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Three methods are evaluated to estimate the streamwise velocity fluctuations of
a zero-pressure-gradient turbulent boundary layer of momentum-thickness-based
Reynolds number up to Reθ ' 8200, using as input velocity fluctuations at different
wall-normal positions. A system identification approach is considered where large-eddy
simulation data are used to build single and multiple-input linear and nonlinear
transfer functions. Such transfer functions are then treated as convolution kernels and
may be used as models for the prediction of the fluctuations. Good agreement between
predicted and reference data is observed when the streamwise velocity in the near-wall
region is estimated from fluctuations in the outer region. Both the unsteady behaviour
of the fluctuations and the spectral content of the data are properly predicted. It
is shown that approximately 45 % of the energy in the near-wall peak is linearly
correlated with the outer-layer structures, for the reference case Reθ = 4430. These
identified transfer functions allow insight into the causality between the different
wall-normal locations in a turbulent boundary layer along with an estimation of the
tilting angle of the large-scale structures. Differences in accuracy of the methods
(single- and multiple-input linear and nonlinear) are assessed by evaluating the
coherence of the structures between wall-normally separated positions. It is shown that
the large-scale fluctuations are coherent between the outer and inner layers, by means
of an interactions which strengthens with increasing Reynolds number, whereas the
finer-scale fluctuations are only coherent within the near-wall region. This enables the
possibility of considering the wall-shear stress as an input measurement, which would
more easily allow the implementation of these methods in experimental applications.
A parametric study was also performed by evaluating the effect of the Reynolds
number, wall-normal positions and input quantities considered in the model. Since
the methods vary in terms of their complexity for implementation, computational
expense and accuracy, the technique of choice will depend on the application under
consideration. We also assessed the possibility of designing and testing the models
at different Reynolds numbers, where it is shown that the prediction of the near-wall
peak from wall-shear-stress measurements is practically unaffected even for a one
order of magnitude change in the corresponding Reynolds number of the design
and test, indicating that the interaction between the near-wall peak fluctuations and
the wall is approximately Reynolds-number independent. Furthermore, given the
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performance of such methods in the prediction of flow features in turbulent boundary
layers, they have a good potential for implementation in experiments and realistic flow
control applications, where the prediction of the near-wall peak led to correlations
above 0.80 when wall-shear stress was used in a multiple-input or nonlinear scheme.
Errors of the order of 20 % were also observed in the determination of the near-wall
spectral peak, depending on the employed method.

Key words: turbulence modelling, turbulent boundary layers

1. Introduction
Turbulent boundary layers account for up to 50 % of the drag and therefore

fuel consumption of modern aircraft (Schrauf 2005). Turbulent flows also lead to
enhanced exchange processes, such as mixing and heat transfer, present, for instance,
in large-scale meteorological phenomena. Such characteristics have consequently
led to efforts concerning a better understanding of the dynamics of these flows,
both in terms of predictive models and their use to control the fluctuations on the
near-wall region, where the highest values of shear and turbulent production are
present (Marusic, Mathis & Hutchins 2010).

Given their practical importance, several studies have aimed over the last decades
at achieving a deeper understanding of the turbulent structures in the near-wall region
of wall-bounded flows. The current understanding of the flow behaviour in this region
involves a self-sustained turbulence regeneration cycle (Waleffe 1995, 1997; Jiménez
& Pinelli 1999; Panton 2001; Moehlis, Faisst & Eckhardt 2004). Coherent turbulent
structures comprise a hierarchical ordering along the wall-normal direction (Flores
& Jiménez 2010; Jiménez 2012, 2013) and exhibit long life times in the streamwise
direction, as can be recognized from works of Favre, Gaviglio & Dumas (1967),
Blackwelder & Kovasznay (1972), Wark & Nagib (1991), Kim & Adrian (1999)
and Hutchins & Marusic (2007). Moreover, large-scale turbulent structures make a
significant contribution to the turbulent kinetic energy and Reynolds stresses in the
outer layer (Komminaho, Lundbladh & Johansson 1996; Guala, Hommema & Adrian
2006) and have been recently shown to imprint their presence in the near-wall region
(Hoyas & Jiménez 2006), an effect modelled via an amplitude modulation (Mathis,
Hutchins & Marusic 2009; Marusic et al. 2010; Schlatter & Örlü 2010; Bernardini
& Pirozzoli 2011; Vinuesa et al. 2015; Dogan et al. 2019).

Approaches based on the linearization of the Navier–Stokes operator have been
recently shown to enable the extraction of some of the features of these large-scale
structures; in such methods the equations are linearized around the mean turbulent
flow (as opposed to the linearization around a laminar base flow, as is the case for
transitional problems). This could be considered analogously to the laminar base
flow (Crighton & Gaster 1976) of the most usual analysis of transitional cases. Of
particular importance was the realization that even stable flows may exhibit strong
transient amplifications, which are related to the non-normality of the Navier–Stokes
operator (Trefethen et al. 1993; Farrell & Ioannou 1996; Schmid & Henningson
2012). The transient growth analysis has also been used to study turbulent flows, as
in the studies by del Álamo & Jiménez (2006) and Pujals et al. (2009) in channels
and Cossu, Pujals & Depardon (2009) in boundary layers, all of which deal with a
linearization of the equations around the turbulent mean profile.
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710 K. Sasaki and others

In related works, but using a different strategy, these large-scale structures have
been studied by means of a resolvent-based method (Hwang & Cossu 2010; McKeon
& Sharma 2010; McKeon, Sharma & Jacobi 2013; McKeon 2017). The basic
idea consists of performing a Reynolds decomposition and replacing the nonlinear
fluctuation terms of the Navier–Stokes equations by a forcing to the linear operator.
Doing so, the nonlinear forcing is treated as an unknown, and the most amplified flow
responses to such forcings are sought. The resolvent operator is then used to extract
information from the flow and it has been shown to reproduce relevant features, such
as the spectral proper orthogonal decomposition (SPOD) modes of the streamwise
velocity fluctuations of a turbulent boundary layer over and airfoil and in a turbulent
free jet (Abreu, Cavalieri & Wolf 2017; Towne, Schmidt & Colonius 2018).

The works cited above focus on frequency-domain characteristics of the flow.
The model of Marusic and co-workers (Mathis et al. 2009; Marusic et al. 2010;
Mathis, Hutchins & Marusic 2011) treats the interaction among different wall-normal
directions as an amplitude modulation, and is able to predict with compelling
agreement the statistics of the fluctuations in the near-wall region from measurements
in the logarithmic layer. This model is, however, unable to accurately capture the
instantaneous flow field, one of the necessary ingredients for flow control applications.
Examples of models which are able to do such time-domain, instantaneous predictions
may be found in the recent works of Baars, Hutchins & Marusic (2016) and
Illingworth, Monty & Marusic (2018), which make use of spectral stochastic
estimation and linear estimation via a state observer, respectively, to obtain time-
domain predictions for the large-scale structures in a turbulent boundary layer.

In this work we propose to follow a somewhat different strategy based on the cross-
spectral density between various wall-normal separated positions. This approach allows
us to obtain linear and nonlinear frequency response functions which, when inversed
Fourier transformed, lead to convolution kernels; these will be referred to as transfer
functions (TFs). This method has already been used by this group to model a high-
Reynolds-number turbulent jet (Sasaki et al. 2017) and as a reduced-order model for
control of transitional flows (Sasaki et al. 2018a,b). All these previous studies have
led to very satisfactory results.

Since the proposed method, when applied to a boundary layer, relies uniquely
on the temporal and spanwise data, it allows a considerable flexibility in terms of
the definition of inputs and outputs, both in terms of wall-normal positions and
quantities to be estimated. One interesting feature that is explored in this study is
the use of measurements at the wall to estimate the flow at higher wall-normal
locations, which could have direct implications for experimental implementations.
‘Off-design’ evaluations, where the models are constructed and tested at different
Reynolds numbers, are also explored here. The possibility to apply the methods
at much higher Reynolds numbers, reducing the number of measurements to be
conducted, is expected to have a significant appeal to experimental and practical
applications.

Finally, the formalism written in terms of transfer functions permits to extract
the relationship that exists between the different inputs and outputs of the system,
allowing to obtain the footprint of the large-scale outer-region wall structures on the
near-wall region.

The database under study is the highly resolved and well-validated large-eddy
simulation (LES) zero-pressure-gradient (ZPG) turbulent boundary layer (TBL) by
Eitel-Amor, Örlü & Schlatter (2014), where the highest available Reynolds number
based on the momentum thickness is Reθ = 8300.
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This article is organized as follows: in § 2 the LES database is presented, § 3
presents the calculated coherence for different wall-normal positions and justifies
the application of linear methods to this flow. The linear and nonlinear transfer
functions under consideration are presented in § 4 whereas the results and analysis
are discussed in § 5, along with a comparison of the different methods. The off-design
and robustness analysis are performed in § 6 and a comparison with other methods
available in the literature is given in § 7. The conclusions of the study are presented
in § 8. Finally, the appendices present details of the frequency-domain tools used
in this work, namely the ensemble averaging for the calculation of spectra and the
spectral conditioning for the decorrelation of inputs.

2. Description of the numerical database

The set-up of the LES by Eitel-Amor et al. (2014) corresponds to a flat plate where
a statistically two-dimensional ZPG TBL, with density ρ, viscosity ν and free-stream
velocity U∞ develops along the streamwise direction. The dimensions of the domain
are Lx × Ly × Lz = 13 500 × 400 × 540 in the streamwise, wall-normal and spanwise
directions, where non-dimensionalization with the displacement thickness at the inlet
δ∗0 is considered. Here we employ a Reynolds decomposition of the velocity field into
a spanwise and temporal average U(x, y) and the fluctuating velocities, u(x, y, z, t),
v(x, y, z, t) and w(x, y, z, t). The outer velocity scale is U∞, and the outer length
scale is δ99, i.e. the wall-normal position where the mean velocity U(x, y) reaches
99 % of U∞. The Reynolds number Reθ = U∞θ/ν is then defined in terms of the
momentum thickness θ . The inner scale is based on the friction velocity uτ =

√
τw/ρ,

which is obtained from the mean shear stress at the wall, τw and the inner length
scale is the viscous length l∗= ν/uτ . Inner scaling will be denoted by the superscript
+. The friction Reynolds number is then defined as Reτ = uτδ99/ν.

