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Abstract

In this paper, the rings which have a torsion theory r with associated torsion radical t such
that R/t(R) has a minimal 7-torsionfree cogenerator are studied. When 7 is the trivial torsion
theory these are precisely the left QF-3 rings. For 7 = 71, the Lambek torsion theory, this
class of rings is wider but, with an additional hypothesis on 7z it is shown that if R has this
property with respect to the Lambek torsion theory on both sides, then R is a (left and right)
QF-3 ring. The results obtained are applied to get new characterizations of QF-3 rings with
the ascending chain condition on left annihilators.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 16 A 36, 16 A 63.

A ring R is called left QF-3 if it has a minimal faithful left R-module and left
QF-3’ if the injective envelope E(gR) is a torsionless module. These rings have
been the object of extensive study (for example in [3, 9, 11, 12, 13, 16]) and,
recently, Baccella has obtained in [2] structure results for the class of nonsingular,
finite-dimensional QF-3 rings. In the present paper we consider a (hereditary)
torsion theory 7 in R-mod with associated torsion radical t and the property
that R/t(R) has a minimal r-torsionfree cogenerator X, in the sense that X is
a 7-torsionfree module which cogenerates R/t(R) and is a direct summand of
every 7-torsionfree cogenerator of R/t(R). When 7 is the trivial torsion theory
in which all R-modules are 7-torsionfree, this property defines left QF-3 rings.
The class of rings which have this property with respect to the Lambek torsion
theory 7 is wider than the class of left QF-3 rings but when 71 is strongly
semiprime and R has this property for the Lambek torsion theory on both sides,
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then we show that R is a (left and right) QF-3 ring (Theorem 4). This allows
us to get characterizations of the class of QF-3 rings with the ascending chain
condition (ACC) on left annihilators, which is shown to be equal to the class of
QF-3' rings with ACC on left annihilators.

Our property behaves nicely when R is, furthermore, supposed to be T-artinian
and this case is studied in Theorem 7. For trivial 7 the conditions of this theorem
reduce to known characterizations of left artinian left QF-3 rings (in particular,
we get as a consequence the main result of {12]) but, taking r equal to the
Lambek torsion theory we obtain new characterizations of left QF-3' rings with
the descending chain condition on left annihilators, QF-3 rings with ACC on left
annihilators and, in the nonsingular case, of finite-dimensional left QF-3' rings.

Throughout this paper, R denotes an associative ring with identity and R-
mod (mod-R) the category of left (right) R-modules. A module N is said to be a
cogenerator of M if there is a monomorphism from M to a direct product N’ of
copies of N; in this case we also say that M is N-torsionless and, in particular,
the rR-torsionless modules are called simply torsionless modules. We use the
notation E(M) to stand for an injective envelope of the module M. When R is
left and right QF-3, we will say simply that R is a QF-3 ring and the analogous
convention holds for other classes of rings (for example QF-3’ rings).

If 7 is a torsion theory of R-mod, a submodule NV of M is said to be 7-dense in
M if M/N is a r-torsion module; M is 7-finitely generated when it has a finitely
generated 7-dense submodule; and M is called r-noetherian (r-artinian) if the
lattice C,(M) of r-closed submodules of M (that is, of those submodules X of
M such that M/X is 7-torsionfree) satisfies the ascending chain condition (ACC
for short), respectively the descending chain condition (DCC). The Teply-Miller
theorem [10, Theorem 1.4] asserts that if R is a r-artinian ring (that is, gpR is
r-artinian), then every 7-artinian module is r-noetherian. Also, it is well known
that if M is 7-noetherian, then M is r-finitely generated. The Lambek torsion
theory of R-mod 71, is the torsion theory cogenerated by E(gR) [15], that is,
the 71-torsionfree modules are precisely the E(gR)-torsionless modules. The
7. -finitely generated modules are also called almost finitely generated modules
and the elements of C,, (R) are called rationally closed left ideals.

