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Abstract. We study the homological algebra of bimodules over involutive
associative algebras. We show that Braun’s definition of involutive Hochschild
cohomology in terms of the complex of involution-preserving derivations is indeed
computing a derived functor: the �/2-invariants intersected with the centre. We then
introduce the corresponding involutive Hochschild homology theory and describe it
as the derived functor of the pushout of �/2-coinvariants and abelianization.

1. Introduction. Hochschild cohomology is a cohomology theory for associative
algebras that describes their deformation theory. Under mild hypotheses, the groups
HH∗(A, A) can be defined in any of the following equivalent ways:

(1) The homology of the usual Hochschild cochain complex of A.
(2) The homology of the complex of coderivations on the tensor coalgebra of �A

(or equivalently, the complex of continuous derivations on the completed tensor
algebra of �−1A∨).

(3) The derived centre of A.
There is a corresponding Hochschild homology theory that can be defined as the
derived abelianization of A or by writing down the usual Hochschild chain complex.
The derived functor description is perhaps most fundamental and it is based on the
fact that A-bimodules form an abelian category that can equivalently be described as
the category of right modules over the enveloping algebra Ae = A ⊗ Aop.

In [1], Braun studied the Hochschild theory of involutive algebras (and A∞-
algebras), meaning algebras equipped with a map a �→ a∗ such that a∗∗ = a and
(ab)∗ = b∗a∗. He introduced an involutive variant of Hochschild cohomology by
restricting to the subcomplex of the derivation complex consisting of derivations that
commute with the involution. The ordinary Hochschild cohomology of an involutive
algebra splits as a sum of this involutive Hochschild cohomology and a skew factor
(assuming the characteristic of the ground field is not 2).

The purpose of this short note is to develop enough homological algebra for
bimodules over involutive algebras to give a derived functor description of Braun’s
involutive Hochschild cohomology. From this perspective, we are also able to define
the corresponding involutive Hochschild homology theory. One key novel feature of
the involutive theory is that it is based on the abelian category of involutive bimodules.
In contrast with the non-involutive case, involutive bimodules are actually equivalent
to modules over a certain semidirect product of the enveloping algebra with the group
ring k[�/2].

https://doi.org/10.1017/S0017089516000653 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089516000653
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Our motivation for studying involutive Hochschild theory comes from the first
author’s work on unoriented topological conformal field theories. Costello [2] showed
that an open 2d oriented TCFT is essentially a Calabi–Yau A∞-algebra, and such a
theory admits a universal extension to an open-closed theory with closed state space
(the value of the functor on a circle) given by the Hochschild chain complex of the
algebra of the open theory. In [3], this picture is extended to Klein (i.e., unoriented) 2d
TCFTs: open theories now correspond to involutive Calabi–Yau A∞-algebras, and the
closed state space of the universal open–closed extension turns out to be the involutive
Hochschild chain complex of the open state algebra.

2. Involutive algebras and their bimodules.

2.1. Involutive algebras. Let k be a field. An involutive vector space is a vector
space V (assumed to be over k) equipped with an automorphism of order 2, which we
will usually write as v �→ v∗. I.e., it is a representation of the cyclic group �/2. We let
iVect k denote the category of involutive k-vector spaces and linear maps that commute
with the involutions.

An involutive k-algebra is an involutive vector space A equipped with an associative
and unital multiplication map A ⊗k A → A such that

(ab)∗ = b∗a∗

for any a, b ∈ A. Note that it follows automatically that 1∗ = 1 and 0∗ = 0.

REMARK 2.1.1. An associative k-algebra is the same as a monoid in the monoidal
category of vector spaces with tensor product. Although involutive vector spaces are
the same as �/2 representations, and the tensor product ⊗k gives this category a
monoidal structure, involutive algebras are not the same as monoids in the monoidal
category of �/2 representations. The tensor product ⊗�/2 also provides a monoidal
product on the category, but involutive algebras are not monoids for this structure
either.

EXAMPLE 2.1.2.

(1) Any commutative algebra A becomes an involutive algebra when equipped with
the identity as involution. More generally, any k-algebra map of order 2 fixing 1
makes A an involutive algebra.

(2) Let V be an involutive vector space and let TV = ⊕
n V⊗n be the tensor algebra

on V . The tensor algebra becomes an involutive algebra with involution given by

(v1 ⊗ · · · ⊗ vn)∗ = v∗
n ⊗ · · · ⊗ v∗

1 .

(3) Let G be a discrete group. The group ring k[G] is an involutive k-algebra with
involution given by g �→ g−1.

