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Summary

The red flour beetle, Tribolium castaneum, has been selected for whole genome shotgun sequencing
in the next year. In this minireview, we discuss some of the genetic and genomic tools and biological
properties of Tribolium that have established its importance as an organism for agricultural and
biomedical research as well as for studies of development and evolution. A Tribolium genomic
database, Beetlebase, is being constructed to integrate genetic, genomic and biological data as it
becomes available.

1. Studies in Tribolium will contribute to many

areas of biological research

Beetles (the Coleoptera) comprise the largest andmost
diverse of all eukaryotic orders. They include many
beneficial and deleterious species, the latter associated
with billions of dollars’ worth of agricultural losses
annually. There are several compelling reasons to
study the red flour beetle, Tribolium castaneum. First
and foremost, Tribolium is one of the most sophisti-
cated genetic model organisms among all higher eu-
karyotes. Among arthropods, only Drosophila offers
greater power and flexibility of genetic manipulation.
Second, Tribolium might prove to be invaluable in
linking genome sequence information from Droso-
phila, honeybee and Anopheles with vertebrate gene
annotation. Third, as a member of the most primitive
order of holometabolous insects, the Coleoptera, it is
in a key phylogenetic position to inform us about the
genetic innovations that accompanied the evolution
of higher forms with more complex development.
Fourth, Tribolium offers the only genetic model for
the profusion of medically and agriculturally import-
ant coleopteran species. Finally, many genetic and
genomic tools have been developed for Tribolium, and
both forward and reverse genetic approaches are
available to facilitate functional genetic analysis.

Tribolium species host a large variety of protozoan
and bacterial parasites and/or symbionts that provide

fertile material for the study of host–pathogen inter-
actions. Like many arthropods, certain Tribolium
species are infected with Wolbachia, a Rickettsia-
like organism. Strains of some Tribolium species
(e.g. Tribolium confusum) harbor Wolbachia as obli-
gate intracellular symbionts or parasites, and show
classic incompatibility syndromes when mated with
Wolbachia-deficient strains (Wade & Stevens, 1985).
Other species, such as Tribolium madens, are devoid of
Wolbachia and develop lethal infections when arti-
ficially inoculated (Fialho & Stevens, 2000). Still
others, including T. castaneum, appear to be refrac-
tory to Wolbachia, in that they are immune to infec-
tion and are host-incompetent. Wolbachia infection is
being examined for potential use in reducing the
population density of insect vectors of human disease,
either directly or as a vehicle to drive vector incom-
petence or other favorable traits through populations
(Brownstein et al., 2003; Dobson, 2003; Rascon et al.,
2003). Similar approaches might be efficacious with
respect to insect pests of agriculture.

As a major global pest of stored grain and cereal
products, peanuts and many other dried and stored
commodities for human consumption, Tribolium has a
long history of exposure to pesticides. It has proved to
be readily adaptable to all classes of insecticides and
fumigants, having developed resistance via oxidative
and hydrolytic metabolism, target insensitivity, and
other mechanisms (Andreev et al., 1994; Beeman &
Nanis, 1986; Beeman & Stuart, 1990). These features,* Corresponding author. e-mail : sjbrown@ksu.edu
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in combination with excellent genetic tractability, rec-
ommend Tribolium as an ideal subject for the identi-
fication of new pesticide targets through knowledge of
resistance mechanisms (Andreev et al., 1994; Beeman
et al., 1992b).

Bioactive agents with potential impact on human
health and biology have long been sought in the plant
and fungal biodiversity present in the tropical rain
forests. Beetles, with their unparalleled species and
habitat diversity, might be a major untapped source
of antibiotics and biopharmaceuticals. In Tribolium,
p-benzoquinones, aliphatic hydrocarbons and other
potential repellents, irritants, toxicants and antifungal
or antibacterial components are produced in large
‘stink’ glands (Blum, 1981). Naturally occurring
polymorphism in antibiotic potency has been demon-
strated in at least two Tribolium species (Prendeville
& Stevens, 2002), and several mutations have been
identified that affect the biosynthesis and secretion
of stink gland components (Hoy & Sokoloff, 1965;
Englert, 1966; Beeman et al., 1996). T. castaneum was
the first animal species ever reported to produce pro-
staglandin synthetase inhibitors (Howard et al., 1986).
Given the importance of anti-inflammatory drugs
acting through the prostaglandin pathway, the detec-
tion of this class of inhibitory compounds in Tribolium
demonstrates the potential for drug discovery via
mining the Tribolium genome.