The reader is referred to [1], [7] and [15] for all ring-theoretic and torsion-
theoretic notions used in the text. ,

Recall that a torsion theory 7 is called jansian if the corresponding torsion
class is closed under direct products or, equivalently, R has a smallest 7-dense
left ideal. Then we have

PROPOSITION 1. Let 7 be a torsion theory of R-mod. If R/t(R) 13 a left

QF-3 ring, then R/t(R) has a minimal r-torsionfree cogenerator. If, further-
more, T 18 jansian, then the converse holds.
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PROOF. Assume first that R/t(R) is left QF-3 and let X be a minimal faithful
left R/t(R)-module. Then X is isomorphic to a left ideal of R/t(R) and hence
it is 7-torsion free as left R-module. If Y is a r-torsion free R-module which
cogenerates R/t(R), then Y is canonically a faithful left R/t(R)-module and
hence X is a direct summand of Y (as R/t(R)-module and also as R-module),
which shows that it is a minimal 7-torsionfree cogenerator.

Conversely, assume that 7 is jansian and let X be a minimal 7-torsionfree
cogenerator of R/t(R). Then X is a faithful R/t(R)-module and if Y is another
faithful R/t(R)-module, it follows from the facts that R/t(R) is 7-torsionfree and
that t preserves products that Y/t(Y') is also a cogenerator of R/t(R). Then
our hypothesis implies that X is a direct summand of ¥ /t(Y). On the other
hand, X is a direct summand of R/t(R) and hence it is R/t(R)-projective, from
which it follows easily that X is also a direct summand of Y, which completes
the proof.

The ring considered in the remarks following Theorem 4, with the Lambek
torsion theory 7z, shows that the converse of Proposition 1 is not true in general.
On the other hand, if R is a right perfect ring, then every torsion theory of R-
mod is jansian {15, Corollary VIIL.6.3]. In particular 7 is jansian and so R is
left QF-3 if and only if it has a minimal 77 -torsionfree faithful module.

Let 7 be a torsion theory and denote by M, the module of quotients corre-
sponding to M (so that R, is the ring of quotients of R with respect to 7). Then
we recall that 7 is called perfect when the localization functor R-mod — R,-
mod which assigns to each M its module of quotients M; is naturally equivalent
to the functor R, ®z—: R-mod — R,-mod. This is equivalent to every R,-
module being 7-torsionfree as R-module (7, Proposition 45.1]. We have

PROPOSITION 2. Let 7 be a perfect torsion theory. If R/t(R) has a minimal
T-torstonfree cogenerator, then R, i3 a left QF-3 ring.

PROOF. Let X be a minimal r-torsionfree cogenerator of R/t(R) and E
an injective cogenerator of 7 (so that the r-torsionfree modules are precisely
the E-torsionless modules). Then X is a direct summand of E and hence it
is injective and r-torsionfree. Thus X is an injective R,-module in a canonical
way [15, Proposition IX.2.7]. Since X is an injective R-module, it is clear that
X cogenerates E(R/t(R)) and since R/t(R) is an essential left R-submodule
of R, and E(R/t(R)) = E(g,R:), we see that X cogenerates R,. Now, let Y
be a faithful R.-module. As 7 is perfect, Y is a 7-torsionfree B-module which
cogenerates R/t(R) and hence X is, by hypothesis, a direct summand of Y,
which shows that X is a minimal faithful R,-module.

The converse of Proposition 2 does not hold. For instance, if R =Z and 7 is
the usual torsion theory, then Z has not a minimal torsionfree cogenerator.
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We recall that a module is called finitely cogenerated if it has a finitely gener-
ated essential socle and, more generally, for a torsion theory r, M is 7-finitely co-
generated [4] when M/t(M) contains an essential finite direct sum of 7-cocritical
modules (a module C is 7-cocritical when it is r-torsionfree and each proper quo-
tient of C is a torsion module [7]). In [3] it is shown that R is left QF-3 if and
only if it has a finitely cogenerated injective faithful left ideal. In general we
cannot get a similar result in our situation, for a torsion theory 7 needs not have
any 7-cocritical module. If 7 is cogenerated by the injective envelopes of the
7-cocritical modules, then 7 is called strongly semiprime {7] and in this case we
have

PROPOSITION 3. Let T be a strongly semiprime torsion theory. Then R/t(R)
has a minimal T-torsionfree cogenerator if and only if it has an injective cogen-
erator submodule which 13 T-finitely cogenerated.