Following a procedure similar to that in wind-tunnel experiments, laminar flow
enters the domain and is then forced to transition via a tripping (see Schlatter &
Örlü (2012) for a complete description of the method). The flow is tripped close to
the leading edge, at Reθ = 180, where the tripping is more efficient. Transition to
turbulence is considered to be complete at Reθ > 600, as shown in Eitel-Amor et al.
(2014). The highest Reynolds number to be considered in this work is of Reθ = 8200,
located upstream of the end of the computational domain in order to avoid outflow
effects.

This study will focus on the data at the streamwise position corresponding to Reθ =
4430 (Reτ = 1324), however the cases corresponding to Reθ = 2240 (Reτ = 704) and
Reθ = 8200 (Reτ = 2370) will also be analysed in order to evaluate the effect of the
Reynolds number in the predictions and to perform the off-design studies.

The number of collocation points employed in the simulation is 13 824 × 513 ×
1152 in the streamwise, wall-normal and spanwise directions. As shown by Eitel-Amor
et al. (2014) this resolution corresponds to a very finely resolved LES, in excellent
agreement with DNS studies of ZPG TBL. The spectral code SIMSON (Chevalier,
Lundbladh & Henningson 2007) is used for this simulation, and was previously used
in a number of studies by this group (Schlatter et al. 2009; Schlatter & Örlü 2010).

A total of 19 410 time samples is used, with a spacing in time of 1t+= 0.5, which
is appropriate for convergence of the statistics and is also adequate to correctly resolve
the near-wall (which corresponds to a period λ+t ≈ 100) and outer (λt ≈ 10δ99) peaks.
The first half of the time samples is used to design the modelling methodologies and
the other half to test them. The spanwise discretization results in 768 points separated
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FIGURE 1. (Colour online) Inner-scaled mean velocity profiles for the four Reynolds
numbers evaluated in the current study. Regions I, II, III and IV represent the viscous
sublayer (y+ / 7), buffer (7 / y+ / 30) and logarithmic layers (30 / y+ / 220) and wake
region (220 / y+ until the edge of the boundary layer, for the Reθ = 8200 case). The
pink dashed lines correspond to the linear (U+ = y+) and logarithmic profiles (U+ =
1/κlog(y+)+ B, where κ = 0.41 and B= 5.1), respectively. The upper limit of the outer
region corresponds to the Reθ = 8200 case, extending until the edge of the boundary layer.

by 1z+ = 12, which is appropriate to capture the near-wall (with a typical spanwise
wavelength λ+z ≈ 100) and outer (λz≈ δ99) structures. For further details concerning the
convergence of statistics of this simulation the reader is referred to Eitel-Amor et al.
(2014).

3. Pre-multiplied spectra and coherence
Prior to the construction of the transfer functions, an evaluation of the behaviour

of the two-dimensional spectra and the coherence between sets of positions separated
along the wall-normal direction was performed. The objective of such assessment was
to evaluate the suitability of models for the prediction.

The focus will be on three locations in the wall-normal direction, y+ = 15, 50 and
100, which correspond to positions in the near-wall region, just outside the buffer
layer and representative of the logarithmic region, respectively. This may be observed
in figure 1 which shows the mean flow profile, scaled in inner units, for the four
Reynolds numbers evaluated in this work. Regions I, II, III and IV represent the
viscous sublayer, buffer and logarithmic layers and wake region, respectively. The
linear and logarithmic profiles are shown to better highlight the behaviour of the mean
velocity profile; the inner and outer regions (the latter shown for Reθ = 8200) are also
shown on the upper part of the plot.

The inner-scaled, two-dimensional, pre-multiplied spectrum is defined as Euuωβ/u2
τ ,

where Euu=〈
ˆ̂u ˆ̂u∗〉, with the double hat representing the double Fourier transform of u

in the spanwise direction and time, the brackets 〈〉 denote an ensemble averaging as
defined in appendix A, ∗ defines the complex conjugate, ω and β are the frequency
and spanwise wavenumbers and λ+t = 2π/ω, λ+z = 2π/β, given in inner units. Spectra
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FIGURE 2. (Colour online) Behaviour of the streamwise velocity fluctuations and inner-
scaled pre-multiplied two-dimensional spectra at different wall-normal positions for Reθ =
4430. The crosses correspond to reference locations for the inner ((λ+t , λ

+

z )≈ (100, 100))
and outer peaks ((λt, λz) ≈ (10δ99/U∞, δ99), (λ+t , λ

+

z ) ≈ (1400, 1300)). The limits of the
colour bar were kept the same between different plots to highlight the different amplitudes.
(a) Instantaneous streamwise velocity fluctuations at y+= 15. (b) Pre-multiplied spectra at
y+ = 15. (c) Instantaneous streamwise velocity fluctuations at y+ = 50. (d) Pre-multiplied
spectra at y+= 50. (e) Instantaneous streamwise velocity fluctuations at y+= 100. ( f ) Pre-
multiplied spectra at y+ = 100.

have been averaged using Welch’s method, using segments with 256 snapshots with
75 % overlap and a time discretization 1t+ = 0.5, with a triangular window leading
to a frequency resolution of 1ω+ = 0.05. Figure 2 shows the time signal and pre-
multiplied spectra of the streamwise velocity fluctuation at three locations, y+= 15, 50
and 100, for the Reθ = 4430, (corresponding to Reτ = 1324), case. Velocity fluctuations
are normalized using the friction velocity uτ in the results shown in figure 2, and also
for all time series presented later in the paper.
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The dominant spanwise wavelength of the fluctuations grows as one moves further
in the wall-normal direction, which leads to a wider scale separation between the
large-scale streaks in the outer region and the near-wall streaks, a feature which may
be observed in the two-dimensional pre-multiplied spectra of figure 2. For y+ = 15,
representative of the buffer layer, the classical near-wall streaks with spacing λ+z ≈ 100
are observed, with a characteristic time λ+t ≈ 100. In the outer region a secondary
peak, which scales in outer units, is observed with characteristic scales λz ≈ δ99 and
λt ≈ 10δ99/U∞. In order to extract the relation between near-wall and outer positions,
the coherence between two sets of synchronized signals separated in the wall-normal
direction was computed using time series of the streamwise velocity fluctuation. For
a statistically two-dimensional ZPG TBL, which is homogeneous in the spanwise
direction, we define:

γ 2(yin, yout, ω, β)=
|〈ˆ̂u(yin, ω, β) ˆ̂u∗(yout, ω, β)〉|

2

〈| ˆ̂u(yin, ω, β)|2〉〈| ˆ̂u(yout, ω, β)|2〉
, (3.1)

where yin, yout correspond to the wall-normal position of the input/output pair of time
series that are considered in the analysis. The coherence is a quantity analogous to the
correlation, but defined in the frequency domain (here also in wavenumber domain,
taking advantage of homogeneity of the spanwise coordinate) and it represents a
metric of linear behaviour between two signals, for a given (ω, β) pair. Its value is
normalized between zero and one, where the former indicates a complete random
behaviour and the latter an exact linear relation between the two signals (namely
an amplitude change and a phase shift). Linear, time and span invariant models
with single input and single output lead to unit coherence between input and output
(Bendat & Piersol 2011); hence, coherence values close to one suggest the possibility
of modelling the observed behaviour with a linear model.

The objective that we will pursue in the next sections is to predict the behaviour
of the fluctuations in the near-wall region, such that the output position will be fixed
at y+ = 15, where a clear peak is observed in the pre-multiplied spectra shown in
figure 2. Sample inputs are chosen at y+=50 and 100, where the larger scales become
prominent and in a third case using the wall-shear stress. The objective of the latter
is to capture the finer-scale motions close to the wall.

Figure 3 shows the coherence for three pairs of positions. It is noticeable that
for the higher wall-normal positions the long spanwise wavelengths are coherent.
This observation is related to the wall footprint of large-scale motions that are
attached to the wall, as in Marusic et al. (2010). We see that larger-scale structures
at outer positions have a significant footprint at the buffer layer, with coherences
ranging between 0.6 and 0.9 for wavelengths and periods corresponding to the outer
peak. However, the near-wall peak (λ+z , λ

+

t = 100, 100) is seen to be incoherent
with outer-layer disturbances. In turn, the coherence using wall-shear stress as
input exhibits values close to unity at the lower wavelengths, corresponding to the
near-wall peak in the pre-multiplied spectra of figure 2; this indicates that shear-stress
fluctuations may be an interesting candidate as an input measurement for prediction
of buffer-layer fluctuations (Örlü & Schlatter 2011).

