖z − x‖.

When X is nonempty and closed, the infimum is attained and dist(x,X) = 0 if and only
if x ∈ X. For notational convenience, write dist2(x,X) = (dist(x,X))2.

1.3.4 Functions

An extended real-valued function is a function that maps to the extended real line,
R ∪ {±∞}. Unless otherwise specified, functions in this book are extended real-valued.
Write

dom f = {x ∈ Rn | f (x) < ∞}

for the (effective) domain of f. We use ≤, <, ≥, and > for elements of the extended real
line in the obvious way; for any finite α, we have −∞ < α < ∞. We allow ∞ ≤ ∞ and
−∞ ≤ −∞, but not ∞ < ∞ or −∞ < −∞.
A function f is convex if dom f is a convex set and

f (θx + (1 − θ)y) ≤ θf (x) + (1 − θ)f (y), ∀x,y ∈ dom f, θ ∈ (0,1). (1.1)

A function f is strictly convex if the inequality (1.1) is strict when x , y. We say f is
(strictly) concave if −f is (strictly) convex.

The epigraph of a function is defined as

epi f = {(x, α) ∈ Rn × R | f (x) ≤ α}.

A function f is convex if and only if epi f is convex. A function is proper if its value is
never −∞ and is finite somewhere. A proper function is closed if its epigraph is a closed
set in Rn+1. A proper function is closed if and only if it is lower semicontinuous. We
say a function is CCP if it is closed, convex, and proper. As most convex functions of
interest are closed and proper, we focus exclusively on CCP functions in this book. A
function is CCP if and only if its epigraph is a nonempty closed convex set without a
“vertical line,” a line of the form {(x0, t) | t ∈ R} for some x0 ∈ Rn.

Example 1.2 Whether a convex function f is closed is determined by f’s behavior on the
boundary of dom f.

The dashed line denotes the function value of∞.
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1 Introduction and Preliminaries 7

Example 1.3 The epigraph of the CCP function − log is a nonempty closed convex set.

If f is a CCP function and α > 0, then αf is CCP. If f and g are CCP functions and
there is an x such that f (x) + g(x) < ∞, then f + g is CCP. If f is a CCP function on Rn,
A ∈ Rn×m, and there is an x ∈ Rm such that f (Ax) < ∞, then g(x) = f (Ax) is CCP.

We say f : Rn→R∪{±∞} is differentiable if f : Rn→R (so f is not extended real-valued),
gradient ∇f (x) = [ ∂f∂x1 (x), . . . ,

∂f
∂xn

(x)]⊺ exists for all x ∈ Rn, and

lim
h→0

f (x + h) − f (x) − 〈∇f (x),h〉
‖h‖ = 0

for all x ∈ Rn. A differentiable function f is convex if and only if

f (y) ≥ f (x) + 〈∇f (x),y − x〉 ∀x,y ∈ Rn.

In other words, f is convex if its first-order Taylor expansion is a global lower bound
of f. A twice continuously differentiable function f is convex if and only if ∇2f (x) � 0
for all x ∈ Rn. (By the classic Schwarz’s theorem, ∇2f (x) ∈ Rn×n is symmetric when f
is twice continuously differentiable.) Intuitively speaking, ∇2fmeasures curvature, and
f is convex if f is flat or has upward curvature everywhere. If f is a one-dimensional
differentiable function, f is convex if and only if f′(x) is monotonically nondecreasing.
See the bibliographical notes for further discussion.

Write

argmin f =
{
x ∈ Rn

���� f (x) = inf
z∈Rn

f (z)
}

for the set of minimizers of f. When f is CCP, argmin f is a closed convex set, possibly
empty. When f is strictly convex, argmin f has at most one point.
For S ⊆ Rn, define the indicator function

δS(x) =
{
0 if x ∈ S
∞ otherwise.

If S is convex, closed, and nonempty, then δS is CCP.