PROOF. Necessity. Let X be a minimal r-torsionfree cogenerator of R/t(R)
and E = @, E;, where {E;} is a representative set of the isomorphism classes
of injective envelopes E; = E(C;) of r-cocritical modules C;. Since 7 is strongly
semiprime, E cogenerates R/t(R) and hence X is a direct summand of E. But
X is also a direct summand of R/t(R) and hence it is a cyclic left R-module, so
that X is, in fact, a direct summand of a finite direct sum @7 E; = E(@7T Cy).
Thus X is r-finitely cogenerated by [4, Proposition 1.6].

Sufficiency. Let @ be an injective cogenerator submodule of R/t(R) such
that @ is r-finitely cogenerated. Then Q = @] E; where E; = E(C;) is an
injective envelope of a r-cocritical module C;. Let {E;: j = 1,...,r} be a set
of representatives of the isomorphism classes of these injective envelopes and
set X = @] E;. Let Y be a r-torsionfree cogenerator of R/t(R). Then Y
cogenerates X and hence it cogenerates each E;. Therefore, for j = 1,...,r,
there exists a nonzero homomorphism f;: E; — Y. The restriction of f; to C;
is a monomorphism (for C; is 7-cocritical and Y 7-torsionfree) and since C; is
essential in E; we see that f; must also be a monomorphism. On the other hand,
if Im f; NIm fi # 0 for 7 # k, then we would have that, since E; and Ex are
uniform, E; ~ E(Im f; N Im fi) ~ Ej, contradiction. Therefore Y contains a
submodule isomorphic to X and the proof is complete.

Let now 71 be the Lambek torsion theory. Then R is 7p-torsionfree and
the rL-torsionfree modules are the E(gR)-torsionless modules, so R is left QF-3
relative to 7, if and only if it has a minimal E(g R)-torsionless faithful R-module.
For these rings, we have

PROPOSITION 4. Let R be a ring such that 11 13 strongly semiprime and R
has a minimal E(gR)-torsionless faithful left R-module and a minimal E(RR)-
torsionless fasthful right R-module. Then R 13 a QF-3 ring.
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PROOF. Let X be a minimal E(gR)-torsionless faithful left R-module. Then
X is, by Proposition 3, a 7.-finitely cogenerated injective left ideal of R. By
{6, Corollaries 1.6 and 1.9] X is a dominant module in the sense of Kato (see
[14]) so that by [14, Theorem 1.4] the trace of X in R is a minimal dense (that
is, Lambek-dense) right ideal. Thus the Lambek torsion theory of mod -R is
jansian and hence R is right QF-3 by Proposition 1. The same argument as
before shows that the Lambek torsion theory on the left, 71, is also jansian and,
using again Proposition 1 we get that R is left QF-3.

REMARKS. The one-sided version of Theorem 4 fails; that is, there is a ring
such tht 7, is perfect (and so is the Lambek torsion theory of mod -R) and R
has a minimal E(gR)-torsionless faithful left R-module but R is neither a left
nor a right QF-3 ring. An easy example is given by the triangular matrix ring
R= (5 8) If e = €39, then Re is a faithful injective left ideal. Moreover, Re is
minimal among the E(grR)-torsionless faithful left R-modules for if Y is another
module with this property, then there is a nonzero homomorphism f: Re —» Y
and since Y is E(gR)-torsionless, there is a homomorphism ¢g: Y — E(gR) such
that go f # 0. But it is easily seen that g o f must be a monomorphism and
hence f is also a monomorphism, so that Re is a direct summand of Y. Note also
that since the maximal (left and right) ring of quotients of R is the full matrix
ring M2(Q), both Lambek torsion theories of R are perfect (and hence strongly
semiprime).

The triangular matrix ring considered in the above remark shows that the
class of left QF-3' rings with ACC on left annihilators is larger than the class
of left QF-3 rings with ACC on left annihilators. This cannot happen in the
two-sided case, for we have

COROLLARY 5. Let R be a ring with ACC (or DCC) on left annihilators.
Then the follouning conditions are equivalent:

(1) R is a QF-3 ring;

(i) R 1s a QF-3' ring,

(iii) R has a minimal E(gR)-torsionless faithful left module and a minimal
E(Rg)-torsionless faithful right module.