2.2. Involutive bimodules. First, suppose that A is an associative k-algebra. An A-
bimodule M is a k-vector space with left and right multiplication maps A ⊗k M → M
and M ⊗k A → M that commute: (a · m) · b = a · (m · b) for all a, b ∈ A and m ∈ M.
In category-theoretic terms, M is a bimodule for the monoid A in the monoidal
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category (Vect k,⊗k). Equivalently, an A-bimodule is the same as a left module over
the enveloping algebra Ae = A ⊗k Aop.

Now, let A be an involutive k-algebra. An involutive A-bimodule is a bimodule
equipped with an involution satisfying the compatibility condition between the left
and right actions and the involution:

(a · m)∗ = m∗ · a∗.

Note that, unlike the non-involutive case, here the left and right A-module structures
determine each other, so an involutive bimodule is determined by a vector space
equipped with both a left A-module structure and an involution, but there is a
compatibility condition that these two structures must satisfy coming from the fact
that the left and right A-module structures on a bimodule commute. This condition is

b · (a · m∗)∗ = b · (m · a∗) = (b · m) · a∗ = (a · (b · m)∗)∗ (1)

for a, b ∈ A and m in an involutive bimodule M.
One can describe the category of involutive bimodules as a category of left modules

as follows. Consider the algebra Aie := Ae ⊗ k[�/2] with product defined by

(x ⊗ τ i) · (y ⊗ τ j) = (x · τ i(y)) ⊗ τ i+j,

where τ is the generator of �/2 and it acts on Ae = A ⊗ Aop by τ (a ⊗ b) = b∗ ⊗ a∗. We
call Aie the involutive enveloping algebra of A.

PROPOSITION 2.2.1. There is an equivalence of categories

A-iBimod ∼= Aie-Mod .

Proof. The subalgebra of Aie consisting of elements of the form x ⊗ 1 is isomorphic
to Ae. Given an Aie-module M, the action of Ae ⊂ Aie defines an A-bimodule struture
on M as usual. The action of the subalgebra k[�/2] defines an involution on M, and
this in fact yields an involutive bimodule since, by the associativity of the Aie-action,
multiplying by

(1 ⊗ 1) ⊗ τ · (a ⊗ b) ⊗ τ = (b∗ ⊗ a∗) ⊗ 1

is equal to multiplying first by (a ⊗ b) ⊗ τ and then by (1 ⊗ 1) ⊗ τ . In terms of the
induced bimodule structure and involution on M, this says that (b∗ma∗) is equal to
(am∗b)∗, and hence M becomes an involutive bimodule.

Conversely, if M is an involutive bimodule, then it becomes an Ae-module, its
involution makes it a module over k[�/2], and the compatibility relation (amb)∗ =
b∗ma∗ says that the involution and bimodule structure combine to define an associative
action of Aie. �

One sees that the forgetful functor

A-iBimod → A-Bimod .
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is faithful; however, it fails to be conservative (meaning that there are involutive
bimodules M and N that are not isomorphic in A-iBimod , but they become isomorphic
in A-Bimod ), and hence it is not full. The following simple example illustrates this.

EXAMPLE 2.2.2. Let A = k with the trivial involution, so A-bimodules are just
k-vector spaces, and involutive A-bimodules are just involutive vector spaces. Let
V = k2 with the trivial involution, and let W = k2 with involution (x, y)∗ = (y, x).
As bimodules (i.e., vector spaces), V and W are clearly isomorphic, but as involutive
bimodules (i.e., involutive vector spaces) they are not.

If M and N are involutive A-bimodules, then we write HomA-iBimod (M, N) for the
set of involutive A-bimodule homomorphisms from M to N, which is to say the set of
bimodule homomorphisms that commute with the involutions. Both this and the set
of bimodule homomophisms are k-vector spaces and there is a natural linear inclusion
map

HomA-iBimod (M, N) ↪→ HomA-Bimod (M, N).

However, the vector space HomA-iBimod (M, N) also carries an involution f �→ f ∗ defined
by

f ∗(m) = f (m)∗, or equivalently, f (m∗).

2.3. Some functors and adjunctions. Let A be a k-algebra. We first recall the
adjunction between A-bimodules and vector spaces. If M is an A-bimodule, then we
may consider the functor

HomA-Bimod (M,−) : A-Bimod → Vect k.

Note that in the special case of M = A ⊗k A with the bimodule structure given by

a1 · (a2 ⊗ a3) · a4 = a1a2 ⊗ a3a4,

the functor HomA-Bimod (A ⊗k A,−) coincides with the forgetful functor sending a
bimodule to its underlying vector space.