In order to better assess the behaviour of the coherence and its relation to the peak
in the two-dimensional spectra, figure 4 presents the one-dimensional pre-multiplied
temporal spectrum (E1D

uu ω/u
2
τ ) as a function of the wall-normal direction overlaid on

the one-dimensional coherence,

γ 2
1D(yin, yout, ω)=

|〈ˆ̂u(yin, ω) ˆ̂u∗(yout, ω)〉|
2

〈| ˆ̂u(yin, ω)|2〉〈| ˆ̂u(yout, ω)|2〉
, (3.2)
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FIGURE 3. (Colour online) Coherence between two positions separated in the wall-normal
direction, for Reθ = 4430. The crosses correspond to reference locations for the inner
((λ+t , λ

+

z ) ≈ (100, 100)) and outer peaks ((λt, λz) ≈ (10δ99/U∞, δ99), (λ+t , λ
+

z ) ≈
(1400, 1300)). (a) Coherence between streamwise velocity fluctuations at y+ = 50 and 15.
(b) Coherence between streamwise velocity fluctuations y+ = 100 and 15. (c) Coherence
between wall-shear stress and streamwise velocity fluctuations at y+ = 15.

which is calculated between a pair of positions at the same spanwise location, one
is at a fixed wall-normal location and the other one is moved. The reference input
position is in the viscous sublayer, i.e. at y+in = 5 and two Reynolds numbers were
considered, Reθ = 4430 (Reτ = 1324) and 8200 (Reτ = 2370). For both cases it is
noticeable that the larger scales exhibit significant values of coherence with the near-
wall region, illustrating the fact that the largest scales are indeed attached to the wall.
It is also observed that, as the Reynolds number is increased, the larger scales remain
coherent with the near-wall region until much further away from the wall, including
the outer spectral peak. Wall-normal positions up to y+ ≈ 500 continue to exhibit
coherence levels of 0.4 with the near wall indicating that the footprint of such large
scales is clearly present for the Reθ = 8200 case. This enables the use of data in
the outer region to predict specific flow features close to the wall. As for the finer
scales, they present high levels of coherence only close to the wall, which permits the
use of local wall-shear-stress data or even universal signals to predict the inner-peak
behaviour.

The high values of coherence reported here motivate the use of predictive techniques
for application in the turbulent zero-pressure-gradient boundary layer. Through this
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FIGURE 4. (Colour online) One-dimensional coherence (solid lines) overlaid on the one-
dimensional pre-multiplied temporal spectrum as a function of the wall-normal direction
for Reθ = 4430 and 8200. Coherence levels of 0.4 until 0.9 are highlighted.

paper, such models will be defined in terms of linear and nonlinear transfer functions,
which will be introduced in the next section.

Other studies using different methodologies, and based on experimental databases
(Marusic et al. 2010; Baars et al. 2016), perform analyses up to Reτ = 19 000
and observe that the footprint of the larger scales on the near-wall region remains.
Particularly, the work of Baars et al. (2016) shows quantitative results based on the
one-dimensional (1-D) coherence spectrum up to Reτ = 13 300. These works supply
evidence that the assumptions of the modelling methodologies herein developed would
remain valid at considerably higher Reynolds numbers. Nevertheless, the footprint of
the larger scales over the near-wall region and corresponding high coherence values
are necessary ingredients for the use of the methods outlined in this work.

4. Linear and nonlinear transfer functions
4.1. Single-input linear transfer function

The basic supporting idea for the different identification methods that will be
considered in this study is that there exists a function f (I(z, t)) that maps the relation
between two wall-normal positions in the TBL, namely I(z, t) and O(z, t). These two
sets of data, taken along the spanwise direction and time, will be referred to as the
input and output of the system, respectively. A qualitative description of such relation
may be given in terms of the block diagram shown in figure 5. It should be noted
that no restrictions have been made regarding the variables to be considered or the
linearity of the function f .

The methods therefore assume the availability of spanwise- and time-resolved
measurements, which are available in a numerical simulation but could be more
difficult to obtain experimentally. Such turbulence measurements above the wall
would require the use of time-resolved particle image velocimetry (PIV), such as
in the work of Cuvier et al. (2017). An alternative is to employ wall-shear stress
sensors, as performed in closed-loop applications, such as in Lundell (2007).

The assumption in this section will be that there is a linear relationship between the
two sets of measurements, such that the output may be predicted by means of a double
convolution (along time and the spanwise direction) between the input measurement
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I(z, t)
f(I (z, t))

O(z, t)

FIGURE 5. Block diagram describing the relationship between the input and output signals
within the TBL.

and a kernel,

O(z, t)=
∫ zmax/2

−zmax/2

∫
∞

−∞

gIO(ζ , τ )I(z− ζ , t− τ) dζ dτ , (4.1)

which can be written in short as,

O(z, t)= gIO(z, t)⊗ I(z, t), (4.2)

where ⊗ represents the double convolution. Here gIO(ζ , τ ) is the convolution kernel,
which, in accordance with the common nomenclature of the field, will be referred to
as a transfer function in the remaining of this paper. The dummy variables (ζ , τ ),
which are analogous to (z, t), were introduced for the calculation of the convolution.
In order to obtain gIO(ζ , τ ), the problem is formulated in the frequency/spanwise
wavenumber space, where the optimal frequency response, in the least squares sense,
may be defined from the auto- and cross-spectra of the input and output signals
(Bendat & Piersol 2011; Sasaki et al. 2017, 2018a):

GIO(β, ω)=
SIO(β, ω)

SII(β, ω)
, (4.3)

where SII and SIO are the auto- and cross-spectra of the input and output, respectively.

These quantities are calculated from the expected values of ˆ̂I(β, ω)ˆ̂I∗(β, ω) and
ˆ̂I(β, ω) ˆ̂O∗(β, ω), obtained from an ensemble averaging. The details of the method
are outlined in appendix A. It should be noted that since the spanwise direction is
periodic in the simulation, the ensemble averaging along this direction corresponds
directly to the Fourier transform from z to β. Equation (4.3) is referred to as the H1
estimator of the system (Rocklin, Crowley & Vold 1985), and it minimizes the error
due to measurement noise in the output. Other formulations, such as the H2 or Hν

estimators, exhibit different performances in terms of sensor noise minimization. They
are, however, expected to perform equally well for this type of estimation, which
does not consider the presence of measurement uncertainties.

One interesting property of the H1 estimator is that it leads to a prediction error
which is linearly uncorrelated with the input (Rocklin et al. 1985; Bendat 1993).
Consider the input/output relationship, given in the frequency–wavenumber domain,

ˆ̂O(β, ω)= ˆ̂G(β, ω)ˆ̂I(β, ω)+ ε(β, ω), (4.4)

where ε will represent the error of the linear estimator. Post-multiplying equation (4.4)
by the conjugate transpose of the input and taking the expected values, we obtain

SIO(β, ω)=
ˆ̂G(β, ω)SII(β, ω)+ Sε,I(β, ω). (4.5)
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I1(z, t)
f1(I1(z, t))

O(z, t)I2(z, t)
f2(I2(z, t))

I3(z, t)
f3(I3(z, t))

Í

FIGURE 6. Block diagram describing the relationship between the multiple inputs and
output of a system.

Inserting the H1 estimator of (4.3) leads to Sε,x(β, ω) = 0. Remaining correlated
errors are related either to measurement noise, which can be considered negligible
in this problem, or spectral leakage (Schoukens, Rolain & Pintelon 1997), which is
minimized by use of long time series.

Performing an inverse Fourier transform of GIO as:

gIO(z, t)=
∫
+∞

−∞

∫
+βn

−βn

GIO(β, ω)eiβζe−iωτ dβ dω, (4.6)

where ±βn represent the spanwise Nyquist wavenumbers calculated based on the
spanwise discretization, leads to gIO(ζ , τ ). This represents an empirical, linear,
time-domain transfer function, which can be used to estimate the evolution of the
fields separated in the wall-normal direction.

4.2. Multiple-input linear transfer function
In this section the construction of a model with multiple inputs will be introduced.
This method applies to problems where multiple time series are available to be
used in the estimation of the output. A qualitative schematic of the estimation is
shown in the block diagram of figure 6. In this figure a system with three inputs
is considered, however the extension to any number of inputs is straightforward.
The linear hypothesis is inherent to this formulation since the output is assumed to
be determined directly from the superposition of the contributions from each input,
Ii(z, t), via the function fi(Ii(z, t)), which is estimated in terms of a convolution kernel,
gIiO. The estimation of the output is therefore obtained as follows:

O(z, t)=
n∑

i=1

Ii(z, t)⊗ gIiO(z, t). (4.7)

As in the case of the single-input problem, the transfer functions are found in the
(ω, β) space and then inverse Fourier transformed to the physical domain. For a
system with n inputs, the transfer functions are obtained from the solution of the linear
system:

SI1O(β, ω)

SI2O(β, ω)
...

SInO(β, ω)

=


SI1I1(β, ω) SI1I2(β, ω) . . . SI1In(β, ω)

SI2I1(β, ω) SI2I2(β, ω) . . . SI2In(β, ω)
...

...
. . .

...

SInI1(β, ω) SInI2(β, ω) . . . SInIn(β, ω)




GI1O(β, ω)

GI2O(β, ω)
...

GInO(β, ω)

 , (4.8)
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which is performed for each frequency independently. The terms SIiO define the
cross-spectral density between the inputs and output, whereas SIiIj are the auto-spectral
density of the inputs, when i= j, or the cross-spectral density between different inputs,
when i 6= j. The auto- and cross-spectral densities are also calculated by means of
ensemble averaging, as described in appendix A.

Note that it could also be advantageous to deal with incoherent inputs, such that
SIiIj = 0 if i 6= j, and only the diagonal terms in (4.8) remain. If the inputs are
not correlated, each multiple-input–single-output (MISO) transfer function can be
calculated directly as per (4.3), GIiO = SIiO/SIiIi , without the need to solve the matrix
problem in (4.8). In order to decorrelate the inputs, the spectral conditioning technique
(Bendat & Piersol 2011) may be used. This has been used in all multiple-input cases
studied here and the technique to do so is outlined in appendix B.

Each transfer function has to be inverse Fourier transformed, as per (4.6), in order
to perform the estimation via the sum of convolutions in (4.7).