PROOF. Note that, in all cases, every element of E(gR) (E(Rg)) is also an
element of a torsionless module and hence the left (right) annihilator ideals of R
coincide with the annihilators of subsets of E(gR) (respectively E(Rg)). Thus
the ACC (DCC) on left annihilators is equivalent to R being rr-noetherian (r-
artinian) and similarly on the right. In particular, 7, is strongly semiprime (see
[7, page 324]) and so the equivalence between (i) and (iii) follows from Theorem
4. Since (i) implies (ii) obviously, to complete the proof it is enough to show
that (ii) implies (iii). Since R has ACC on left annihilators, it has DCC on right
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annihilators and hence, by the Teply-Miller theorem [10, Theorem 1.4], it has
ACC on right annihilators. Thus R has also DCC on left annihilators, that is, R
is 7.-artinian and by [10, Corollary 3.3] E(rR) is a finite direct sum of injective
envelopes of 7p-cocritical modules. Taking the direct sum of representatives of
each isomorphism class of these injective envelopes we have a module X which is
clearly faithful and, since R is left QF-3’, X is in fact isomorphic to a left ideal
of R. Now, it follows from Proposition 3 that R has a minimal 77 -torsionfree
cogenerator, that is, a minimal E(gR)-torsionless faithful left module. Since R
has also DCC on right annihilators and is right QF-3', the analogous result holds
on the right and the proof is complete.
We will make use of the following lemma.

LEMMA 6. Let R be a T-artinian ring and C a 7-cocritical module such that
every T-finitely generated submodule of E(C) i3 cogenerated by R/t(R). Then
E(C) i3 a T-noetherian module.

PROOF. See the proof that (i) implies (ii) in [8, Theorem 3.1].

Left artinian left QF-3 rings can be characterized by the property that every
finitely generated submodule of E(gR) is torsionless (this was proved by Rutter
in [12]), and also as the left noetherian rings such that E(gR) is projective. We
are going to give a torsion-theoretic generalization of these facts in such a way
that, corresponding to the trivial torsion theory we recover Rutter’s result and
for the Lambek torsion theory we get characterizations of the much larger class
of left QF-3’ rings with ACC on left annihilators.

THEOREM 7. Let 7 be a torsion theory of R-mod. The followtng conditions
are equivalent:

(i) R is T-artinian and R/t(R) has a minimal T-torsionfree cogenerator;

(ii) R is -artinian and every 7-finitely generated submodule of E(R/t(R)) s
R/t(R)-torsionless;

(iil) R is T-noetherian and each product of copies of E(R/t(R)) is a projective
R/t(R)-module;

(iv) R is 7-noetherian and E(R/t(R)) 13 projective as R/t(R)-module.

PROOF. (i)=-(ii). If R/t(R) has a minimal r-torsionfree cogenerator, then it
is clear that E{R/t(R)) is R/t(R)-torsionless from which (ii) follows.

(ii)=>(iii). Since R is 7-artinian, R is 7-noetherian by the Teply-Miller theo-
rem. Let E = E(R/t(R)). By [10, Corollary 3.3] we have that each product E!
is a direct sum of injective envelopes of 7-cocritical modules. Thus it is enough
to prove that if C is a 7-cocritical submodule of E’, then E(C) is isomorphic to a
submodule of R/t(R). If C < E’, then there is a monomorphism j: E(C) — E!
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and for some index ¢ of I we have that (p; o j)|c # 0 (where p;: ET — E is the
tth projection). Since C is r-cocritical we see that (p; o j)|¢ is a monomorphism
and, since C is essential in E(C), this implies that p; ¢ j is a monomorphism,
so that E(C) is isomorphic to a submodule of E. Thus (ii) implies that every
7-finitely generated submodule of E(C) is R/t(R)-torsionless and from Lemma 6
it follows that E(C) is r-noetherian and hence 7-finitely generated (see (7, Propo-
sition 20.1]). Therefore, our hypothesis implies that E(C) is R/t(R)-torsionless
and as before, we see that, in fact, E{(C) embeds in R/t(R).

(iii)=>(iv). This is obvious.

