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A fracture-entrainment model for snow avalanches
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ABSTRACT. We use the invariant I integral of fracture mechanics to calculate the frontal pressure and
resistance to the downward motion a of snow avalanche. A basic characteristic property of the
snowpack, termed the entrainment toughness, is introduced. From an analysis of the non-entrainment
frictional mechanisms of avalanches, we find the necessary condition for a fracture-entrainment regime,
and from an analysis of limiting equilibrium of gravitational force and frontal resistance, the necessary
condition equation for the start of avalanches. We then derive the governing equations for the dynamics
of avalanches, using a point-mass approach with entrainment taken into account. The governing
equations are used to numerically simulate the Vallée de la Sionne (Switzerland) avalanche of

7 February 2003.

1. INTRODUCTION

Entrainment in snow avalanches is the key to understanding
the motion of snow masses and hence to predicting their
speed, impact pressures and final runout distance (Issler,
1998; Gauer and Issler, 2004). Recently, different avalanche-
entrainment mechanisms and rates have been reported by
Sovilla and others (2006), who analyzed a total of 18 ava-
lanche events, many captured at the instrumented Vallée de
la Sionne (Switzerland) test site. In this excellent and
valuable survey of snow entrainment, three different
entrainment mechanisms were identified: ploughing, step
entrainment and basal erosion. The maximum entrainment
rates (350 kgm’2 s were found to occur during frontal
ploughing and step entrainment. Although the step-entrain-
ment mechanism was observed to occur by a fracture failure
at the interface of two snow layers, the multilayer-entrain-
ment model introduced by Sovilla and others (2006)
assumes that entrainment processes are governed by snow
strength, primarily the shear resistance of snow. The
entrainment model of Sovilla and others (2006) is based
on the earlier work of Russian snow scientists (Grigorian and
others, 1967; Eglit and Demidov, 2005). Although this
model provides correct entrainment rates, it requires shear
strength values with no clear physical basis.

In the following, we use the invariant I integral of fracture
mechanics (see Cherepanov, 1979) for the calculation of
energy balance, frontal pressure and frontal resistance to the
motion of the avalanche by the snowpack. We seek a method
to model the step-entrainment process identified by Sovilla
and others (2007). The frontal resistance is calculated, which
allows us to find the necessary condition governing the
entrainment regime. For the start of avalanches, a limiting
equilibrium condition equation is also found. Then the
governing equation for the dynamics of avalanches is derived
in the simplest approach, taking into account entrainment,
inertia, gravitation and friction forces using the Voellmy-
Salm model (Bartelt and others, 1999). These governing
equations are solved numerically and the Vallée de la Sionne
avalanche of 7 February 2003 is simulated.
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2. FRONTAL RESISTANCE IN THE
FRACTURE-ENTRAINMENT MODE

The frontal resistance due to entrainment is calculated
assuming a multilayer snowpack. Slip fractures at the layer
interfaces in the process zone are assumed to govern the
resistance (Fig. 1). The energy balance of forces in this zone
is given by means of the invariant I' integral of fracture
mechanics (Cherepanov, 1979). The avalanche is assumed
to move in the direction of the x; axis, with the x, axis being
perpendicular. The x3 axis is perpendicular to both the x;
and x, axes.

Figure 1 represents a schematic snapshot of the process
zone at a certain moment in time. The frontal resistance is a
result of interactive stresses and strains in the process zone
and can be calculated from the energy balance in this zone.
For the purpose of such a calculation we make the following
assumptions for the process zone:

1. The bed is an elastic continuum half-space, x, < 0, with
one slip fracture along the interface boundary x, = 0
(Fig. 1).

2. Snow in front of the avalanche is a multilayer continuum
with several boundaries along x, = constant being
subject to slip fractures (Fig. 1). Inertial forces in the
process zone are small in comparison to the fracture
resistance.

3. All dissipative processes in the process zone are assumed
to be concentrated along several slip discontinuities on
interfaces at x, = constant, so the material outside of
these discontinuities (fractures) is an elastic continuum.