The first maternal effect selfish (Medea) genes were
discovered in Tribolium (Beeman et al., 1992a), and
similar mechanisms of maternal selection of selfish
genes have subsequently been discovered in mammals
(Hurst, 1993; Peters & Barker, 1993).

2. Studies in Tribolium contribute to our

understanding of evolution and development

As a coleopteran, Tribolium is in a key phylogenetic
position to inform us about the genetic innovations
that accompanied the evolution of higher insects.
Among winged insects, the relatively more primitive
orders areplaced in thehemimetabola.These insects do
not develop morphologically distinct larval and adult
forms but rather undergo a series of molts in which
earlier stages (nymphs) resemble miniature adults. By
contrast, higher insects, whichundergo completemeta-
morphosis, comprise the holometabola. Larval forms
are worm-like, then transform into pupaewithinwhich
develop adult insects of much different appearance.
Comparative genomics promises to improve our
understanding of the evolutionary changes that ac-
companied the rise of the holometabola, as well as
other morphological specializations. The Coleoptera
occupy a basal position among the holometabola. In
comparison, the Diptera (which include Drosophila
melanogaster, the most highly characterized insect) is
one of the most advanced orders. Beetles and flies

diverged close to 300 million years ago (Kristensen,
1999). One of theirmore conspicuous differences is em-
bryonic segmentation, which occurs simultaneously
along the anterior–posterior axis in Drosophila (long-
germ development) but sequentially from anterior to
posterior in more primitive insects (and vertebrates)
(Davis & Patel, 2002). Insect larvae typically have
heads derived from several segments including gnatho-
cephalic segments with appendages that function in
feeding. DuringDrosophila embryogenesis, all of these
segments move through the presumptive anterior
opening of the digestive tract to occupy internal pos-
itions, where they elaborate evolutionarily novel struc-
tures. The resulting larva is essentially headless and
also lacks the thoracic limbs characteristic of almost
all insects. By contrast, related developmental events
in Tribolium are much more generalized. Larvae have
typical head and gnathocephalic segments, and bear
thoracic limbs. Because head segments remain in a
linear order, studies in Tribolium will contribute to a
comprehensive understanding of head and, ultimately,
brain development. Tribolium head development is
probably very similar to that in hemimetabolous in-
sects, including grasshoppers, in which brain develop-
ment has been very carefully described (Watson &
Schurmann, 2002), but in which functional ap-
proaches are limited compared with Tribolium.

Advances in cellular, developmental and neuro-
biology are predominantly gained by studies of model
organisms amenable to a range of genetic and bio-
chemical approaches. Many of the intricacies of em-
bryonic patterning have been elucidated by genetic
and molecular studies in Drosophila (for review see
Driever, 1993; Martinez Arias, 1993; Pankratz &
Jäckle, 1993; Sprenger & Nüsslein-Volhard, 1993).
However, many aspects of Drosophila development
are highly derived, and evidence suggests that the
underlying genetic regulation is equally derived.
Comparative studies in several insects have provided
insight into many developmental processes. Tribolium
has figured prominently in these contributions, as
highlighted below.