1.3.5 Convex Optimization Problems

An unconstrained optimization problem

minimize
x∈Rn

f (x)
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8 1 Introduction and Preliminaries

is convex if f is a convex function. We call f the objective function. The constrained
optimization problem

minimize
x∈Rn

f (x)
subject to x ∈ C

is convex if f is a convex function and C is a convex set. We call x ∈ C the constraint.
When C is an affine set of the form {x |Ax = b}, we also write

minimize
x∈Rn

f (x)
subject to Ax = b.

In these problems, x ∈ Rn is the optimization variable. If a solution to an optimiza-
tion problem exists, write superscript ⋆ to denote a solution. So if x is the optimization
variable, x⋆ denotes a solution. If u is the optimization variable, u⋆ denotes a solution.
Indicator functions allow us to move the constraint into the objective function and

treat a constrained problem as an unconstrained problem:

minimize
x∈Rn

f (x) + δC(x).

This use of indicator functions and extended value functions greatly simplifies the
notation.

1.3.6 Subgradient

We say g ∈ Rn is a subgradient of a convex function f at x if

f (y) ≥ f (x) + 〈g,y − x〉 ∀y ∈ Rn. (1.2)

In other words, a subgradient provides an global affine lower bound of f. We call (1.2)
the subgradient inequality. The subdifferential of a convex function f at x is

∂f (x) = {g ∈ Rn | f (y) ≥ f (x) + 〈g,y − x〉, ∀y ∈ Rn}.

In other words, ∂f (x) is the set of subgradients of f at x. It is straightforward to see that
∂f (x) is a closed convex set, possibly empty. A convex function f is differentiable at x if
and only if ∂f (x) is a singleton.
By definition, x⋆ ∈ argmin f if and only if 0 ∈ ∂f (x⋆). This fact, called Fermat’s rule,

illustrates why subgradients are central in convex optimization.

Example 1.4 The absolute value function is differentiable everywhere except at 0.
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1 Introduction and Preliminaries 9

Example 1.5 At x1 the convex function f is differentiable and ∂f (x1) = {∇f (x1)}. At x2, f is
not differentiable and has many subgradients.

Example 1.6 Let C ⊆ Rn be a closed convex set. Then ∂δC(x) = �C(x), where

�C(x) =
{

∅ if x < C
{y | 〈y,z − x〉 ≤ 0 ∀z ∈ C} if x ∈ C

is the normal cone operator. For x ∈ intC, �C(x) = {0}, and for x < C, �C(x) = ∅; �C(x) is
nontrivial only when x is on the boundary of C.

In this book, we will not pay too much attention to the meaning of �C. Rather, we use �C
as notational shorthand for ∂δC.

We say a convex f is subdifferentiable at x if ∂f (x) , ∅. When f is convex and
proper, ∂f (x) = ∅ where f (x) = ∞. When f is convex and proper, ∂f (x) , ∅ for any
x ∈ ri dom f. So a convex and proper function is not subdifferentiable outside its domain,
is subdifferentiable within the relative interior of its domain, and may or may not be
subdifferentiable on the relative boundary of its domain.

Example 1.7 The CCP function f defined as

f (x) =
{

−
√
x for x ≥ 0

∞ for x < 0

is not subdifferentiable at x = 0. The slope is −∞, but we do not allow infinite gradients.
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10 1 Introduction and Preliminaries

Several standard identities for gradients also hold for subdifferentials. Let f be CCP
and α > 0. Then

∂(αf )(x) = α∂f (x).

Let f be CCP and R(A) ∩ ri dom f , ∅. If g(x) = f (Ax), then

∂g(x) = A⊺∂f (Ax). (1.3)

Let f and g be CCP and dom f ∩ int dom g , ∅. Then

∂( f + g)(x) = ∂f (x) + ∂g(x). (1.4)

To clarify, ∂f (x) + ∂g(x) is the Minkowski sum of the sets ∂f (x) and ∂g(x). Without the
regularity conditions involving interiors, we can say

∂g(x) ⊇ A⊺∂f (Ax), ∂( f + g)(x) ⊇ ∂f (x) + ∂g(x).