4. The front of the snowpack is a solid line along
x; = constant where the constant is different for different
layers (Fig. 1). The shear stress on the front is zero, and
the normal stress, o1, which is the frontal avalanche
pressure of snow, is equal to

Rk

W/ (1 )
where h is the thickness of the resting snow layer in front
of the snowpack and R is the frontal resistance to be
found from the energy conservation law.

o1 =

5. Plane strain is assumed.
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The dissipative processes on slip discontinuities, in-
cluding their ends, are taken into account in Figure 1 by the
paths over the upper and lower banks of discontinuities with
small circular paths surrounding the ends of discontinuities.
These circular paths are necessary since it is not known what
happens with the material at the extreme ends under high
stresses and strains in very small volumes. We can only
characterize the dissipative process inside a small circular
zone by a specific dissipation energy, spent to advance the
discontinuity of unit length. Thus, the snow cover in the
process zone is subject to comparatively small deformations
up to failure, with both elastic and inelastic components
produced by the front pressure of the avalanche. The law of
energy conservation in a solid continuum inside a closed
contour can be written in the form of the invariant I integral
(Cherepanov, 1979) taken over the closed contour, %,
embracing the process zone with discontinuities (Fig. 1):

/Z (Wl'h — O',‘jﬂjU,‘J) dx =0 (2)

(i,j = 1,2; summation on repeated indices is assumed here),
where W is the volume density of deformation work, n; are
the components of the outer unit normal to contour ¥, ¢j; are
the stress components and u; are the displacement com-
ponents.

The integral over the upper surface of snow layer, x, = h,
is equal to zero because n; = 0, n, = 1 and oj;n; = 0 for
i=1,2, since there is no loading on the free surface.

The integration path in the bed can be taken in the form
of a circle of large radius, r, where r > h. The stress—strain
field in the bed far from the process zone tends to that of
concentrated force (Rg, 0). The T' integral over this circle
represents the I' residue of the concentrated force, and it is
equal to zero in this case (Cherepanov, 1983).

The T integral over the front of the snowpack where
x; = constant, ny =1, n, =0, 01, =0 and o7 = Rg/h is
equal to

h
/ (—W—I—(THU]J)CIXQIh(W—O'HU]J)
0

R?

—, (3
55 )
where E is Young's modulus or modulus of elasticity and v is

the Poisson ratio. From Hooke’s law, (plane strain) it follows
that

= (-1+22 -2/

u 1= = = =0
1,1 = E o1, 033 =Vo11, U,2=U1=
> (4)
1 o
= -6, w=(1+0) 7,

since 02, = 0 in the common thin-plate approximation as
applied to the snow layer.

Now, let us calculate the T' integrals over the slip
discontinuities along x, = constant where: (1) n; = 0 and
n, = £1 (‘plus’ for the upper bank and ‘minus’ for the lower
bank); (2) 05, =0 in the thin-plate approximation and
(3) 012 = 7i,i+1. Here, 7; ;1 is the limiting shear stress on
the slip discontinuity between the ith and (i + 1)th layers.
The T' integral over the upper and lower banks of the ith
discontinuity is equal to A;7;; . 1, where A; =2 fOL ur,1dxy
is the summary displacement jump between the upper and
lower banks of the discontinuity accumulated at the front of
the snowpack, the so-called transverse shear crack distor-
tion. Here L; is the length of the ith discontinuity.
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Fig. 1. Integration contour, %, of the invariant " integral over the
process zone based on the modified SBB (Sovilla—Burlando-Bartelt)
fracture-entrainment model. Interface slips along the boundaries of
adjacent layers. Closed ¥ contour embraces the process zone, the
direction of integration being shown by arrows.

The T integral over the small circular path surrounding
the singular end of the ith discontinuity is equal to T,
where T'¢; is the dissipation energy spent to increase the ith
discontinuity by a unit length.

Combining these particular calculations in Equation (2)
gives

EPF TP L < VU
(1 2v° 4 2v )2Eh = ZAITI, i+1 + ZFCH (5)
i=1

i=1

where N is the number of discontinuities. In the our case, we
have N = 3.