The establishment of anterior–posterior and dorsal–
ventral coordinates in early embryos is one area in
which Drosophila has been shown to display highly
specialized regulatory mechanisms. Rapid (24 h) em-
bryonic development in Drosophila is facilitated by
the maternal contribution of factors that define the
egg coordinates. However, there is mounting evidence
that the gene encoding the anterior morphogen Bicoid
evolved within the dipteran lineage by gene dupli-
cation and divergence (Brown et al., 2001; Stauber
et al., 2002). In fact, recent analysis indicates that
hunchback and orthodenticle pattern the anterior
region of the Tribolium embryo and might be part
of an ancestral patterning system (Schroder, 2003).
The dorsal–ventral axis in Tribolium appears to be
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patterned by gradients of Toll receptor and Dorsal
protein centered on the ventral midline (Maxton-
Kuchenmeister et al., 1999; Chen et al., 2000), which
regulate twist (Sommer & Tautz, 1994) and deca-
pentaelegic (dpp) (Sanchez-Salazar et al., 1996) ex-
pression, as in Drosophila. However, these gradients
are formed by zygotic regulation of transcription in
Tribolium, implying that the local activation of ma-
ternally supplied Toll receptor and ventrally limited
nuclear localization of Dorsal are derived features of
dorsal–ventral patterning in Drosophila. Expression
of caudal, tailless and forkhead homologs in Tribolium
suggest that posterior, but not anterior, aspects of the
terminal patterning system are conserved (Schulz
et al., 1998; Schroder et al., 2000).

Comparative analysis of segmentation in Tribolium
has shown that gap and pair-rule genes are expressed
in conserved patterns (Sommer & Tautz, 1993; Wolff
et al., 1995; Brown & Denell, 1996) but forward and
reverse genetic approaches suggest that conserved ex-
pression patterns do not always indicate conserved
function. For example, a deletion that removes the
pair-rule gene fushi tarazu does not result in a pair-
rule phenotype in Tribolium (Brown et al., 1994a).
These results emphasize the importance of compara-
tive studies using genetically tractable insects such as
Tribolium. However, it is likely that segment bound-
aries are formed by an ancient mechanism, as evi-
denced by the highly conserved expression patterns of
the segment polarity genes wingless and engrailed
(Nagy & Carroll, 1994; Brown et al., 1994b) as well as
functional studies (Oppenheimer et al., 1999). Genetic
analysis of homeotic mutants in Tribolium provided
the first evidence for a contiguous cluster of Hox
genes (Beeman, 1987), as later observed in ver-
tebrates. Genetic and molecular analysis of Tribolium
homeotic genes and mutants continues to correlate
changes in regulatory gene interactions and morpho-
logical evolution, and shows that some Hox gene
functions in Drosophila are highly specialized for
dipteran-specific adaptation and are not representa-
tive of most taxa (Brown et al., 2000, 2002b ; Lewis
et al., 2000; DeCamillis et al., 2001).

Formation of limb fields requires expression of dpp
in Drosophila but not in Tribolium (Jockusch et al.,
2000). Although several genes required for imaginal
leg development in Drosophila are also expressed in
developing embryonic legs in Tribolium, their relative
expression patterns indicate that there are significant
differences in the genetic regulation of leg develop-
ment (Beermann et al., 2001; Prpic et al., 2001). The
expression patterns observed in Tribolium are similar
to other insects, whereas those in Drosophila are
specialized, perhaps reflecting development from
imaginal discs.

The organization of the central nervous sys-
tem (CNS) is highly conserved in arthropods. In

Drosophila, the segmentation and homeotic genes are
expressed in the developing CNS and are required for
proper neuronal differentiation. InTribolium, segmen-
tation and homeotic genes are also expressed in the
developingCNS in segmentally reiteratedpatterns that
closely resemble those of their Drosophila counter-
parts. Recently, sequence analysis of bacterial artificial
chromosome (BAC) clones containing proneural
genes in Tribolium has provided insight into the evol-
ution of the achaete/scute complex (Wheeler et al.,
2003). Comparison of the function of the single
Tribolium achaete/scute homolog with that of theDro-
sophila proneural ac/sc genes suggests that the Droso-
phila ac/sc genes acquired new developmental roles in
specifying the fate of neural precursors while main-
taining an ancestral function in their formation. Fur-
ther analysis indicates that ventral neurons defective
(vnd), intermediate neurons defective (ind ) and muscle
segment homeobox (msh) are expressed in Tribolium
in patterns largely similar to those of their Drosophila
homologs. However, gaps in the expression of vnd
indicate that some neurons in the Tribolium CNS
must be patterned by different genes (Wheeler et al.,
2003).