(iv)=(i). Note that the proof of [9, Theorem 1] works to show that in our
hypothesis R is r-artinian. Moreover, 7 is in this case strongly semiprime [7,
Proposition 34.14] and hence, from Proposition 3, to show that R/t(R) has a
minimal torsionfree cogenerator it will be enough to prove that R/t(R) has an
injective cogenerator submodule which is 7-finitely cogenerated. Since R is 7-
artinian, g R is 7-finitely cogenerated [4, Proposition 1.5] and hence E(R/t(R))
is isomorphic to a finite direct sum of injective envelopes of 7-cocritical modules.
Let {E;,...,E,} be a representative set of the isomorphism classes of these
injective envelopes. Since E(R/t(R)) is R/t(R)-torsionless by hypothesis, we
see that each E;, ¢ = 1,...,n, is isomorphic to a submodule of R/t(R) and, as
in the proof of Proposition 3, we have that R/t(R) contains a submodule which
is isomorphic to @7 E;. It is clear that this submodule satisfies the required
conditions and the proof is complete.

REMARK. If 7 is the trivial torsion theory, then condition (i) of Theorem 7 is
clearly equivalent to R being a left artinian left QF-3 ring, so that the equivalence
of (i) and (ii) gives [12, Corollary 3].

We may apply Theorem 7 to 71 in order to characterize the rings which have a
minimal E(gR)-torsionless faithful left module and the DCC on left annihilators.
Recall that a ring R is called left 1-Gorenstein if E(gR) is projective [2] and
that a module X is II-projective when each product of copies of X is projective.
We get

COROLLARY 8. The following conditions are equivalent for a ring R.

(i) R has a minimal E(gR)-torsionless faithful left module and satisfies the
DCC on left annshilators.

(ii) R s a left QF-3' ring with DCC on left annihilators.

(i) R 1s a left 1-Gorenstein ring with ACC on left annihilators.

(iv) Every almost finitely generated submodule of E(gR) is torsionless and R
satisfies the DCC on left annihilators.

(v) Every almost finitely generated E(gR)-torsionless module embeds in a
free module and E(grR) 13 a fnite direct sum of injective envelopes of minimal
rationally closed submodules.
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(vi) E(rR) is I1-projective.

(vii) Every E(gR)-torsionless module embeds in a free module.

(viil) R is a left QF-3' ring and every torsionless module embeds in a free
module.

(ix) R 1is a left QF-3' ring with semiprimary QF-3 mazimal two-sided ring of
quotients.

PROOF. Since in all cases any element of EF(gR) is containd in a torsionless
module, the ACC and the DCC on left annihilators are equivalent, respectively,
to R being 7r-noetherian and r.-artinian. Now, the equivalence between (i), (ii),
(iii) and (iv) follows in a strightforward way from Theroem 7. From the equiv-
alence between (iii) and (iv) of Theorem 7 it also follows that these conditions
imply condition (vi).

(v)&(vi). This follows from [8, Theorem 3.5] applied to the Lambek torsion
theory.

That (vi)=(vii) and (vii)=>(viii) are clear.

(viii)=>(iii). This follows from [10, Proposition 3.1].

That (iv)=(ix) and (ix)=>(ii) are consequences of [9, Theorem 2].

REMARKS. Note that the equivalence between (iii) and (vii) above gives a
proof of {9, Corollary 1] and shows that the converse of that corollary is also true.
The class of rings which satisfy the conditions of Corollary 8 contains properly
the class of left QF-3 rings with DCC on left annihilators (for example, (Z &) is
left 1-Gorenstein and has ACC on left annihilators but is not left QF-3) and is
contained properly in the class of rings which have a semiprimary QF-3 maximal
two-sided ring of quotients (this class is characterized in [9, Theorem 2]). For
instance, any commutative domain R belongs to the latter class but E(gR) is not
projective in the nontrivial cases (this also shows that in (iv) and (v) we cannot
replace almost finitely generated modules by finitely generated ones). On the
other hand, we also remark that it is not possible to replace DCC by ACC in
conditions (i), (ii) and (iv) of Corollary 8. The example of Ringel and Tachikawa
[11, page 60] of a left noetherian left QF-3 ring which is not right noetherian is
not left 1-Gorenstein and hence does not satisfy the equivalent conditions of the
above corollary.

We have obtained in Corollary 5 characterizations of the class of QF-3 rings
with ACC on left annihilators. Other equivalent conditions are given in [13,
Theorem] and in [9, page 385). A different characterization is the following
(recall that a ring R is said to be left FC if pR is finitely cogenerated).