Using the operator notation we define in §2, we can more concisely write

∂αf = α∂f, ∂g = A⊺∂fA, ∂( f + g) = ∂f + ∂g,

provided the regularity conditions involving interiors hold.

1.3.7 Regularity Conditions

Say we have a mathematical statement “If P then Q”. Then, if P “usually” holds, then
Q “usually” holds. In this case, we say P is a regularity condition, since P is satisfied
in the usual “regular” case. We just saw an example of this; if the regularity condition
dom f ∩ int dom g , ∅ holds, then the identity ∂( f + g) = ∂f + ∂g holds.
Statements in this book involving interiors and relative interiors can be considered

regularity conditions. We keep track of these conditions, as they are necessary for a
rigorous treatment of the subject. However, we do not focus on them.

1.3.8 Conjugate Function, Strong Convexity, and Smoothness

Define the conjugate function of f as

f ∗(y) = sup
x∈Rn

{〈y,x〉 − f (x)} ,

which is also known as the Fenchel conjugate or Legendre–Fenchel transform. When
f is CCP, f ∗ is CCP and f ∗∗ = f; that is, the conjugate is CCP and the conjugate of the
conjugate function is the original function. We call f ∗∗ the biconjugate of f. Note that
we use the symbol ∗ for the notion of conjugate or dual, while we use the symbol ⋆ for
the notion of optimality.
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The conjugate function appears in optimization often because if f is CCP, then ∂f is
an “inverse” of ∂f ∗ in the sense we define in §2.1. When f and f ∗ are both differentiable,
then (∇f )−1 = ∇f ∗ as functions from Rn to Rn.
We say a CCP f is µ-strongly convex if any of the following equivalent conditions are

satisfied:

• f (x) − (µ/2)‖x‖2 is convex.
• 〈∂f (x) − ∂f (y),x − y〉 ≥ µ‖x − y‖2 for all x,y.
• ∇2f (x) � µI for all x if f is twice continuously differentiable.

The second condition is written with set-valued notation; the left-hand side is a subset
of R, so the inequality means the subset lies in [µ‖x − y‖2,∞). In the third condition,
I ∈ Rn×n denotes the identity matrix.
Strongly convex CCP functions have unique minimizers. If f is µ-strongly convex and

g is convex, then f+g is µ-strongly convex. Informally speaking, a function is µ-strongly
convex if it has upward curvature of at least µ, and we can think of nondifferentiable
points to be points with infinite curvature. To clarify, strong convexity does not imply
differentiability.

Example 1.8 Informally speaking, µ-strongly convex functions have upward curvature of at
least µ and L-smooth convex functions have upward curvature of no more than L.

We say a CCP f is L-smooth if any of the following equivalent conditions are
satisfied:

• f (x) − (L/2)‖x‖2 is concave.
• f is differentiable and 〈∇f (x) − ∇f (y),x − y〉 ≥ (1/L)‖∇f (x) − ∇f (y)‖2 for all x,y.
• f is differentiable and ∇f is L-Lipschitz.
• ∇2f (x) � LI for all x if f is twice continuously differentiable.

(Remember, a function g is concave if −g is convex.) The terminology “L-smoothness”
is somewhat nonstandard; “smoothness” often means infinite differentiability in other
fields of mathematics. Under our definition, L-smooth functions only need to be once-
continuously differentiable.

Informally speaking, a convex function is L-strongly convex if it has upward curva-
ture of at most L. Since non-differentiable points of convex functions can be thought
of as points with infinite upward curvature, it is natural that smooth functions are
differentiable.
If f is µ-strongly convex and L-smooth, then µ ≤ L. This follows from

µ‖x − y‖2 ≤ 〈∇f (x) − ∇f (y),x − y〉 ≤ ‖∇f (x) − ∇f (y)‖‖x − y‖ ≤ L‖x − y‖2,
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12 1 Introduction and Preliminaries

where we used the Cauchy–Schwartz inequality and the Lipschitz continuity of ∇f.
Strong convexity and smoothness are dual properties; a CCP f is µ-strongly convex if
and only if f ∗ is (1/µ)-smooth. This follows from the fact that ∂f and ∂f ∗ are inverse
operators, which we show in §2.1.