4.3. Nonlinear transfer function
Now we introduce the concept of nonlinear spectral analysis, via the use of nonlinear
transfer functions, to the prediction of the interaction between the input and output
signals. One of the few uses of nonlinear estimation methods in fluid mechanics
may be found in the work of Naguib, Wark & Juckenhöfel (2001), who made use
of stochastic estimation using nonlinear flow sources. On the other hand, nonlinear
spectral analysis has been applied in previous works by means of a Volterra series to
the derivation of nonlinear output frequency responses, with the objective of deriving
properties of nonlinear systems (Guillaume, Pintelon & Schoukens 1992; Lang &
Billings 1996; Peng, Lang & Billings 2007). This technique assumes the expansion
of the data into a power series, using an N-integral kernel, leading to higher-order
spectra. It presents drawbacks related both to the prohibiting computational demand,
which limits the size of the system, and the large errors which can only be avoided
with very large amounts of data.

Here we will follow a somewhat different strategy, by considering a priori the
existence of a nonlinear model between the defined input and output of the system and
working on determining such model. The exact shape of the nonlinearities is unknown
and they are sought with the objective of reproducing the observed behaviour. This
method is thoroughly discussed in the works of Rice & Fitzpatrick (1988, 1991) and
Bendat (1993), for time-dependent problems; in this study we extend the same ideas
to application in a boundary layer with periodicity in the spanwise direction.

The nonlinear transfer-function technique considered here consists in replacing
a single-input nonlinear system by a multiple-input linear system, where the
linear identification techniques of the previous section may be applied. Consider
a finite-memory, single-input–single-output nonlinear function g(·), which acts on
I(z, t), mapping it into the output O(z, t):

O(z, t)= g(I(z, t)), (4.9)

as shown schematically in the block diagram of figure 7. Such nonlinear system may
be represented by a superposition of linear and nonlinear operations performed on the
input, as given by:

O(z, t)=
NTF∑
i=1

gi(I(z, t)), (4.10)
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g(I(z, t))
I(z, t) O(z, t)

FIGURE 7. Block diagram corresponding to the nonlinear operation applied to I(z, t).

g1(I) h1(I) A1(I¡1)
I¡1

I¡2

I¡3

A1(I¡1)

A2(I¡2)

A2(I¡2)

A3(I¡3)

A3(I¡3)

h2(I)

h3(I)

g2(I)

g3(I)

I(z, t) I(z, t)

I¡1(z, t)

I¡2(z, t)

I¡3(z, t)

O(z, t)

(a) (b)

(c)

O(z, t)

O(z, t)
ÍÍ

Í

FIGURE 8. Summary of steps to transform a single-input nonlinear problem into a
multiple-input linear system. (a) Nonlinear function is replaced by a sum of operations. (b)
Each nonlinear function is broken into linear and nonlinear contributions. (c) The nonlinear
operations are treated as known and the system is converted into the more usual MISO
problem.

where gi represents an operation performed on the signal I(z, t) and NTF is the
number of transfer functions considered. Each one of the nonlinear operators gi is
now replaced by a nonlinear operator hi and a linear operator Ai, such that:

gi(I(z, t))= Ai(hi(I(z, t))). (4.11)

We now define the signal Ĩi(O, t), as the result of the nonlinear operation hi applied
to I(O, t). If all nonlinearities are encapsulated in the operators hi, the resulting
system may now be treated as having inputs Ĩi(O, t) and output O(z, t), such
that linear frequency-domain techniques are applied to the determination of the
convolution kernels Ai, in the same manner as derived in the previous section, for
a multiple-input–single-output (MISO) problem. Figure 8 illustrates the steps in
obtaining this new system on a sample case where three functions were considered
in the determination of the output. Note that the extension to any number of input
functions is straightforward.

It should also be noted that when the exact shape of the nonlinearities is unknown,
as will be the case here, the usual strategy is to deal with polynomial-like functions,
with a degree sought such that a given performance is achieved; hence the method
becomes more data driven than the previous approaches.
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FIGURE 9. (Colour online) Comparison between LES data and estimated field, (a,b),
for Reθ = 4430. The transfer function is shown in (c) and the error in the prediction
(OLES−Oest) in (d). In this case, y+in= 50 and y+out = 15 and the prediction was made with
the linear transfer function. (a) Instantaneous streamwise velocity fluctuation u+ from the
original LES dataset. (b) Instantaneous streamwise velocity fluctuation estimated via the
linear transfer function approach from a measurement at y+in = 50. (c) Transfer function
between input and output positions written in the spanwise and time coordinates. Dashed
line highlights the zero time delay. (d) Residual from the single-input–single-output (SISO)
linear prediction, u+LES − u+est.

5. Results
Through this section the three methods for identification of the time/spanwise

behaviour of the velocity fluctuations will be applied to the turbulent boundary layer
of § 2. We will start with the simpler linear TF, then consider the case where more
inputs are used to perform the estimation and, finally, consider the nonlinear transfer
function. The performance of the three methods will be compared by using the
pre-multiplied two-dimensional spectra.

The estimations will consider the streamwise velocity fluctuations as the output to
be predicted and either streamwise velocity fluctuations or wall-shear stress as the
input quantity. Nevertheless, the application to any other quantity is straightforward
and demonstrated similar results as long as the same physical quantity was used
as input and output (pressure, spanwise or wall-normal velocity fluctuations both as
measured input and predicted quantity).

5.1. Linear transfer function
5.1.1. Sample predictions

In the results that follow, a sample prediction is considered, with the output (at y+=
15), and an input at the lower edge of the log layer, at y+= 50, for Reθ = 4430 (Reτ =
1324). For this case, the resulting transfer function, comparison of the time series and
residual error are shown in figure 9.

The resulting transfer function is mostly causal, i.e. its peak and most of its non-
zero content is observed for τ > 0. The transfer function can then be truncated for
τ < 0 without degrading the performance of the model such that the output in this
case is obtained only with past measurements of the input, as the integral in (4.1)
can be restricted to positive time delays τ .
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FIGURE 10. (Colour online) Resulting TF when the input is closer to the wall than the
output, y+in= 15, y+out= 50, for Reθ = 4430. Zero time delay and value of 1t+ considered in
the estimation of the inclination angle of the structures are indicated by the dashed lines.

The time for the peak is related to the delay between the structures in the log
layer and their footprint in the near-wall region. The physical interpretation of this is
connected to the fact that the large-scale motions are not vertical, but inclined at an
angle (Brown & Thomas 1977; Marusic & Heuer 2007). This results in the observed
delay between the measurement of the streamwise velocity at a higher wall-normal
position and its effect near the wall, for the same cross-section in the streamwise
direction, a feature previously observed in other works (Marusic et al. 2010).

It is also noticeable that the transfer function is capable of predicting the behaviour
of the large-scale fluctuations of typical wavelength λ+z ≈ 1000 in this case, which are
coherent along the wall-normal direction. The resulting pre-multiplied spectra for LES
and estimated field, together with the prediction error, will be shown in figure 19 for
the different methods evaluated in this work.

Via the use of the linear TF, the estimated field lacks the small-scale, higher-
frequency fluctuations, which behave incoherently with measurements in the log
layer. This is observed in the residual, as in figure 9, in the time domain. It may be
observed that this error basically contains the fine-scale fluctuations, which would be
present in the absence of an interaction with the larger scales, present in the outer
layer. Although not shown, the resulting error is incoherent with the input signal at
y+in = 50; thus such error could be related to the universal near-wall signal (Marusic
et al. 2010).

For illustration, the input and output positions are inverted, and the resulting transfer
function is shown in figure 10. The behaviour becomes non-causal, as most of the
non-zero content of the TF is for negative values. This is related to the aforementioned
tilting of the structures in the wall-normal direction. Hence, the resulting model can
only be used for data-reconstruction purposes, and real-time (on-line) predictions,
and therefore closed-loop control, cannot be performed. This fact could of course
be overcome by moving the input measurement upstream. Figures 9(c) and 10 also
allow for an estimation of the tilting angle of the structures. Considering a vertical
separation between input and measurement of 1y+= 35, a delay of 1t+= 9.4 which
is highlighted in figure 10 and a convective speed for the structures of U+c =14, which
is between the mean velocities at y+ = 15 and y+ = 50 (see figure 1), the resulting
inclination angle is of 14.9◦. This estimated value is in very good agreement with
previous observations (Brown & Thomas 1977; Marusic & Heuer 2007).
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The results of this section are in accordance with the observations of Mathis et al.
(2009, 2011) and Marusic et al. (2010), where it is shown that the fluctuations
present at higher wall-normal positions imprint their signature near the wall. The
model proposed in these works is capable of instantaneous predictions of the
large-scale fluctuations, by modelling the interactions with near-wall structures
through a large-scale footprint, corresponding to a linear superposition, and amplitude
modulation of near-wall streaks. The behaviour of the finer-scale fluctuations (error
signal in figure 9) can then only be predicted statistically, by means of a proposed
universal signal, which would be present in the absence of such interactions between
the different scales in a turbulent boundary layer. The linear transfer function proposed
in this work is capturing such superposition effect of the large-scale structures on the
near-wall region.

In the following section, the performance of the method for other wall-normal
positions and Reynolds numbers will be evaluated. The construction of transfer
functions using input/output data at different streamwise positions, although feasible,
will not be pursued here, given the available streamwise fields in the database, which
present a high separation between each other. Nevertheless, for short distances, the
streamwise separation between positions is expected to mostly alter the time delay
for the peak of the transfer function.

5.1.2. Performance for different wall-normal positions and Reynolds numbers
In order to evaluate the dependence of the linear predictions on the distance from

the wall, four inputs were considered, y+in=50, 75, 100 and 200, for different values of
Reθ . Two metrics were used to compare the LES and the various predicted fields in a
consistent manner, namely the variance of the velocity fluctuations and the normalized
correlation between prediction and nonlinear simulation which, for this case, is defined
as follows,

Corr=

∫ π

−π

∫
∞

−∞

OLES(t, z)Oest(t, z) dt dz√∫ π

−π

∫
∞

−∞

O2
LES(t, z) dt dz

√∫ π

−π

∫
∞

−∞

O2
est(t, z) dt dz

, (5.1)

where OLES(t, z) and Oest(t, z) are the LES and estimated fields, respectively. Note that
this parameter varies between zero and unity, representing complete orthogonality and
a perfect match between the two sets, respectively.