3. Many genetic and genomic tools enhance

Tribolium research

Tribolium has been raised for more than four decades
in the laboratory and thrives on a simple diet of wheat
flour supplemented with 5% yeast. It is easily ma-
nipulated, and tolerates crowding and inbreeding. The
generation time is flexible (3–8 weeks, depending on
the rearing temperature), and adults have long repro-
ductive lives. Tribolium eggs are approximately twice
the size of Drosophila eggs, and most protocols de-
veloped for experimental manipulation in Drosophila,
including in situ hybridization and immunohisto-
chemistry, work well in Tribolium. Tribolium lacks
polytene chromosomes but mitotic and meiotic
spreads are easily obtained (Stuart & Mocelin, 1995).
Nine autosomes and X/Y sex chromosomes compose
the chromosomal complement inTribolium castaneum,
and recombination occurs in both sexes.

Among beetles, sophisticated genetic manipulations
are possible only in Tribolium. Genetic screens in
Tribolium have produced a wealth of morphological,
physiological and developmental mutants. At the gen-
etic stock center in Manhattan, Kansas, there are over
300 mutant strains that are easily maintained at room
temperature by subculturing every 3–4 months. Gain-
of-function mutations have been reverted by muta-
genesis to reveal null phenotypes (Stuart et al., 1993;
Brown et al., 2000; Shippy et al., 2000). Mutant alleles
ofhomeoticgenesnotpreviously identifiedbymutation
were identified in screens designed to saturate the re-
gion of the HOMC uncovered by deficiencies (Brown
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et al., 2000). For several regions, chromosomal re-
arrangements have been induced to generate balancer
chromosomes (Beeman et al., 1986), which facilitate
stock maintenance and genetic manipulation.

Tribolium is likely to be an important resource for
genome annotation. Analysis of the recently published
Anopheles genomic sequence indicates that mos-
quito and fly genes are markedly less similar than
expected for two taxa separated for about 200 million
to 250 million years (De Gregorio & Lemaitre, 2002).
Furthermore, when Tribolium,Drosophila and human
sequences are compared, the Tribolium sequences are
often more similar to their human counterparts than
are their Drosophila homologs (D. Tautz, personal
communication; R. Beeman, unpublished). In fact,
some Drosophila gene sequences have diverged to the
point that BLAST analysis of certain honeybee ex-
pressed sequence tags (ESTs) found better matches
among chordates than in Drosophila (Whitfield et al.,
2002). For most of these, Drosophila homologs could
be identified but, in some cases, the Apis coding se-
quences have no match in the Drosophila genome,
indicating that these genes were lost in the Drosophila
lineage. These results indicate that data from other
insect orders will be required to link human genes to
their Drosophila homologs. In fact, the relationship
between the Drosophila zen and human HOX3 genes
was elucidated by comparisons including data from
Schistocerca and Tribolium (Falciani et al., 1996).
More recently, in a chromosomal walk to clone sev-
eral Tribolium genes positionally, we identified the
insect ortholog of a human muscular dystrophy gene
that was not identified by direct comparison with
Drosophila sequence (R. Beeman, unpublished). Thus,
analysis of the Tribolium genome will provide in-
formative comparisons for the identification of insect
homologs of human genes. Moreover, Tribolium is the
most efficient system in which to perform functional
analysis of those genes lost in the Drosophila lineage
but conserved in other insects.

We have developed several genetic tools that will
allow the new sequence information to be used effec-
tively. Tools for reverse genetic analysis in Tribolium
include RNA interference and transformation. Ma-
ternal and/or zygotic mRNAs can be depleted in Tri-
bolium by injecting double-stranded RNA into the
abdomen of female pupae (Bucher et al., 2002) or
freshly laid eggs (0–2 h old) (Brown et al., 1999).
Thus, Tribolium is well suited to high-throughput
genome-wide RNA interference screens, as in Caeno-
rhabditis elegans (Maeda et al., 2001; Kamath et al.,
2003). Such screens will identify embryonic and ma-
ternal genes, as well as genes with functions relevant
to basic cell biology that produce phenotypes affect-
ing oogenesis.