Equation (5) allows us to formulate the frontal resistance,
Rg, in terms of h and structural material constants as follows:

RF = KE\/ﬂ (6)

where

E N N
Ke = 1—212 4213 (; Fei+ ;Aiﬂ,iH) . (7)
For the case of identical limiting shear stresses, with
Tiiy1 = Ts for any i, we get

E N
K= | —o—— (S Tu+mA
; 1—2u2+2y3(,_1 G ) (®)

where A = SN A; is the summary shear displacement in
the process zone near the front of the snowpack.

The parameter K is termed the entrainment toughness
and characterizes the resistance capabilities of the material
in the process zone in front of the avalanche. The
determination of this value from actual avalanche data is
required to predict avalanche motion with entrainment.
According to Equation (7), the fracture work lost by an
avalanche on a unit length of its path can be expressed in
terms of the entrainment toughness as follows:

Zrci+

i=1 i=

N 2 3
1—-2v7 4 2v
AiTi i1 = f’ﬁz- 9)
1
This formula describes the arresting capabilities of the
process zone in front of the avalanche.
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. snowpack ...
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Fig. 2. The non-entrainment mode of frontal resistance in the SBB
multilayer model. Through slips AB, CD, EF and GH and interface
slips BC, DE and FG along the boundaries of layers.

3. THE FRACTURE-ENTRAINMENT THRESHOLD

The fracture-entrainment mechanism described in the
preceding section will occur if the force applied by the
avalanche (which is also the resisting force of the snow-
pack, Rg) is the smallest of all possible entrainment
mechanisms. Moreover, the fracture-mechanics based Rg
must be the smallest of all possible snow-cover resisting
forces. Another possible entrainment mechanism is the
shearing of interfaces between snow layers. To determine
the resisting force of this process, first let us study the
limiting equilibrium of the ith snow layer with a through slip
plane CD inclined by angle §; to the x; axis (Fig. 2). The
tangential (shear), 7,, and normal components of stress, o,
on this interfacial slip plane obey Coulomb’s law
o = T; + |on|tan ¢;, (10)
where 7; is the adhesion constant and ¢; is the angle of
internal friction in the ith layer. Values of 7; and ¢; for snow
avalanches derived from chute experiments can be found in
Platzer and others (2007). As o5, = 0 in the thin-plate
approximation, we have the following two equations of
equilibrium:
|on| cos Bi = |m|sin G,

cos G; (11)
sin ﬂ,‘ '
Here, h; is the thickness of the ith layer and R; is the
component of the frontal resistance caused by the ith layer.

Solving the equation system, Equations (10) and (11),
gives

R = hi|0'n| + hi|7'n|

Titan 3;
1 — tanyp;tan §;’

Ti

=, == 12
= e (12)

Zh,'T,'
R = . 13
" sin23i(1 — tan Bitan ;) (13)
Let us analyze R; as a function of 3;. This function tends to
plus infinity when 8; — 0+ and 3; — (5 — ¢;)—. Hence, it
has a minimum in 3; € [0, Z — ¢;]. Equating the derivative to
zero, we find the following equation for the minimum point:

1 — singp;
tanﬁ;:Tﬂ. (14)
1

From here and Equation (13), it follows that

™ @i
=T_8 |
p=1-¢ (15)
T
R; = 27 cot (Z—%). (16)
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Summing up the resistance of all N layers, we arrive at the
frontal resistance, R, of the process zone

N N
S
R = E 1 2h;7i cot (Z—%) + E] di, i1, i1 (17)
i= 1=

Here 7; ;.4 is the limiting shear stress on the boundary
between the ith and (i 4+ 1)th layers, and d;; ; 1 is the length
of the interface slip between the ith and (i + 1)th layers.
All terms in the second sum are positive; they increase the
value of frontal resistance. Hence, d;; 1 = 0 for any i, and
the absolute minimum with respect to all 3; where

i=1,2,...,N provides the frontal resistance, R, of the
process zone in the non-entrainment mode as follows:
N S
— e =
RF72;h,7—,Cot(4 2). (18)

If this value is less than that given by Equation (6) for the
fracture-entrainment mode, then shearing entrainment is the
more likely entrainment mode.