1.3.9 Convex Duality

In many introductory texts of convex optimization, one starts with a primal optimiza-
tion problem and finds a corresponding dual problem. In this book, we take a slightly
different viewpoint. We view the primal and dual problems as the two halves of a larger
saddle point problem.
Let L : Rn×Rm → R∪{±∞}. We say L(x,u) is convex-concave if L is convex in xwhen

u is fixed and concave in u when x is fixed. We say (x⋆,u⋆) is a saddle point of L if

L(x⋆,u) ≤ L(x⋆,u⋆) ≤ L(x,u⋆) ∀x ∈ Rn, u ∈ Rm.

We call

minimize
x∈Rn

supu∈Rm L(x,u)

the primal problem generated by L and write p⋆ = infx supu L(x,u) for the primal
optimal value. We call

maximize
u∈Rm

infx∈Rn L(x,u)

the dual problem generated by L and write d⋆ = supu infx L(x,u) for the dual optimal
value. In most engineering settings, one starts with an optimization problem, not a
convex-concave saddle function. With this view of duality, the trick is to find a convex-
concave saddle function that generates the primal problem of interest.

Example 1.9 Let f be aCCP function onRn,A ∈ Rm×n, and b ∈ Rm. Consider the Lagrangian

L(x,u) = f (x) + 〈u,Ax − b〉, (1.5)

which generates the primal problem

minimize
x∈Rn

f (x)
subject to Ax = b

(1.6)

and dual problem

maximize
u∈Rm

−f ∗(−A⊺u) − b⊺u. (1.7)
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The dual variable u is also called the Lagrange multipliers. If the constraint qualification

{x |Ax = b} ∩ int dom f , ∅

holds, then d⋆ = p⋆.

Example 1.10 Consider the Lagrangian

L(x,u) = f (x) + 〈u,Ax〉 − g∗(u), (1.8)

which generates the primal problem

minimize
x∈Rn

f (x) + g(Ax) (1.9)

and dual problem

maximize
u∈Rm

−f ∗(−A⊺u) − g∗(u). (1.10)

If the constraint qualification

Adom f ∩ int dom g , ∅

holds, then d⋆ = p⋆. This primal-dual problem pair is sometimes called the Fenchel–
Rockafellar dual.

Weak duality, which states d⋆ ≤ p⋆, always holds. To prove this, note that for any x,u
we have

inf
x
L(x,u) ≤ L(x,u)

sup
u

inf
x
L(x,u) ≤ sup

u
L(x,u)

d⋆ = sup
u

inf
x
L(x,u) ≤ inf

x
sup
u

L(x,u) = p⋆.

Strong duality, which states d⋆ = p⋆, holds often but not always in convex optimiza-
tion. Regularity conditions that ensure strong duality are sometimes called constraint
qualifications. The constraint qualifications for strong duality are similar to the regular-
ity conditions for subgradient identities. Again, interested readers can refer to standard
references such as [Roc74, Ber09, Boţ10] for a careful discussion of this subject.
Total duality states that a primal solution exists, a dual solution exists, and strong

duality holds. Total duality holds if and only if L has a saddle point. Solving the primal
and dual optimization problems is equivalent to finding a saddle point of the saddle
function generating the primal and dual problems, provided that total duality holds. We
will see in §2 and §3 that total duality is the regularity condition that ensures primal-dual
methods converge.