If V is a vector space and M is an A-bimodule, then the vector spaces M ⊗k V
and Homk(M, V ) have canonical A-bimodule structures induced from the bimodule
structure on M. The functor

M ⊗k (−) : Vect k → A-Bimod

is left adjoint to HomA-Bimod (M,−). A free bimodule is a bimodule in the essential
image of (A ⊗k A) ⊗k (−). When viewed as Ae-modules, they are free modules. In
section 3.1 below, we will discuss an analogous notion of free involutive bimodules.

We now turn to the involutive variant of the above. First, suppose V and W
are involutive vector spaces. While V ⊗ W has three involutions to choose from (the
involution on V , the involution on W , or both at the same time), the quotient V ⊗�/2 W
inherits a canonical involution

v ⊗ w �→ v∗ ⊗ w = v ⊗ w∗
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(the involution on V is identified with the involution on W , and doing both involutions
simultaneously becomes the identity). This is a special case of the fact that the tensor
product of R-modules is again R-module when R is a commutative ring; here, R is the
group ring k[�/2].

Now, let A be an involutive algebra and M an involutive A-bimodule. We can regard
HomA-iBimod (M,−) as a functor A-iBimod → iVect k. Given an involutive vector space
V , the involutive vector space

M ⊗�/2 V

becomes an involutive A-bimodule since

(m ⊗ v)∗ · a∗ = (m∗ ⊗ v) · a∗

= (m∗ · a∗) ⊗ v

= (a · m)∗ ⊗ v

= ((a · m) ⊗ v)∗ = (a · (m ⊗ v))∗.

PROPOSITION 2.3.1. Let A be an involutive algebra and M and involutive A-bimodule.
There is an adjuction of functors

M ⊗�/2 (−) : iVect � A-iBimod : HomA-iBimod (M,−).

Proof. Let L be an involutive A-bimodule and V an involutive vector space. A
morphism of A-bimodules f : M ⊗k V → L is adjoint to a morphism of vector spaces
g : V → HomA-Bimod (M, L). Now, we claim that f descends to a morphism of involutive
bimodules M ⊗�/2 V → L if and only if g factors through a morphism of involutive
vector spaces

g̃ : V → HomA-iBimod (M, L).

I.e., we claim that

f (m ⊗ v∗) = f (m∗ ⊗ v) = f (m ⊗ v)∗

if and only if

g(v)(m)∗ = g(v)(m∗) = g(v∗)(m).

To see this, first suppose that f descends to an involutive morphism. Then, we have

g(v)(m)∗ = f (m ⊗ v)∗

= f (m ⊗ v∗) = f (m∗ ⊗ v)

= g(v∗)(m) = g(v)(m∗),

where the equalities on the first and third lines are due to f and g being adjoint, and
the equalities on the second line come from the hypotheses on f . The verification of
the other direction is just a permutation of the above sequence of steps. �
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We now turn our attention to the functor ⊗Aie . Given involutive bimodules M and
N, M ⊗Aie N is a priori a vector space. It can be described as the quotient of M ⊗Ae N
by the vector subspace spanned by the elements

m∗ ⊗ n − m ⊗ n∗

for m ∈ M and n ∈ N, and so as with M ⊗�/2 N, it carries an involution: (m ⊗ n)∗ =
m∗ ⊗ n = m ⊗ n∗.

PROPOSITION 2.3.2. Given involutive bimodules M and N, let �/2 act on M ⊗A N by

m ⊗ n �→ m∗ ⊗ n∗.

Then, there is an isomorphism of vector spaces

(M ⊗A N)�/2
∼= M ⊗Aie N.

Proof. In (M ⊗A N)�/2, we have

[am ⊗ n] = [(am)∗ ⊗ n∗] = [m∗a∗ ⊗ n∗] = [m∗ ⊗ a∗n∗] = [m ⊗ na],

so (M ⊗A N)�/2 is a quotient of M ⊗Aie N. On the other hand, M ⊗Aie N is clearly a
quotient of (M ⊗A N)�/2, and so the two are isomorphic. �

Summing up, we have functors

(−) ⊗�/2 (−) : iVect k × iVect k → iVect k

or A-iBimod × iVect k → A-iBimod ,

and

(−) ⊗Aie (−) : A-iBimod × A-iBimod → iVect k.

2.4. Centre and abelianization. We first recall the non-involutive setup. The centre
of an A-bimodule M is the vector subspace

Z(M) := {m ∈ M | am = ma for all a ∈ A} ⊂ M;

it is a bimodule over the centre of A, and is naturally isomorphic to HomA-Bimod (A, M).
The abelianization of M is the quotient vector space

Ab(M) := M/(am ∼ ma | m ∈ M, a ∈ A),

which canonically has the structure of a A-bimodule and is naturally isomorphic to
A ⊗Ae M.