Therefore, fracture entrainment occurs if, and only if,

N
T 0
KE\/2h<2;h,-T,-cot G-2)- (19)
Equation (19) provides an important estimate for the upper
bound of the entrainment toughness, K¢, characterizing the
frontal pressure and frontal resistance to the avalanche
snowpack.

4. ESTIMATES OF ARRESTING CAPABILITIES OF
ENTRAINMENT

Let us use Equations (9) and (19) to estimate the arresting
power of the entrainment processes.

First, for a simple estimate, we assume i=1, h=1m.
Because of the great diversity of snow properties the
cohesion constant, 7;, can vary from 1 to ~100kPa, and
the friction angle, ¢;, from 10° to 40°. From Equation (19)
we find that the entrainment toughness, Kg, can vary from
0.01 to TOMPam'”.

Young’s modulus, E, of snow can vary from 0.01 to
~1.0 GPa depending on the snow type and density. Using
this range of values of E for snow and the above estimate of
the entrainment toughness, Kg, we find that the specific
dissipation energy of entrainment per unit area according to
Equation (9) can vary from 0.01)m™ to ~10MJm™, a very
large range.

Let us compare this value with the work done by gravity
per unit area which is MgH/A, where MgH is the potential
energy of gravitation of avalanche mass M, H is the total
mountain height and A is the total area covered by the
moving snow mass. Using data from Sovilla and others
(2006), the following estimates are acceptable for ava-
lanches: M varies from 0.01 x 10° to 0.1 x 10°kg and A
varies from 0.1 to ~1km?. If we assume that H = 1000 m,
then the specific driving force of avalanches will vary from
0.1 to ~10MJm™.

As seen, under common snow conditions the dissipation
energy of entrainment is considerably less than the work
done by gravity. However, the specific dissipation energy of
entrainment of a well-consolidated snow cover is compar-
able with the gravitational work done by an avalanche. A
similar result was obtained by Bartelt and Stockli (2001) for
the entrainment of woody debris by avalanches.


https://doi.org/10.3189/002214308784409071

Cherepanov and Esparragoza: A fracture-entrainment model for snow avalanches 185

/\\ y
Snow

h(x)

K

x Mountain bed

Fig. 3. Coordinate system.

5. NUMERICAL MODEL: FRICTIONAL RESISTANCE
WITH ENTRAINMENT

A mountain of height H is covered by a layer of snow. We
designate t as time; x as the vertical axis directed downward,
so x = 0 is the top of the mountain and x = H is the bottom
of the mountain; y as the horizontal axis beginning at the top
of the mountain under study, where y = 0; and {x = x(s),
y = y(s)} as the parametric equation of the curvilinear bed
of the mountain on which the snow is lying, where s is the
length of the curvilinear path along the bed and h(s) is the
thickness of the snow layer (Fig. 3).

We assume that the bed is rigid and the snow layer is thin
so that |h(s)| < H.

Suppose M(t) is the snowpack mass moving downbhill
under the gravity force along the curvilinear bed x = x(s),
y = y(s). We assume that mass M has the shape of a
parallelepiped with dimensions a x bx ¢, where c is the
snow mass thickness normal to the bed surface, a is the
frontal dimension normal to the direction of motion and b is
the depth of the snow mass along its motion path.

Therefore, we have

M = pabc, (20)

where p is the density of the snow in moving mass M.

Due to the entrainment, when mass M(t) moves down,
it absorbs pph,ads amount of new snow over time dt
such that

M

dd—t:poh*ag, (21)
where pg is the density of the intact snow on the mountain
and s(t) is the length of the path of the avalanche. Some
snow can also be deposited from the avalanche. The value of
h. = h.(s) in Equation (21) therefore represents an effective
difference between the snow influx and snow deposition,
usually at the tail of the avalanche (Bartelt and others, 2007).
When the avalanche is well developed, the deposition
equals the influx and h, = 0.

We assume that:

1. po is constant or a known function of s, so that pg = po(s).

2. h(s) is constant or a known function of s.
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Fig. 4. An element of the motion path.