Let us prove the equivalence. Assume L has a saddle point (x⋆,u⋆). Then

L(x⋆,u⋆) = inf
x
L(x,u⋆)

≤ sup
u

inf
x
L(x,u) = d⋆

≤ inf
x
sup
u

L(x,u) = p⋆

≤ sup
u

L(x⋆,u) = L(x⋆,u⋆),
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14 1 Introduction and Preliminaries

and equality holds throughout. Since infx supu L(x,u) = supu L(x⋆,u), x⋆ is a pri-
mal solution. Since infx L(x,u⋆) = supu infx L(x,u), u⋆ is a dual solution. Since d⋆ =
supu infx L(x,u) = infx supu L(x,u) = p⋆, strong duality holds.
On the other hand, assume total duality holds and x⋆ and u⋆ are primal and dual

solutions. Then

inf
x
L(x,u⋆) = sup

u
inf
x
L(x,u) = d⋆

= inf
x
sup
u

L(x,u) = p⋆

= sup
u

L(x⋆,u).

Since

L(x⋆,u⋆) ≤ sup
u

L(x⋆,u) = inf
x
L(x,u⋆) ≤ L(x⋆,u⋆),

equality holds throughout and we conclude

sup
u

L(x⋆,u) = L(x⋆,u⋆) = inf
x
L(x,u⋆),

that is, (x⋆,u⋆) is a saddle point.
An augmentedLagrangian is a saddle function that has additional termswhile sharing

the same saddle points as its unaugmented counterpart.

Example 1.11 Consider the Lagrangian

L(x,u) = f (x) + 〈u,Ax − b〉

with the associated primal problem

minimize
x∈Rn

f (x)
subject to Ax = b.

We will often use the augmented Lagrangian

Lρ(x,u) = f (x) + 〈u,Ax − b〉 + ρ

2
‖Ax − b‖2 (1.11)

with ρ > 0. It is straightforward to show that (x,u) is a saddle point of L if and only if it is a
saddle point of Lρ for any ρ > 0.

Certain augmented Lagrangians arise naturally in monotone operator theory. In this
book, we simply use these augmented Lagrangians without ascribing meaning to them.

1.3.10 Slater’s Constraint Qualification

In the context of convex duality, regularity conditions that ensure strong duality are
sometimes called constraint qualifications. The so-called Slater’s constraint qualification
is widely used, although not all constraint qualifications are due to Slater.
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Consider the primal problem

minimize
x∈Rn

f0(x)
subject to fi(x) ≤ 0 for i = 1, . . . ,m

Ax = b,

where f0, f1, . . . , fm are CCP functions, A ∈ Rp×n, and b ∈ Rp, generated by the
Lagrangian

L(x,λ, ν) = f0(x) +
m∑
i=1

λifi(x) + 〈ν,Ax − b〉 − δRm+ (λ),

where λ ∈ Rm, ν ∈ Rp, and Rm+ = {(λ1, . . . ,λm) | λi ≥ 0 for i = 1, . . . ,m} is the nonnegative
orthant.
Slater’s constraint qualification states that if there exists an x such that

x ∈ ri
m⋂
i=0

dom fi, fi(x) < 0 for i = 1, . . . ,m, Ax = b,

then strong duality holds (i.e., d⋆ = p⋆), and if, furthermore, the optimal values are
finite (i.e., d⋆ = p⋆ > −∞), then a dual solution exists.

1.3.11 Proximal Operators

Let f be a CCP function on Rn. Let α > 0. We define the proximal operator with respect
to αf as

Proxαf(y) = argmin
x∈Rn

{
αf (x) + 1

2
‖x − y‖2

}
.

When α = 1, we write Proxf. If f is CCP, then Proxαf is well defined, that is, the argmin
uniquely exists.
Let us prove the well-definedness of Proxαf. Let x0 ∈ ri dom f and g ∈ ∂f (x0). (A CCP

f has a nonempty domain, which is convex, the relative interior of a nonempty convex
set is nonempty, and a CCP function is subdifferentiable on the relative interior of its
domain.) Then, f (x) ≥ f (x0) + 〈g,x − x0〉, and

αf (x) + 1
2
‖x − y‖2︸                  ︷︷                  ︸

=̃f(x)

≥ αf (x0) + α〈g,x − x0〉 +
1
2
‖x − y‖2︸                                        ︷︷                                        ︸

=h(x)

.