Figures 11 and 12 show the behaviour of the variance of the streamwise velocity
and the correlations, respectively. Streamwise velocity was considered for both input
and output. The predicted fields underestimate the value of the variances, which is in
accordance with the fact that only the large structures, which exhibit a low frequency
and wavenumber, are well captured by this method; the H1 estimator leads to an
output underpredicted by γ , the coherence function defined in (3.1). One could also
interpret the results of figure 11 as the amount of energy in the near-wall region
which is due to the wall-connected eddies in the outer positions, given by their linear
footprint into the smaller scale structures, which is significant, accounting for up to
45 % of the peak variance at y+ = 15, for the highest Reynolds number and y+in = 50,
at the lower edge of the log layer.
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FIGURE 11. (Colour online) Comparison of the streamwise velocity variance of the
estimated and LES fields for different input positions along the wall-normal direction at
three Reynolds numbers. (a) Reθ = 2240. (b) Reθ = 4430. (c) Reθ = 8200.

Furthermore, the correlations exhibit relatively high values as long as input and
output positions are close to each other. It is also noticeable that the performance of
the model is fairly independent of the Reynolds number, at least for the evaluated
cases, with the highest-Re case slightly outperforming the other two. This may be
due to the wider scale separation which is present in this case, and also to the more
significant levels at outer positions for increasing Reynolds number, related to the
outer peak seen in the spectra (Smits, McKeon & Marusic 2011; Eitel-Amor et al.
2014). Finally, it is also noteworthy that even for the highest wall-normal positions
under consideration the footprint of the fluctuations at these positions is still felt in
the near-wall region, as shown in the correlation plots.

Figure 13 shows a sample of the linear transfer functions, for the three evaluated
Reynolds numbers, calculated between positions y+in = 50 and y+out = 15. Note that the
differences are mainly due to the amplitude and time delay to the maximum value,
and are related to the fact that the interaction between wall-normal separated positions
is slightly dependent on the Reynolds number of the flow. The information regarding
the time delay for the peak comes directly from the inverse Fourier transform and
t+ = tuτ/l∗, with l∗ = ν/uτ .

5.1.3. An input on the wall
Results of the previous section allow us to extract the existing interaction between

wall-normal separated positions. However, as highlighted in figure 3, the coherence
between positions in the log layer and in the near-wall region lacks the fine scales,
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FIGURE 12. (Colour online) Correlation between estimated and LES fields for different
positions along the wall-normal direction at three Reynolds numbers. Each curve
corresponds to a fixed input position. (a) Reθ = 2240. (b) Reθ = 4430. (c) Reθ = 8200.

which is present when the input is considered on the wall. This is the main motivation
for this section, which explores the flexibility of these empirically derived transfer
functions to estimate higher wall-normal positions via a quantity potentially available
in an experiment, namely the instantaneous wall-shear stress (see, for instance,
Vinuesa & Örlü 2017). As a sample of the prediction, the streamwise velocity
fluctuation will be considered as the output variable. As was the case for the previous
models, instantaneous measurements of both input/output quantities are necessary only
for the construction of the model.

Furthermore, the predictions considered here are based on non-causal transfer
functions. This implies that they can be used in their present form only for data
reconstruction. Their use for on-line (real-time) predictions would require the input
measurement to be moved upstream of the output sensor. By doing so, a similar
performance to the one shown here is expected.

The behaviour of the variance of the predicted fluctuations in comparison to the
actual variance of the LES data and the correlations, calculated for the time-domain
data (5.1) are shown in figure 14, using the wall-shear stress as the input quantity. A
good performance is observed until y+ ≈ 10; above that position the variances start
to be rapidly underestimated. A similar trend is also observed for the correlations,
however they remain above 0.4 until y+out = 250, which indicates that the footprint of
the large-scale fluctuations present at this position is still felt on the near-wall region.
Only the phase of the fluctuations can still be fairly well predicted, their amplitude,
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evaluated Reynolds numbers, for y+in = 50 and y+out = 15. (a) Reθ = 2240. (b) Reθ = 4430.
(c) Reθ = 8200.
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to the LES data, for the Reθ = 4430 case, using wall shear as input and the linear TF.
(a) Variance of predicted and LES fields. (b) Correlation between predicted and LES
fields.

on the other hand, is highly underestimated, which account for the large discrepancy
observed in the variances at this region.

The resulting pre-multiplied spectrum at position y+ = 15 is shown below in
figure 19, and the corresponding error in comparison to the actual LES data in
figure 20. It may be observed that the location of the peak in the spectrum is
well determined, although its magnitude is underestimated. The better performance
obtained when the input y+in is considered as the wall-shear stress rather than the
streamwise velocity in the outer layer is related to the fact that the fluctuations are
coherent within the near-wall region.
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5.2. Multiple-input transfer function
As shown in § 5.1, the performance of the predictions decays as the distance between
input and output positions is increased. In this subsection, we try to diminish such
effect by considering the multiple-input–single-output (MISO) transfer function, where
one input is located at the wall, given in terms of shear measurements (i.e. wall-shear
stress), and the other is at y+ = 50, y+ = 100 or y+ = 200. We also consider the case
with four inputs, at the wall and at y+ = 50, 100 and 200. As before, the transfer
functions present non-causal values when the input is closer to the wall than the
output, which would have to be compensated for real-time implementations by means
of offsets in the streamwise separation.

Two metrics will be used to evaluate the performance of the transfer functions:
the streamwise velocity variance and the correlation between estimated and LES data,
which are given in figure 15, for the case of Reθ = 4430. Analogous results are also
obtained for Reθ = 2240 and 8200, (not shown). The use of a multiple-input TF with
different flow quantities (e.g. streamwise and wall-normal velocity fluctuations) was
also assessed, however it did not improve the performance of the predictions and
will therefore not be shown here, for the sake of brevity. The use of multiple inputs
considerably increases the performance of the predictive model, indicating that inputs
on and above the wall are complementary in terms of the information they add to the
resulting field. In particular, for the case with four inputs, the correlations between
prediction and reference data remain above 70 % from y+out = 180 until the wall. The
pre-multiplied spectra of the predicted and LES fields are shown below in figure 19,
at the output position of y+ = 15, using a MISO TF with two inputs (namely the
velocity fluctuations at y+in = 50 and the wall-shear stress). The performance of the
MISO prediction is significantly improved from the single-input cases, with a good
prediction of the main features of the pre-multiplied spectrum.

5.3. Nonlinear transfer functions
In this section, the method of nonlinear spectral analysis will be considered in order
to try to further improve the performance of the estimations. A single input will be
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considered, located at the wall, using wall-shear stress. The results will concern the
Reθ = 4430 case, however similar observations were also made for the other Reynolds
numbers. The output to be estimated was taken as the streamwise velocity fluctuation.
Polynomial nonlinearities will be considered as follows:

O(z, t)=
NTF∑
i=1

gi(Ii(z, t)), (5.2)

such that for NTF=1, the linear case is recovered, and for this particular case, NTF will
coincide with the highest polynomial order of the transfer function. The evaluation of
the number of terms to be used in the series is made in terms of error metrics defined
in the time domain, correlations between estimated and LES fields and relative mean
values of the error,

eMS[%] =

∫ zmax/2

−zmax/2

∫ tmax

0
(u+est − u+LES)

2 dt dz∫ zmax/2

−zmax/2

∫ tmax

0
(u+est)

2 dt dz
× 100. (5.3)

Error metrics in the spectral domain will be obtained by calculating the two-
dimensional spectrum of the error, Eee(ω, β)= 〈ˆ̂e ˆ̂e∗〉, where

e(z, t)= u+est(z, t)− u+LES(z, t) (5.4)

and determining the relative error at the near-wall peak (errpeak) and the relative mean
error,

errmean[%] =

∫ β2

β1

∫ ω2

ω1

Eee(ω, β) dω dβ∫ β2

β1

∫ ω2

ω1

Euu(ω, β) dω dβ
× 100 (5.5)

all of which are indices relevant for closed-loop control applications. The variance of
the prediction will also be observed, as a complementary metric.

Figure 16 shows the defined error metrics as a function of the number of terms
used in the definition of the nonlinear TF, until NTF = 20. The output is located
at y+out = 15. There is a slight improvement when a quadratic term is used for the
prediction. The correlations are increased from 0.79 to 0.84, the error decreases from
36 to 31 % and the value of the inner wall peak improves from 4.9 to 5.9. The peak
error in the spectral domain decreases from 27 to 20 % and the mean error from
42 to 36 %. However, the addition of more terms, beyond the quadratic estimation,
causes the predicted field to be less accurate in the time domain, as the correlation
decreases and the error worsens. Although not shown, the same trend is observed for
other output positions within the buffer layer, an improvement in the predicted field
when a quadratic term is considered in the series. We therefore proceed by truncating
the nonlinear analysis at the quadratic term.

The behaviour of the prediction and the residual in the (t, z) domain is shown in
figure 17 and demonstrates an improvement with respect to the linear case, particularly
regarding the amplitude of the predicted field. The relative mean error, defined as per
(5.3) diminishes from 27 to 20 %, from the linear to the nonlinear case, respectively.
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FIGURE 16. (Colour online) Behaviour of the error calculated in the time and frequency
domains and variance of the predicted field as a function of the number of terms used
in the nonlinear transfer function. (a) Correlation between prediction and LES. (b) Mean
square value of the error. (c) Spectral error metrics. (d) Variance of the predicted field.