We now turn to the case of involutive bimodules. Let A be an involutive algebra and
M an involutive A-bimodule. We define the involutive centre of M to be the involutive
vector space

iZ(M) := HomA-iBimod (A, M),
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and we define the involutive abelianization of M to be the involutive vector space

iAb(M) := A ⊗Aie M.

PROPOSITION 2.4.1. The involutive centre of M is naturally isomorphic to the pullback
(i.e., intersection) of the involutive vector spaces

Z(M) ↪→ M ←↩ M�/2.

The involutive abelianization of M is naturally isomorphic to the pushout of the involutive
vector spaces

Ab(M) ← M → M�/2.

Proof. A morphism of involutive A-bimodules f : A → M is entirely determined
by f (1), which must be an element in Z(M) since a · f (1) = f (a) = f (1) · a for any
a ∈ A, and must be fixed by the involution since 1 ∈ A is fixed. This shows that
iZ(M) is contained in Z(M) ∩ M�/2. Conversely, sending 1 ∈ A to any element in
this intersection uniquely extends to a well-defined bimodule morphism that clearly
commutes with the involutions.

Now consider the pushout P of Ab(M) ← M → M�/2. First, observe that, by the
universal property of the pushout, there is a natural map P → A ⊗Aie M sending [m]
to [1 ⊗ m]. An inverse to this should send [a ⊗ m] to [am], and it remains to check that
this is well defined. This formula gives a map f : A ⊗Ae M → P, and it satisfies

f (a∗ ⊗ m) = [a∗m] = [ma∗] = [am∗] = f (a ⊗ m∗),

so it descends to A ⊗Aie M, giving the desired inverse. �

3. Homological algebra. Let A be an involutive k-algebra. The categories of
involutive vector spaces and involutive A-bimodules are abelian categories; this follows
immediately from the identifications as module categories,

iVect k ∼= k[�/2]-Mod and A-iBimod ∼= Aie-Mod .

Hence, we may talk about projective objects, chain complexes, and quasi-isomorphisms
in each of these categories. In this section, we will show that if A is projective as an
involutive vector space then the usual construction of the bar resolution in fact provides
a projective, and hence flat, resolution of A in the category of involutive bimodules.

3.1. Flat and projective involutive bimodules. Projective objects in iVect k and
A-iBimod are defined by the usual lifting property. As these are module categories,
the usual characterization holds: An involutive vector space is projective if and only if,
viewed as a k[�/2]-module, it is a direct sumand of a free module, and an involutive
bimodule is projective if and only if, when viewed as a Aie-module, it is a direct
summand of a free module. For the purposes of this paper, we will not need to give a
more concrete characterization of projective involutive bimodules.
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REMARK 3.1.1. If the characteristic of k is different from 2, then every finite-
dimensional involutive vector space (i.e., �/2-representation) is projective by Maschke’s
Theorem. In characteristic 2, a finite-dimensional involutive vector space is projective
if and only if it does not contain the trivial representation of �/2 as a direct summand.
This is because every finite-dimensional �/2-representation splits as a sum of copies
of the trivial representation and the regular representation, which is indecomposable.
While the trivial representation is a subrepresentation of the regular representation, it
is not a direct summand, nor is it a summand of any number of copies of the regular
representation, and hence it is not projective, nor is anything that contains it as a
summand.

PROPOSITION 3.1.2. Let A be an involutive algebra and V and involutive vector
space. Considering Aie as a k[�/2]-bimodule by the inclusion k[�/2] ↪→ Aie, we have an
isomorphism of vector spaces

Aie ⊗�/2 V ∼= Ae ⊗k V,

and under this identification, the involution on the left (coming from the left action of
�/2 on Aie) corresponds with (a ⊗ b ⊗ v)∗ = b∗ ⊗ a∗ ⊗ v∗.

Proof. We have an isomorphism of vector spaces,

Aie ⊗�/2 V = Ae ⊗ k[�/2] ⊗�/2 V ∼= Ae ⊗k V,

and one easily checks that this is in fact an isomorphism of Ae-modules, i.e., A-
bimodules. This isomorphism is defined by sending (a ⊗ b ⊗ τ ) ⊗ v∗ = (a ⊗ b ⊗ 1) ⊗ v

to (a ⊗ b) ⊗ v, for a ⊗ b ∈ Ae and v ∈ V .
It remains to examine the involution. The involution on Aie ⊗�/2 V , given by left

multiplication by τ , is

(a ⊗ b ⊗ τ i) ⊗ v �→ (b∗ ⊗ a∗ ⊗ τ i+1) ⊗ v = (b∗ ⊗ a∗ ⊗ τ i) ⊗ v∗.