Since lim‖x‖→∞ h(x) = ∞ and f̃ ≥ h, we have lim‖x‖→∞ f̃(x) = ∞. Therefore, f̃(xk) →
infx f̃(x) implies x0,x1, . . . is bounded. For any convergent subsequence xkj → x̄, lower
semicontinuity of f̃ implies f̃(x̄) ≤ infx f̃(x). Thus f̃(x̄) = infx f̃(x), that is, a solution exists.
Finally, f̃ is strictly convex, so the minimizer is unique.

Example 1.12 The soft-thresholding operator S(x; κ) for x ∈ Rn and κ ≥ 0 is defined by

(S(x; κ))i =

xi − κ for κ < xi
0 for − κ ≤ xi ≤ κ

xi + κ for xi < −κ
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16 1 Introduction and Preliminaries

for i = 1, . . . ,n. This is the proximal operator with respect to ℓ1 norm, that is, S(x; κ) =
Proxκ ‖ · ‖1 (x).

Example 1.13 Let C be a nonempty closed convex set. Define the projection onto C as

ΠC(y) = argmin
x∈C

‖x − y‖.

It is straightforward to check that ProxαδC = ProxδC = ΠC for any α > 0. In this sense,
proximal operators generalize projections.

In general, evaluating a proximal operator is an optimization problem itself. Formany
interesting convex functions, however, the proximal operator has a closed-form solution
and, if so, is suitable to use as a subroutine. We loosely say a function is proximable if
its proximal operator is computationally efficient to evaluate. Several references such
as [CP11b], [PB14b, Section 6], [BSS16, Section 3], and website [CCCP] catalog a list
of proximable functions.

The field of monotone operator and splitting methods revolve around the idea of
decomposing a given optimization problem (which is presumably not simple as a whole)
into smaller, simpler pieces and operating on them separately. These simple pieces are
functions for which we can easily evaluate the gradient or the proximal operators.

1.3.12 Asymptotic Notation

Write f (x1, . . . ,xr) = O(g(x1, . . . ,xr)) if

lim sup
x1 ,...,xr→∞

���� f (x1, . . . ,xr)g(x1, . . . ,xr)

���� < ∞.

We call this the O-notation (and read it as “big O notation”). For example,

6n2m + n3/2m = O(n2m).

Write f (x1, . . . ,xr) = o(g(x1, . . . ,xr)) if

lim sup
x1 ,...,xr→∞

���� f (x1, . . . ,xr)g(x1, . . . ,xr)

���� = 0.

We call this the o-notation (and read it as “little o notation”). For example,

1
k logk

= o(1/k).
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Write f (x1, . . . ,xr) ∼ g(x1, . . . ,xr) if

lim sup
x1 ,...,xr→∞

f (x1, . . . ,xr)
g(x1, . . . ,xr)

= 1

and say f and g are asymptotically equivalent. For example,

2n2m3 + 3nm3 ∼ 2n2m3.

These are examples of asymptotic notation. Asymptotic notation is useful for identi-
fying the limiting behavior of a function as the inputs tend toward a regime of interest.
When discussing the convergence of methods, often the regime of interest is k → ∞,
where k is the iteration count, as we wish to know how the method eventually behaves.
When discussing problem sizes, the regime of interest is m,n → ∞, where m and n
describe the problem size, because a method is judged by how well it can solve large
(difficult) problems rather than small (easy) problems. That is not to say that non-
asymptotic information is irrelevant. Sometimes we should ask at what iteration count
or at what problem size the behavior described by the asymptotic notation becomes
visible. Nevertheless, the asymptotic notation is a useful simplification.

BIBLIOGRAPHICAL NOTES

The 10-page lecture notes on subgradients by Boyd, Duchi, and Vandenberghe
[BDV18] is a great resource to learn more about subgradients. Chapter 23 of Rockafel-
lar’s textbook [Roc70d] is another great resource providing a careful convex analytical
treatment of subgradients.