Analogously to the linear case, in order to better assess the method, the accuracy
of the prediction was evaluated as a function of the wall-normal distance. This is
shown in figure 18, in terms of the correlation between predicted and LES fields
and the corresponding variances. The result is overlaid to the linear case, to better
highlight the differences. Up to y+out≈ 30, the nonlinear method exhibits slightly higher
correlations with the actual LES data, with a significant improvement of the variances,
indicating that the amplitude is better captured by this strategy. As the output is moved
above the buffer layer, the nonlinear strategy does not lead to improvements of the
predicted field.

Application of the nonlinear spectral analysis with an input measurement above the
buffer layer did not improve the prediction in the time domain. This indicates that
the footprint of the larger scales on the near-wall region is predominantly a linear
superposition phenomenon, which is being captured by the linear transfer function
approach. Although not shown, the quadratic term of the shear-stress input presents
a mild coherence with the output signal, which justifies for its improvement in the
prediction. Such improvement with a quadratic term had first been observed by Naguib
et al. (2001), who attributed such characteristic to a turbulent–turbulent interaction,
and observed that the quadratic term tends to scale in outer units.
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(c) Nonlinear prediction with the linear and quadratic terms. (d) Residual, u+est − u+LES with
the linear method. (e) Residual, u+est − u+LES with the nonlinear method.

0.50
0.55
0.60
0.65
0.70
0.75
0.80

Co
rr

0.85
0.90
0.95
1.00(a) (b)

¯u
2 ˘+

0
1
2
3
4
5
6
7
8
9

10

0 10 20 30 40
y+ y+

50 60 70 80

Nonlinear TF
Nonlinear TF

LES – Reœ = 4430
Linear TF Linear TF

100 101 102 103 104

FIGURE 18. (Colour online) Performance of the nonlinear prediction as a function
of the wall-normal direction, results are compared to the linear case. (a) Correlation
between prediction and LES. (b) Variances of the predicted and LES streamwise velocity
fluctuation.

5.4. Comparison of the methods and discussion

We start by computing the two-dimensional pre-multiplied spectra of predictions
obtained by the different approaches. The output is located at y+out= 15, corresponding
to the near-wall peak. One, two or four inputs are considered: at the wall, i.e. using
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FIGURE 19. (Colour online) Comparison of inner-scaled pre-multiplied two-dimensional
spectra from the linear and nonlinear predictions with the LES field at y+ = 15, for
the Reθ = 4430. The crosses correspond to reference locations for the inner ((λ+t , λ

+

z )≈
(100, 100)) and outer peaks ((λt, λz) ≈ (10δ99/U∞, δ99), (λ+t , λ

+

z ) ≈ (1400, 1300)). (a)
LES data. (b) Linear transfer function using y+= 50 as input. (c) MISO transfer function
using y+in = 50 and wall-shear stress. (d) MISO transfer function using y+in = 50, y+in = 100,
y+in = 200 and wall-shear stress. (e) Linear transfer function using wall-shear stress. ( f )
Nonlinear transfer function using wall-shear stress.

the wall-shear stress, and at y+in = 50, y+in = 100 and y+in = 200. The resulting spectra
are shown in figure 19 for the different approaches considered in this work, in
comparison to the actual LES data.
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Method errpeak errmean Corr eMS TFs/convolutions
(%) (%) (%)

Linear SISO, y+in = 50 84 73 0.62 55 1
Linear SISO using wall-shear stress 27 42 0.79 36 1
Linear MISO, y+in = 50 and wall-shear stress 25 40 0.82 33 3
Linear MISO, with four inputs 25 40 0.82 33 10
Nonlinear TF using wall-shear stress 20 36 0.84 31 3

TABLE 1. Summary of the error metrics and computational cost for the cases evaluated.

In order to better assess the results, we will consider the two-dimensional
pre-multiplied spectra of the residual error. This metric supplies information
concerning the instantaneous accuracy of the prediction, an important information
for active control applications. The result is shown in figure 20. The linear TF based
on an input on the outer layer leads to a significant error in the prediction of the
near-wall peak, as only the large-scale structures are coherent between these positions.
The accuracy of the determination of the near-wall data is significantly improved
when wall-shear data are used, either in the SISO or MISO applications, as the
near-wall cycle maintains significant coherence down to the wall.

Four additional metrics will be considered to compare the predictions of the three
methods at y+out = 15: the correlation coefficient (5.1), the relative mean error eMS
between predicted and reference fields (5.3), the relative error in the determination of
the value of the peak and the relative mean error in the determination of the spectra,
both of which can be obtained by the two-dimensional pre-multiplied spectra of the
error in figure 20. It should be noted that all of these metrics are related to the ability
of the methods to capture the unsteady behaviour of the fluctuations, rather than only
the turbulence statistics.

In order to evaluate the computational cost of each method, a suitable parameter
is the number of constructed transfer functions (which corresponds to around 20 s
per transfer function on a typical workstation, without an optimized algorithm) and of
performed convolutions (around 90 s each), which are the most expensive operations
of the methods, accounting for more than 90 % of the total computational time. For
the current approach, the number of convolutions and transfer functions which has to
be calculated is the same. All these results are summarized in table 1.

For this particular application, the nonlinear TF outperformed the MISO TF with
two or four inputs, with the two MISO approaches presenting similar performances,
indicating that the addition of more inputs in the log layer does not add information
to the prediction of the near-wall peak. However, when one considers the accuracy
variation along the wall-normal direction, it is observed that the MISO prediction
exhibits better results, with the addition of measurements improving the predictions,
such that the exact method of choice is dependent on the application and complexity
of the experimental set-up to be used.

The linear TF using y+in= 50 exhibits the worst behaviour, since it does not account
for the fine-scale fluctuations, where most of the energy is contained in the near-wall
region. Its spectrum is mainly due to larger fluctuations, indicating that such large
structures behave linearly between the different wall heights, leaving a footprint on the
near-wall structures. This trend is also observed in figure 20(a), where the error for
this method is considerable at λ+z ≈ 100, leading to a high error in the determination
of the near-wall spectral peak.
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FIGURE 20. (Colour online) Pre-multiplied two-dimensional spectra of the error calculated
between predicted and LES streamwise velocity fields. The limits of the colour bar were
kept as those of the reference data, in order to facilitate the comparison. The crosses
correspond to reference locations for the inner ((λ+t , λ

+

z ) ≈ (100, 100)) and outer peaks
((λt, λz) ≈ (10δ99/U∞, δ99), (λ+t , λ

+

z ) ≈ (1400, 1300)). (a) Linear transfer function using
y+ = 50 as input. (b) MISO transfer function using y+in = 50 and wall-shear stress. (c)
MISO transfer function using y+in= 50, y+in= 100, y+in= 200 and wall-shear stress. (d) Linear
transfer function using walls-shear stress as input. (e) Nonlinear transfer function using
wall-shear stress.
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The linear and nonlinear SISO and linear MISO predictions using wall-shear-stress
velocity fluctuations above the wall, respectively, considerably improve the accuracy
of the models and allow a reasonable determination of the inner peak, such that only
the amplitude is slightly off in the predicted field. The main improvement comes from
the use of wall-shear stress, which is highly correlated with the structures responsible
for the near-wall dynamics.

The three methods evaluated in this work vary considerably in terms of their
accuracy, with the linear SISO TF being significantly outperformed by the other
approaches, particularly when an input in the log layer (y+in = 50 or 100) is used
to estimate the near-wall behaviour. There could be two explanations for such an
observation: either the method to identify the transfer function is not efficiently
capturing the linear mechanisms that occur, or there is not enough coherence between
these two separated regions.

The method proposed in § 5.1 could potentially exhibit errors with respect to the
exact model either due to the presence of noise in the sensors that acquire the data for
the system identification, or due to spectral leakage. The former is not present in this
work, since the raw LES signals are taken directly for the construction of the model.
As for the latter, it is avoided by means of using an adequately long time series, an
assumption which was assessed by considering different lengths for the time series.
Therefore, the implementation employed in this work can be regarded as the best
linear approximation between the two positions separated in the wall-normal direction
(Schoukens et al. 1997).

From y+in = 50 or 100 one can only predict the footprint of the large scales on the
near-wall region. This statement is supported by the two-dimensional coherence plots
of figure 3, which show that only the long wavelengths are coherent, a behaviour
further confirmed by the two-dimensional pre-multiplied spectra of the linear SISO
prediction (figure 19), which contains only the large-scale structures. This also justifies
for the large mismatch in the predicted variance. Furthermore, the attempts to use
a nonlinear method with an input outside the buffer layer were unsuccessful. By
considering the two-dimensional coherence plots (figure 3) it is evident that in order
to capture the small-scale structures it is necessary to have access to data in the
near-wall region (note that in this work we considered the wall-shear stress). An
interesting method arises when data at the wall and y+in = 50 or 100 are used as
prediction inputs, since these are complementary in terms of the coherence of the
structures.

Other ways to capture this effect would be by directly adding the statistics of the
remaining unpredicted field, as it is done with the universal signal in Marusic et al.
(2010), or attempting a state estimator using the linearized Navier–Stokes system
including an eddy-viscosity profile, as in Illingworth et al. (2018), which is not
straightforward for the linear SISO TF dealt with in this work. Comparable results to
the two works cited above were obtained by means of the current approaches, where
no extra modelling parameters are needed in order to perform the predictions. These
comparisons will be discussed in further detail in § 7.

The computational cost of the MISO and nonlinear approaches evaluated here
is about three times higher than that of the SISO linear case. However, we do
not consider this difference to increase the cost such that it would be prohibitively
expensive to implement these methods.

6. Off-design predictions
As outlined in the previous sections of this work, the on-line prediction of the

designed transfer functions is made in two steps. The convolution kernels are
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firstly built using simultaneous time- and spanwise-resolved signals at the positions
corresponding to inputs and output of the system, which are separated along the
wall-normal direction. Once this system has been built, the prediction is made
exclusively from measurements of the inputs.