COROLLARY 9. The following conditions are equivalent for a ring R.
(i) R is a QF-3 ring with ACC on left annihilators.
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(ii) R satisfies the ACC on left annihilators and every almost finitely generated
submodule of E(rR) and of E(RR) ts torsionless.

(iil) R 1s a left FC ring such that every almost finitely generated E(gR)-
torsionless left module embeds in a free module and every almost finttely generated
E(RRg)-torsionless right module 1s torsionless.

(iv) R is a left QF-3' ring and E(RR) is Il-projective.

PROOF. The equivalences between (i) and (ii) and (i) and (iv) follow from
Corollary 5 and Corollary 8.

(i)=(iii). By Corollary 8, rR has an essential submodule of the form @7 C;,
where the C; are minimal rationally closed left ideals (that is, 71 -saturated and
tr-cocritical left ideals). Since R is right QF-3, 7, is jansian and if D is a minimal
dense left ideal of R, each DC; is a simple left ideal of R (see the proof of (7,
Proposition 14.8]) which is essential in the uniform left ideal C; and hence grR
is finitely cogenerated. The rest of condition (iii) follows from Corollary 8.

(iii)=(i1). Clearly (iii) implies that R satisfies condition (v) of Corollary 8, so
that R has ACC on left annihilators and hence we get that (ii) holds.

For left nonsingular rings, the r-dense left ideals are precisely the essential
left ideals of R {15]. Denoting by Q = R,, the maximal left ring of quotients of
R, we get

PROPOSITION 10. The following conditions are equivalent for a ring R.

(i) R 1s a let nonsingular left QF-3' ring with ACC (or DCC) on left annihi-
lators.

(ii) R s a left nonsingular left finite-dimensional left QF-3' ring.

(iil) Q is semisimple and rQ 1is projective.

(iv) Q 1is semisimple and every nonsingular left R-module embeds in a free
module.

(v) R is a left QF-3' ring with semisimple mazimal two-sided ring of quotients.

(vi) R i3 a right FC ring with projective right socle and every finitely generated
nonsingular right R-module embeds in a free module.

PROOF. (i)« (ii). We observed in the proof of Corollary 5 that if R is left
QF-3', then ACC (or DCC) on left annihilators is equivalent to R being 71-
noetherian. Thus the equivalence between (i) and (ii) follows from [15, Proposi-
tion XII1.3.2 and Proposition XII1.3.3].

()¢ (iii)«<>(iv). These equivalences follows readily from [2, Proposition 2.1
and Theorem 2.5, since @ is semisimple if and only if R is left nonsingular and
left finite-dimensional.
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(iv)=(v). Since, by (iv), R is left nonsingular and finite-dimensional it follows
from [15, Corollary XII.7.3], that Q is also the maximal right ring of quotients
of R.

(v)=(vi). By (v), R is right nonsingular and right finite-dimensional so that,
by [15, Corollary XII.7.3] every finitely generated nonsingular right R-module
embeds in a free module. Furthermore, from Corollary 8 it follows that zQ is
projective and so R is a right FC ring with projective right socle by [14, Corollary
2.5].

(vi)=(iii). If @' denotes the maximal right ring of quotients of R, then Q'
is semisimple and Q' is projective by (14, Corollary 2.5]. From [15, Corollary
XII1.7.3] it follows that @ = Q’, which completes the proof.

REMARKS. The left nonsingular left QF-3' rings which contain no infinite
sets of orthogonal idempotents are characterized in {2, Theorem 2.5]. The class
of rings defined by Proposition 10 is smaller than the class of rings such that
Q is semisimple and every finitely generated nonsingular left R-module embeds
in a free module, for among the rings satisfying the last conditions are all the
two-sided orders in semisimple rings [15, Proposition I1.4.6]. Also, there are rings
R with maximal right ring of quotients @’ semisimple and rQ’ projective (these
rings are studied in [14, Corollary 2.5]) which do not satisfy the conditions of
Corollary 11. An example is given by the ring considered in [15, Exercise XII.5].
On the other hand, (% §) satisfies the conditions of Proposition 10 but not
their left-right symmetric, for it is not a right QF-3' ring. On the contrary, if we
replace left QF-3' by left QF-3 in (i), (ii) or (v), we get a class of rings which is
left-right symmetric [2, Theorem 2.8].
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