The use of the conjugate function in convex analysis was pioneered by Fenchel in his
unpublished lecture notes that were later distributed inmimeographed form [Fen53]. In
particular, the result that f = f ∗∗ when f is CCP is called the Fenchel–Moreau theorem
and was first presented in [Fen49] and [Fen53, Theorem 37].

In careful treatments of calculus and analysis, the existence of partial derivatives, dif-
ferentibility, and continuous differentiability are carefully distinguished. For convex
functions, however, these notions coincide. By [Roc70d, Theorem 25.2], if f is a convex
function and x ∈ Rn is a point such that f (x) < ∞, then f is differentiable at x if and
only if

∂f
∂xi

(x) = lim
h→0

f (x + hei)
h

exists and is finite for all i = 1, . . . ,n (where ei is the ith unit vector and the limit is two-
sided). By [Roc70d, Corollary 25.5.1], if f : R→ R is convex and differentiable, then f is
necessarily continuously differentiable, that is, when f is convex, existence of ∇f (x) for
all x ∈ Rn implies ∇f (x) is continuous.

Showing that the equivalent definitions for strong convexity and smoothness are indeed
equivalent is a relatively straightforward exercise in vector calculus, when the function is
twice continuously differentiable. Proofs in the general case can be found in references
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such as [Nes04]. The equivalence of the smoothness definitions is called the Baillon–
Haddad theorem [BH77, Corollaire 10] [BC10].

There are multiple related but distinct viewpoints of convex duality. The view that
primal-dual problem pairs are two halves of a larger saddle-point problem was devel-
oped in themid 1960s byDantzig, Eisenberg, and Cottle [DEC65], Stoer [Sto63, Sto64],
and Mangasarian and Ponstein [MP65]. The presentation of this book closely follows
Rockafellar’s 1974 book [Roc74]. This 74-page book is still one of the best references
on convex duality. Regularity conditions that ensure strong duality in optimization is
an area with a large body of research. Slater’s constraint qualification, the most widely
used such condition, dates back to 1950 [Sla50]. Rockafellar’s book [Roc74] provides a
thorough discussion on this subject.

To expand on the discussion of §1.2, one can, in fact, establish an improved rate
‖∇f (xk)‖2 ≤ O(1/k2) for the gradient method using properties of convex functions
[TB19, Theorem 3]; but this result cannot be established using only properties of
monotone operators.

EXERCISES

1.1 Assume �1 : Rn → Rm is L1-Lipschitz and �2 : Rn → Rm is L2-Lipschitz. Show that
α1�1 + α2�2 is (|α1 |L1 + |α2 |L2)-Lipschitz.

1.2 Let f be a convex function on Rn. Show that ∂f (x) is a closed convex set for all x ∈ Rn.
Hint.Write ∂f (x) as an intersection of closed half-spaces.
Remark. Remember that ∂f (x) can be empty, but the empty set is a closed convex set.

1.3 Show that if f is a CCP function on Rm, A ∈ Rm×n, and g(x) = f (Ax), then

∂g(x) ⊇ A⊺∂f (Ax)

for all x ∈ Rn. Also show that if f and g are CCP functions on Rn, then

∂( f + g)(x) ⊇ ∂f (x) + ∂g(x)

for all x ∈ Rn.
1.4 Consider the function f : R2 → R ∪ {±∞} defined as

f (x,y) =

x2/y for y > 0,
0 for x = y = 0,
∞ otherwise.