This therefore raises questions accounting for the robustness of the methods for
mild Reynolds-number variations, which would certainly be present in experimental
applications. Furthermore, the fact that simultaneous measurements have to be
performed as an initial step may lead to constraints in practical applications, where
the correspondingly high Reynolds number would require a very fine resolution in
the wall-normal direction, which may be difficult to obtain. Such constraints are
shared by other methods available in the literature which require an initial set of data
to build the model (also referred to as a training dataset in the context of machine
learning methods).

One solution would therefore be to perform a large-eddy or direct numerical
simulation of the geometry to be studied experimentally, and build the transfer
functions a priori, which would only require the capability of measuring the inputs
in the experiment (i.e. wall-shear stress and the fluctuations outside the buffer layer).
Since high-fidelity simulations can typically only be performed at Reynolds numbers
lower than those in certain experimental studies, it is of interest to design a model
using a moderate Reynolds number, obtained from a high-fidelity simulation, and
apply it to an experimental implementation at higher Re. This possibility is explored
in this section, where the transfer functions will be designed at Reθ = 880 and tested
at Reθ = 8200, spanning approximately one order of magnitude in Reynolds number.
Three cases will be considered here: linear SISO and MISO using wall shear and data
outside the buffer layer, and the quadratic TF using wall-shear stress, which exhibits
mild improvements in comparison to the linear case. The same input/output positions
for the two Reynolds numbers will be considered in terms of the corresponding inner
variables, which showed better performance than if the outer non-dimensionalization
was utilized. Figure 21 shows the resulting correlations and variances for these three
methods, for the original and off-design cases. For all the cases, the correlations in
the off-design configurations are degraded, where the SISO implementation is the
most affected. It should also be noted, however, that the prediction of the near-wall
peak is not much affected, where compelling correlations are seen for the SISO using
wall-shear stress and MISO methods. The prediction of the MISO transfer function
is also less affected by the Reynolds-number variation, where it should be noted
that for the case with four inputs, the off-design prediction remains with compelling
correlations (above 60 %) throughout the evaluated range of wall-normal positions.
The fact that the near-wall peak prediction from wall-shear data was practically
unaffected supplies evidence that the near-wall region is directly correlated to the
wall. The increase in Re has an effect on the large-scale modulation, modifying the
footprint of the large-scale structures near the wall which in turn leads to the high
degradation of the prediction of the near-wall peak when SISO transfer functions
using data above the wall are used. We have therefore demonstrated the feasibility
of designing SISO and MISO transfer functions at lower Reynolds numbers and
implementing them at higher Re (one order of magnitude higher in this particular
case), along with a considerable robustness of the methodology.

Although not shown for the sake of brevity, variations of up to 50 % in Reynolds
number had no significant impact on the accuracy of the prediction. This feature
is expected to be appealing for the application of the developed methods for
experimental implementations, where uncertainties in the measured parameters are
expected to be present.
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FIGURE 21. (Colour online) (a,c,e) Correlations between prediction and LES data and
(b,d, f ) comparison of the resulting variances using the SISO, MISO and nonlinear
methods. Solid lines correspond to the same Reynolds number being used for design and
test, whereas dotted lines are used for off-design cases, i.e. the model is built at Reθ = 880
and tested at Reθ = 8200. (a) Correlations using linear SISO. (b) Variances using linear
SISO. (c) Correlations using the linear MISO. (d) Variances using the linear MISO. (e)
Correlations using quadratic SISO. ( f ) Variances using quadratic SISO.

7. Comparison with other methods

The methodologies developed in this work bear similarities with the recent studies
by Baars et al. (2016) and Illingworth et al. (2018). The different focus of the first,
which is on the characterization of the statistics, and application of the second, a
channel at Reτ = 1000, prevent quantitative comparisons of performance between these
methods and the one proposed here. The objective of the current section is therefore
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to highlight differences in the approach, applicability, limitations and computational
cost of the methods.

Illingworth et al. (2018) considered a turbulent channel flow of Reτ = 1000,
obtained from DNS. Their approach is based on a Reynolds decomposition of the
Navier–Stokes operator and gathering the nonlinear terms from the fluctuations into
a forcing to an otherwise linear system. A Fourier transform is then applied to
the homogeneous coordinates, corresponding to stream- and spanwise directions.
The resulting inhomogeneous Orr–Sommerfeld squire (OSS) system is expressed in
the form of an input/output state-space system, where the input corresponds to the
forcing (nonlinear terms) and the output to the three velocity components. The idea
is then to design a state observer, i.e. a linear operator that permits the estimation
of the quantities based on a measurement of the three velocity components at a
given height. This is made by means of an optimization problem, which enables
the consideration of noise in the measurement sensors. The size of this problem is
of the same order as the discretized Orr–Sommerfeld squire (OSS) operator, which
could correspond to a square matrix of a few hundred lines. The computation of the
model is made ‘off line’, without access to the simulated/experimental quantities. An
eddy viscosity is added to the linear operator, and therefore a model is used for the
determination of its behaviour along the wall-normal direction. Once the observer has
been designed, the prediction is made by measuring the three velocity components
at a given wall-normal plane and integrating the observer equations. The Fourier
transform applied to the homogeneous directions implies that such measurements
correspond to a whole plane in the span and streamwise directions, which is of
course more difficult to accomplish experimentally than the proposal of the current
work, in which we consider a spanwise line at a fixed streamwise position.

Baars et al. (2016) proposed a modification of the inner/outer interaction model by
Marusic et al. (2010), where the superposition term, which was originally calculated
by a linear operation over the input signal, is replaced by a linear stochastic estimator
(LSE). Their flow case is a ZPG TBL of Reτ up to 19 000. The LSE is an entity
calculated in the frequency domain and it requires measurements of the input and
output quantities which are Fourier transformed to build a frequency-domain transfer
function. The model is built using time measurements only, which is a configuration
simpler to implement experimentally than the one proposed in this study. However,
note that while we aim at predicting instantaneous quantities, the work of Baars
et al. (2016) is only focused on turbulence statistics. Once the LSE is available, a
prediction is performed from Fourier-transformed measurements of the input. Since the
predictions are obtained in the frequency domain and then inverse Fourier transformed,
certain characteristics such as the causality of the prediction cannot be evaluated. The
second part of the inner/outer interaction model is unchanged and its calculation
involves an iterative procedure to find a demodulated ‘universal signal’ which ensures
that the statistics of the resulting predicted signal are recovered. This also means that
the full model, which exhibits very good agreement with experimental data, cannot
be used for unsteady (time-domain) predictions, such as those necessary for control.

Finally, the method proposed here could be considered as an alternative to these two
methods, depending on the desired application. Our results in terms of the predicted
statistics are expected to be inferior to those of Baars et al. (2016), with a moderately
higher computational cost, since the method presented in that work avoids the use
of a two-dimensional convolution. However, for time-domain predictions, the method
outlined here is expected to outperform the one of Baars et al. (2016), particularly
when it is enhanced with multiple inputs which are complementary in terms of
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their coherent content with the output, a feature which, to the best of the authors’
knowledge, is not available in any other model in the literature for this particular
application. The current method produces correlation coefficients on the same level
as those of Illingworth et al. (2018), with an expected lower computational cost and
a simpler scheme to implement in an experimental application. The characteristics of
the methods by Baars et al. (2016) and Illingworth et al. (2018), together with those
of the method proposed in this study, are summarized in table 2.

8. Conclusions

Three different techniques were evaluated to predict the behaviour of the near-wall
streamwise velocity fluctuations in ZPG turbulent boundary layers. The methods vary
in terms of their inherent complexity and their potential difficulties in an experimental
implementation.

The linear, single-input–single-output (SISO) transfer function is the simplest and
allows for predictions of the output signals from a single input measurement, here
considered as space–time series of the streamwise velocity, u(z, t), at a given station
x and wall-normal position y. Reasonable performances were obtained for small
separations along the wall-normal direction, leading to an eduction of the footprint of
the large-scale fluctuations, a linear superposition of such structures on the near-wall
region. Such footprint remained for wall-normal distances as high as y+ = 250, as
depicted in the results of figure 14. Note that although the amplitudes for such
high separations were under-predicted, the phase of the predicted field still led to
correlations of the order of 40 %. The implementation of this method in experimental
applications would depend on the availability of two simultaneous measurements for
constructing the TFs, one of them possibly corresponding to wall-shear stress. The
availability of the SISO transfer function also allows for the derivation of linear
control laws, as explored in other works by this group, for transitional flows (Sasaki
et al. 2018a). Furthermore, as long as the wall-normal separation between input
and output measurements is kept small, a reasonable prediction is obtained by this
method.

Addition of a quadratic term to the SISO prediction using wall-shear stress leads
to a significant improvement of the prediction, particularly on what concerns the
amplitude of the predicted signal. The mean square relative error corresponds to 31 %
in the near-wall peak, with an error of 20 % in the determination of the near-wall
spectral peak. The nonlinear prediction has the same experimental requirements as
the linear one and would therefore be recommendable when a single wall-shear-stress
measurement is available.

Finally, the multiple-input transfer function requires a more complex set-up, where
several simultaneous measurements are required both for the construction of the
model and the prediction. Nevertheless, improved performances were observed for
this method, with the correlations between prediction and reference simulation data
remaining above 70 %, from y+out = 180 until the wall, when four input measurements
were considered. Since this method corresponds to a linear approach, the use of
standard linear control techniques may be carried out directly within this framework
(Bendat & Piersol 2011). This is the most interesting approach for data reconstruction
from a limited set of measurements, since it produces velocity fields in compelling
agreement with the reference data.