Applying Newton’s law, the equation of motion for mass M,
taking into account the entrainment, is

%(M%) = Mgcosa — R. (22)
Here s(t) is the location of mass M on the bed; « is the angle
between the x axis and the direction of motion (Fig. 4) so that
dx = (ds)cos and dy = (ds)sina; g = 9.81ms % and R is
the resistance force equal to the sum of the friction force plus
the frontal resistance, Rg, caused by the entrainment of the
intact snow layer. For the friction force we use the Voellmy-
Salm model (Voellmy, 1955; Salm and others, 1990; Bartelt
and others, 1999), which decomposes R into dry Coulomb
friction and ‘“turbulent’ velocity-dependent resistance.
Therefore,

2
R = f(Mgsina + M2 k) +pgac%+ aRy, (y = g)

(23)

Here f is the Coulomb coefficient of dry friction on the
snow-bed interface, ¢ is the coefficient of ‘turbulent’ friction
of the snow flow, k = da/ds = 1/r is the curvature of the
mountain bed and r is the radius of curvature. The term
Mv?k describes the centrifugal force directed along the
normal to the bed, which, depending on the curvature,
either increases or decreases the normal force of interaction
between the snow mass and the bed. The ‘turbulent’ friction
term physically represents different velocity-dependent drag
forces (e.g. air resistance at the front of the avalanche).
According to Equation (6), frontal resistance R is equal to

RF = KE\/2h(S), (24)

where K is the entrainment toughness and h = h(s) is the
incumbent snow thickness in the process zone.

The resistance force, R, substantially depends on the
speed (ds/dt) of the moving mass, M (Fig. 5). The
entrainment toughness, Kg, and therefore the frontal resist-
ance, Ry, are greater as the snow is denser and older. We
assume that K¢ is a constant depending on geographic and
seasonal snow conditions. Also, we assume that a is a
constant determined by the specific geometry of the track
topography. Frontal resistance may be especially important
during the initial stage of avalanche when the avalanche
speed is small.
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ds/dt

Fig. 5. Resistance force vs speed of moving mass.

6. NUMERICAL MODEL: GOVERNING EQUATIONS

Under these assumptions, from Equations (21-24) we get the
closed equation system as follows:

dMFds

W* (S)E/

d/, ds , ds)?
&(M&) _M{gcosa—f[g5|na+ (&) k}}
- pgac% — aKe+/2h(s), (26)

and the initial conditions t =0, s=0, ds/dt =0. Here
cosa = dx/ds and sina. = dy/ds are some known functions
of s found from the equation of the mountain bed, and
k = da/ds.

Integrating Equation (25) yields

v [

where My is the initial mass of the release zone. The mass of
the avalanche, M, is therefore a function of s and can be
determined from Equation (27) and M(s) is now a known
function.

Let

ds . ds\?
G(s, a) —M{gcosa—f[gsma+ <&> k}}

(ds/;t)z — ake\/2h(s), (28)

then we find, from Equation (25), the governing equation
determining the motion of the snowpack mass, M, with

time, t,
d ds ds

In afirst series of simulations, we solve Equation (29) assum-
ing that turbulent friction is neglected and curvature, k, is
zero so G = G(s). In this case we have

v(s) =5 = — \/2 INY
M(s)ds (30)
(s)G(s)ds + 1/5/\/12

(F = poah.), (25)

ds+M0_/ poah.(s) ds+ Mo, (27)
0

— pgac

(s)G(s)ds + vgMZ,

-l V2 Jo Mis

When curvature and/or turbulent friction are taken into
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account, G = G(s, ds/dt), Equation (29) can be transformed
into the following form:
dA(s)
ds

A(s)
" M(s)

=2M(s)G|s

' (31)

where A(s) = [M(s)v(s)]?, with initial conditions at s =0,
ds/dt =v =0 and A = 0. Equation (31) can be integrated
numerically, so that the speed of avalanche, v = v(s), can
be found as a certain function of s, from which it follows that

t—/sﬁ (s =0 when t =0) (32)
o v(s) .