Using the piggyBac vector and eye-specific trans-
formation markers, it is now possible to introduce

DNA into the Tribolium genome (Berghammer et al.,
1999; Lorenzen et al., 2002, 2003). Several researchers
are designing vector constructs to induce tissue- and
stage-specific expression of introduced genes and
double-stranded RNA constructs. In addition, several
labs are preparing to perform genome-wide screens
using transposon-mediated mutagenesis.

The Tribolium genome is approximately 0.2 pg or
200 Mb, based on hybridization kinetics (Cot analy-
sis) (Brown et al., 1990) and microdensitometric
quantitation of Feulgen-stained spermatids (Alvarez-
fuster et al., 1991). Unique sequences compose more
than 60% of the genome and repetitive DNA displays
a long-period interspersion pattern. Several satellite
DNA sequences have been identified that are con-
served between Tribolium species (Juan et al., 1993)
and are clustered in putative centromeric regions
(Plohl et al., 1993). A strain of T. castaneum that had
been inbred by single-pair matings of full siblings for
20 consecutive generations (S. Thomson, University
of Wisconsin, Parkside, unpublished) was the source
of DNA for construction of BAC libraries, as well as
molecular and physical maps. This strain is currently
maintained in several laboratories in the USA and
will be used as the source of DNA for whole genome
shotgun sequencing.

The linkage groups of the original recombination
map were identified by morphological mutations,
whereas physiological and biochemical markers have
since been added. A higher resolution recombination
map based on molecular markers is under construc-
tion. This map contains over 400 markers from BAC
end sequences, ESTs and developmentally important
genes identified by individual researchers. In addition,
we are constructing a physical map based on HindIII
digests of the more than 27,000 clones in a BAC li-
brary (Exelixis Pharmaceutical, South San Francisco).
The molecular and physical maps will be integrated
by includingBAC end sequences in themolecularmap.
Together, these resources provide a high-resolution
scaffold on which to assemble the genome sequence.
Several BACs sequenced by shotgun methods were
assembled with no difficulty (Brown et al., 2002a ;
Wheeler et al., 2003).

It will be a major undertaking to annotate the Tri-
bolium genome sequence. There are several programs
available to automate most of the process, and we
have several sources of cDNA sequence data available
to train a gene-finding model specifically for Tribo-
lium. Researchers at Exelixis Pharmaceutical have
sequenced more than 8800 ESTs derived from adult
tissue and assembled them into more than 4600 con-
tigs. More than 2000 additional ESTs from embry-
onic tissue have been sequenced and assembled into a
minimum of 586 non-redundant clones (D. Tautz,
personal communication). In addition, cDNAs from
developmental studies by individual researchers are
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also available for annotation purposes. It is likely that
a significant amount of annotation will be facilitated
by comparison with other insect genomes. In ad-
dition, the sequence of the Tribolium castaneum
mitochondrial genome has recently been published
(Friedrich & Muqim, 2003). Clearly, the rationale to
sequence the Tribolium genome is strongly supported
by the plethora of genomic resources already avail-
able to facilitate the assembly and analysis of the
Tribolium genome sequence. To make this infor-
mation available to the scientific research community,
we are constructing a Tribolium genomic database,
Beetlebase, that will integrate genetic, genomic and
biological data as it becomes available.

We thank members of the Tribolium research community,
including D. Tautz, M. Klingler, R. Schröder, S. Roth and
E. Wimmer, for contributions to the original version of this
review, which was submitted to the NHGRI to support se-
quencing the Tribolium genome. Work to develop Tribolium
as a genetic model organism is supported by the National
Institutes of Health, the National Science Foundation, the
US Department of Agriculture and the Human Frontier
Science Program. All programs and services of the US
Department of Agriculture are offered on a nondiscrimi-
natory basis, without regard to race, color, national origin,
religion, sex, age, marital status or handicap.
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