The differences between the resulting accuracy of the methods were understood in
terms of the coherence between the considered wall-normal positions and it was shown
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Characteristic Present SISO/MISO TFs Illingworth et al. (2018) Baars et al. (2016)

Flow case ZPG turbulent boundary
layer

Turbulent channel flow ZPG turbulent boundary
layer

Approach Compute identified
transfer functions from
the data, prediction is
made on the time
domain

Design a state observer
on the OSS system,
prediction on the time
domain

Compute a LSE from
the data and modify the
inner/outer interaction
model; prediction is
made on the frequency
domain

Degree of
modelling

Parameters of the
ensemble average,
window and length of
the time series (low)

Model for eddy
viscosity (high)

Parameters of the
ensemble average,
window and length of
the time series (low)

Measurement
requirements
to build the
model

Simultaneous time and
span measurements in
the input/output
locations

None Time measurements in
two locations in the
boundary layer

Measurement
requirements
to perform
predictions

Simultaneous
measurements of the
inputs in time and
spanwise direction

Measurements of the
three velocity
components, time,
streamwise and
spanwise

One-point measurements
of the input in time

Computational
cost of
building
the model

Number of convolutions
and ensemble averages
grows with the factorial
of the number of
inputs/nonlinear terms
(intermediate)

Solution of an optimal
problem for a system
of the order of a few
hundred points (high)

Only one ensemble
average for input/output
plus the de-modulation
(low)

Computational
cost of
performing
predictions

One convolution per
considered input
(intermediate)

Solution of a set of
differential equations for
the observer (high)

One inverse Fourier
transform and
computation of the
modulation term (low)

Does it
consider
experimental
restrictions?

Yes, it minimizes
measurement noise

Maybe: there is the
possibility to consider a
given shape for the
noise in the
measurement

Yes, the LSE part
minimizes measurement
noise. Only needs data
readily available in
experiments

Application
to control

Same models have been
previously used by this
group for the control of
transitional flows

Observer can be
coupled to a control
problem (similar to the
classic linear quadratic
Gaussian regulator)

The full model cannot
be used for control,
only the LSE, although
not straightforward

Other
characteristics

Data-driven method but
allows the evaluation of
certain physical
characteristics such as
causality and the tilting
angle of the structures

Developed from a
theoretical approach but
relies on eddy viscosity
model

Data driven, does not
consider causality, the
model could be
non-causal

TABLE 2. Summary of the characteristics of available models for the prediction of
turbulence fluctuations in the time domain.
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that the footprint of the large scales in the outer layer can be connected to a linear
mechanism, educed by the linear SISO transfer function. This footprint is considered
as a linear superposition in the model of Marusic et al. (2010) and is here directly
extracted from the data via the linear transfer function approach.

In summary, when considering the reference output position at y+out = 15, it is
observed that the linear SISO with a measurement outside the buffer layer can only
capture the linear footprint of the large scales, which leads to considerable errors in
the spectral content and variances of the prediction, as only approximately 40 % of the
energy in this position can be reproduced by the linear method. The use of nonlinear
terms was ineffective for this case, indicating mostly a linear correlation between the
large scales and the near-wall region. By measuring wall-shear stress, the prediction
is considerably improved, leading to errors of 36 % and 31 %, depending on whether
the linear or nonlinear methodology is performed. The use of a quadratic term here
improved the predictions, a trend which had been previously observed (Naguib et al.
2001) and which is related to turbulent–turbulent interactions of the fluctuations. As
for the MISO prediction, even though it does not outperform the nonlinear analysis
for the output at y+out= 15, given that it deals with inputs of complementary coherence,
it permits to obtain low error values throughout the range of wall-normal positions,
depending on the number of inputs considered, presenting therefore overall better
performances than the SISO methods.

Although not shown here, the same analysis with the different methods evaluated
here was also performed for other input/output quantities. Very similar trends and
levels of accuracy were observed when the same quantity was used as input and
output (i.e. wall-normal and spanwise velocity or pressure fluctuations both as the
measured and estimated quantities, for example).

The present work also shows a significant robustness of the various methods
concerning Reynolds-number variations between the data used to construct the
transfer functions and to perform the flow predictions. It is proposed that the present
methodology could be used in experimental studies at higher Reynolds numbers,
where it is very difficult to accurately measure close to the wall. A test spanning a
one order of magnitude variation in Reynolds number (between the data used to build
the model and for the predictions) led to very satisfactory results, providing evidence
of the feasibility of this approach.

Comparison between the method outlined in this article with the recent work
of Baars et al. (2016) demonstrates an expected higher accuracy in the time-domain
predictions along with the possibility of using our method for in the design of control
laws; furthermore, a simpler experimental set-up would be required compared to that
of the method by Illingworth et al. (2018) along with a lower computational demand.
To summarize, the strategy proposed here demonstrates a high flexibility in terms
of input/output measurements which could be advantageous for implementations
in flow control and at high Re, where the exact choice of method (SISO/MISO,
linear/nonlinear) would depend on the available experimental setting, the desired
accuracy and the particular application.
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Appendix A. Calculation of the transfer functions
This section outlines the procedure to calculate the power spectral densities used

in the calculation of the (ω, β) transfer functions as per (4.3). The case of the auto
power spectral density will be considered, however the method is easily adapted for
the cross power spectral density case.

Consider the signal I(z, t), measured along the spanwise direction and time, where
z is a periodic direction. The auto spectral density of such signal is then defined as,

SII =
ˆ̂I(ω, β)ˆ̂I∗(ω, β), (A 1)

where the double hat indicates a double Fourier transform from z to β and from t to
ω. The first transform is taken along the z direction,

Î(t, β)=
∫ zmax/2

−zmax/2
I(t, ζ )e−iβζ dζ . (A 2)

Upon discretization in z, the continuous Fourier transform becomes a discrete Fourier
transform (DFT). Since this direction is periodic, the DFT may be regarded directly
as the discretization of the coefficients of the corresponding Fourier series.

Consider now the discretization in time, with a total number of N snapshots, such
that the signal may be regarded as:

Î(β)= [Î1(β) Î2(β) · · · ÎN(β)], (A 3)

where Î(β) is Nβ × N, Nβ corresponding to the total number of transverse
wavenumbers considered. It is a known result (Bendat & Piersol 2011) that the
direct application of the DFT on the lines of Î(t, β) should not be performed, as
the result will not converge with the increasing number of snapshots N. The error in
the estimate of each frequency could be as high as the calculated magnitude of the
corresponding auto spectrum. In order to obtain converged estimates it is necessary to
appropriately average the spectra over multiple ensembles of the flow, which may be
accomplished by Welch’s method (Welch 1967). Start by partitioning the full signal
into Nb blocks with Nf elements, such that the nth block is given as:

Î(n)(β)= [Î(n)1 (β) Î(n)2 (β) · · · Î(n)Nf
(β)], (A 4)

with each block referred to a realization of the flow. The blocks may also present
an overlap region with the adjacent elements, which allows for an increased
number of blocks for the same length of the original signal, permitting a faster
convergence of the algorithm. The kth entry in the nth block is then given as
Î(n)k (β) = Îk+(n−1)(Nf−No)(β), where No is the number of overlapping snapshots. The
DFT is then calculated at each block,

ˆ̂I(n)(β)= [ˆ̂I(n)1 (β)
ˆ̂I(n)2 (β) · · ·

ˆ̂I(n)Nf
(β)], (A 5)
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such that:

ˆ̂I(n)k (β)=
1√
Nf

Nf∑
j=1

wj
ˆ̂I(n)j (β)e

−2πi(k−1)[( j−1)/Nf ], (A 6)

for k= 1, . . . ,Nf and n= 1, . . . ,Nb. This represents the DFT of the block, adding the
weights wj to determine the application of a window function which is used to reduce
spectral leakage due to each block being non-periodic. The normalization factor 1/Nf

ensures that the DFT is unitary for a square window. Therefore, ˆ̂Ik(β) is the DFT at
a frequency ωk, for each block, and

ωk = 2π
k− 1
n1T

, k 6 n/2 (A 7)

or
ωk = 2π

k− 1− n
n1t

, k> n/2. (A 8)

To simplify the notation, the subscript k is dropped from the frequency components
in the remaining of this section and in the main body of the paper.

Finally, SII at a pair (ω, β) is calculated by averaging the blocks,

SII(ω, β)=
1t

Nf∑
j=1

w2
j Nb

Nb∑
n=1

ˆ̂I(ω, β)[ˆ̂I(ω, β)]∗, (A 9)

which converges as the number of snapshots and blocks is increased together. The
final value obtained from this average is referred to as the expected value of the

quantity ˆ̂I(ω, β)[ˆ̂I(ω, β)]∗ and the process to obtain it is referred to as an ensemble
average.

Appendix B. Decorrelation via spectral conditioning
The spectral conditioning technique consists in removing all the linear influence

that exists between the inputs, hence decorrelating them (Bendat & Piersol 2011).
The technique is performed iteratively, the first input remains unchanged and all the
others have to be computed. In order to spectral conditionally remove the influence
of input 1 over input 2, for example, the following operation is performed in the
frequency domain

ˆ̂I2−1(β, ω)=
ˆ̂I2(β, ω)−

SI1I2

SI1I1

ˆ̂I1, (B 1)

which, in the time domain is equivalent to

I2−1(t, z)= I2(t, z)− gI1I2(t, z)⊗ I1(t, z), (B 2)

where ⊗ indicates a double convolution and the subscript 2− 1 indicates that input 1
is linearly decorrelated from input 2, via the transfer function gI1I2 , which relates the
two inputs. For the sake of brevity, the following operations will be shown only in
the time domain, where the definition of the linear transfer function is implicit. The
third input has to be decorrelated from I1(t, z) and I2−1(t, z), such that

I3−2!(t, z)= I3(t, z)− gI2−1I3(t, z)⊗ I2−1(t, z)− gI1I3(t, z)⊗ I1(t, z), (B 3)
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where the subscript 3− 2! indicates the decorrelation of input 3 from inputs 2 and 1.
For the Nth input, the decorrelation results in

IN−(N−1)!(t, z)= IN(t, z)−
N−1∑
j=1

gI[N−j]−[N−j−1]!IN (t, z)⊗ I[N−j]−[N−j−1]!. (B 4)
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