Equation (32) provides coordinate s of mass M as an implicit
function of time, t. In the well-developed, steady-state
regime, when h, = 0 and d?s/dt? = 0, the speed of the
avalanche is determined by equation R = Mgcosa, where R
is a function of 12 given in Equation (23).

7. NUMERICAL SIMULATION

In this section we present a numerical simulation of the
Vallée de la Sionne avalanche event of 7 February 2003
(Sovilla and others, 2006). For this purpose, Equation (29) is
solved taking into account both dry and turbulent friction,
bed curvature and the frontal entrainment ignored by other
models such as the Voellmy-Salm model.

The data for this event are reported by Sovilla and others
(2006). We summarize the data required for the numerical
simulation as follows:

1. The release mass is 11.15 x 10°kg and the deposit mass
is 17.16 x 10°kg.

2. Density is 200 kgm™

3. Coulomb friction is taken as f = 0.26 (Platzer and others,
2007).

4. The slope angle and avalanche width are approximated
as a function of the path length from the data given by
Sovilla and others (2006).

5. In accordance with the entrainment data of Sovilla and
others (2006), the entrainment depth, h,, that is the
effective difference between snow influx and snow
deposition, was assumed to be constant at the beginning
of the avalanche up to 800 m of the path length, then to
decrease linearly to zero between 800 and 1000 m of the
path length, to remain zero between 1000 and 1600 m of
the path length and, due to flank entrainment, to regain
the original constant after 1600 m of the path length.

6. The ratio pgac/¢ in the turbulent resistance term was
assumed to remain constant. The value of £ = 800 ms
was used here, taken from Tiefenbacher and Kern (2004).

7. The frontal resistance, Rr, was assumed to remain
constant, Rg = 0.1 MPam.

8. The curvature of the mountain bed was determined from
the slope angle curve given by Sovilla and others (2006).
This value was approximated and used over sections of
the path length.

The result of the simulation using Equation (29) based on the
above assumptions is shown in Figure 6. As seen, this
simulation model is well confirmed by the experimental
data reported by Sovilla and others (2006).
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Fig. 6. Velocity simulation of the Vallée de la Sionne avalanche event of 7 February 2003 using the data of Sovilla and others (2006).

Analytical results are compared with the observed data.

8. A SIMPLE ESTIMATE OF MAXIMUM POSSIBLE
ACCELERATION OF AVALANCHES

It is useful to get a simple estimate of avalanche accelera-
tion. Let us assume that o = constant, so the mountain bed
is represented by a straight-linear slope (Fig. 7), and let us
ignore the frontal and ‘turbulent’ resistance. Also, we
assume that My = 0, vo = 0, that is, the initial mass and
speed of the avalanche are zero. Further, we assume that
poah, = F = constant. In this case, we find from Equa-
tions (25) and (26)

M=Fs
s:%(cosa— fsina)tz} (33)

Thus, the acceleration, a,, of the avalanche cannot exceed
_8 Cfei
aAfg(cosa fsina). (34)

It will be a bit less if the frontal and ‘turbulent’ resistance
forces are taken into account. For example, when o = 45°,
we have from Equation (34)

g(;ij;). (35)

ap =

9. CONCLUSIONS

Based on our entrainment model, the energy balance in the
process zone was studied using the invariant I" integral of
fracture mechanics, and the frontal resistance and snow
pressure were calculated. We introduced the entrainment
toughness, K, as a basic property characterizing the frontal
resistance of the process zone and the frontal pressure in the
avalanche. Some estimates of the entrainment toughness
were derived from the physical properties of snow and from
avalanche data of Sovilla and others (2006). It was found
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that the specific dissipation energy of entrainment is
commonly much less than the specific energy of avalanches,
but for well-consolidated snow it can be comparable with
the specific energy of any avalanche.

The entrainment model presented here can be imple-
mented in simulation tools for two-dimensional models. The
governing equations of the dynamics of avalanches were
derived in the simplest approximation taking into account
entrainment, inertia, gravitation and Voellmy-Salm friction;
however, more work is required to understand the inter-
action between the flow rheology and entrainment.
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