Clearly f is proper, and it is possible to show that f is convex. Show that
(a) f is closed, and
(b) f|dom f : dom f → R is not continuous at (0,0), that is, show that f restricted to

where it is finite is not continuous at (0,0).
Remark.This example demonstrates that aCCP function need not be continuous on its
domain. In convex optimization, lower semi-continuity, not continuity, is the regularity
condition of interest. However, a proper convex function is continuous on the relative
interior of its domain.
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1.5 Existence of a minimizer with Slater. Let f be a CCP function on Rn and A ∈ Rm×n.
Assume R(A⊺) ∩ ri dom f ∗ , ∅. Consider the optimization problem

minimize
µ∈Rm , ν∈Rn

f ∗(ν) − µ⊺y + 1
2 ‖µ‖2

subject to A⊺µ − ν = 0

generated by the Lagrangian

L(µ, ν,x) = f ∗(ν) − µ⊺y +
1
2
‖µ‖2 + 〈x,A⊺µ − ν〉.

Using Slater’s constraint qualification, show

argmin
x∈Rn

{
f (x) + (1/2)‖Ax − y‖2

}
, ∅.

1.6 Saddle points of augmented Lagrangians. Let f be a CCP function on Rn, A ∈ Rm×n,
and b ∈ Rm. Show that the Lagrangian

L(x,u) = f (x) + 〈u,Ax − b〉

and the augmented Lagrangian

Lα(x,u) = f (x) + 〈u,Ax − b〉 + α
2
‖Ax − b‖2,

where α > 0, share the same set of saddle points.
1.7 Assume that a CCP function f : Rn → R ∪ {±∞} is proximable. Define g : Rn × Rn →

R ∪ {±∞} as
g(x1,x2) = f (x1 + x2).

Show that

Proxg(x1,x2) =
1
2

[
x1 − x2 + Prox2f(x1 + x2)
x2 − x1 + Prox2f(x1 + x2)

]
.

Likewise, show that if

h(x1,x2) = f (x1 − x2),

then

Proxh(x1,x2) =
1
2

[
x1 + x2 + Prox2f(x1 − x2)
x1 + x2 + Prox2f(x1 − x2)

]
.

Hint. Note that g = f ◦
[
I I

]
and show that (y1,y2) = Proxg(x1,x2) if and only if there

exists a v ∈ ∂f (y1 + y2) such that

0 = v + (y1 − x1)
0 = v + (y2 − x2).

1.8 Assume a CCP function f : Rn → R ∪ {±∞} is proximable. Assume a = (a1, . . . ,am) ∈
Rm satisfies a , 0. Define g : Rmn → R ∪ {±∞} as

g(x1, . . . ,xm) = f (a1x1 + · · · + amxm).

Show that

v =
1

‖a‖2
(
a1x1 + · · · + amxm − Prox‖a‖2f(a1x1 + · · · + amxm)

)
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Proxg(x1, . . . ,xm) =

x1 − a1v

...

xm − amv

 .
1.9 Basic normal cone example. Let Rn+ = {(x1, . . . ,xn) | xi ≥ 0 for i = 1, . . . ,n} be the

nonnegative orthant.
(i) Characterize �Rn+ , that is, describe the set �Rn+ (x) for all x ∈ Rn.
(ii) Let f : Rn → Rn be CCP and differentiable. Directly show, without using the

subgradient identity ∂( f + g) = ∂f + ∂g, that x solves

minimize
x∈Rn

f (x)
subject to x ≥ 0

if and only if −∇f (x) ∈ �Rn+ (x).
1.10 Linear programming duality. Consider the convex–concave saddle function

L(x, ν, µ) = 〈c,x〉 + 〈Ax + b, ν〉 − 〈x, µ〉 − δRm+ (ν) − δRn+ (µ),

convex in x ∈ Rn and concave in (ν, µ) ∈ Rm×Rn. Here, Rm+ and Rn+ denote them and n-
dimensional nonnegative orthants. Remember that δC denotes the indicator function
with respect to the set C.
Show that the saddle function L generates the primal problem

minimize
x∈Rn

c⊺x

subject to Ax + b ≤ 0
x ≥ 0.

Here, the inequalities denote element-wise nonnegativity. Show that L generates a
dual problem that is equivalent to

maximize
ν∈Rm

b⊺ν

subject to c +A⊺ν ≥ 0
ν ≥ 0.
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