Thus, this corresponds to the involution (a ⊗ b) ⊗ v �→ (b∗ ⊗ a∗) ⊗ v∗ on Ae ⊗k V . �
PROPOSITION 3.1.3. Let V be a projective involutive vector space. The involutive

bimodule Aie ⊗�/2 V is projective.

Proof. We make use of the identification from Proposition 3.1.2. Bimodule
homomorphisms f : Ae ⊗k V → N are in bijection with linear maps g : V → N via
the correspondence

g(v) = f (1 ⊗ v ⊗ 1), and f (a ⊗ v ⊗ b) = ag(v)b.

Moreover, f commutes with the involutions if and only if g does. Thus, to lift f along
a surjection M → N of involutive bimodules, it suffices to produce a lift of g in the
category of involutive vector spaces, and such a lift exists since V is projective. �

An involutive bimodule M is flat if it is flat as an Aie-module; equivalently, it is
flat if the functor M⊗Aie : A-iBimod → iVect is exact. As usual, if M is a projective
involutive bimodule, then it is flat.

3.2. The bar resolution as an involutive resolution. First, recall the classical bar
resolution of an associative algebra A. We write Bar(A) for the chain complex of
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bimodules whose degree n part is A⊗k(n+2). This has the bimodule structure given
by a · (a0 ⊗ · · · ⊗ an+1) · b = aa0 ⊗ · · · ⊗ an+1b and in particular, it is free, and hence
projective as a bimodule. The differential is defined by the formula

d(a0 ⊗ · · · ⊗ an+1) =
n∑

i=0

(−1)ia0 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an+1.

The bar resolution of A is augmented by the multiplication map Bar0(A) = A ⊗k A →
A. Let �A denote the graded vector space consisting of A concentrated in degree 1, and
write T�A = ⊕

n(�A)⊗n for the tensor coalgebra with grading induced from that of
�A. Regarding T�A as a vector space, there is an isomorphism of graded bimodules

Bar(A)
∼=→ Ae ⊗k T�A

given by a0 ⊗ · · · ⊗ an+1 �→ (a0 ⊗ an+1) ⊗ (a1 ⊗ · · · ⊗ an). I.e., Bar(A) is the free graded
A-bimodule generated by the underlying vector space T�A.

Now suppose that A is an involutive algebra. In this case, T�A has an involution
given by (a1 ⊗ · · · ⊗ an)∗ = a∗

n ⊗ · · · ⊗ a∗
1. The bar resolution has an involution given

by

(a0 ⊗ · · · ⊗ an+1)∗ = a∗
n+1 ⊗ · · · ⊗ a∗

0,

and so we see that Bar(A) ∼= Ae ⊗k T�A ∼= Aie ⊗�/2 T�A is actually an isomorphism
of involutive graded bimodules. One can easily check that the differential in Bar(A)
commutes with the involutions. Hence, we have:

PROPOSITION 3.2.1. If A is an involutive algebra that is projective as an involutive
vector space, then the complex Bar(A) is a projective resolution of A as an involutive
bimodule.

Proof. This follows directly from Proposition 3.1.3. �

3.3. Involutive Hochschild homology and cohomology. Involutive Hochschild
cohomology has been defined in [1] as the cohomology of the complex of involution
preserving coderivations (actually, he dualizes and then works with derivations).
We instead define involutive Hochschild homology and cohomology as the derived
functors of involutive abelianization and involutive centre.

We propose the following definitions.
DEFINITION 3.3.1. The involutive Hochschild homology iHH∗(A, M) of an

involutive algebra A with coefficients in an involutive bimodule M is the left
derived functor of iAb : A-iBimod → iVect evaluated on M. Similarly, the involutive
Hochschild cohomology iHH∗(A, M) is the right derived functor of iZ evaluated on
M.

Equivalently,

HH∗(A, M) = TorAie

∗ (A, M),

HH∗(A, M) = Ext∗Aie (A, M).

When A is projective as an involutive vector space, then by Proposition 3.2.1,
the usual bar resolution in fact provides a resolution in the involutive setting, and so
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iHH∗(A, M) and iHH∗(A, M) can be computed by the complexes

Bar(A) ⊗Aie M = iAb(Bar(A) ⊗A M)

and

HomA-iBimod (Bar(A), M),

respectively.
The standard Hochschild chain complex, C∗(A, M), is the abelianization of the

A-bimodule Bar(A) ⊗A M, or equivalently it is Bar(A) ⊗Ae M, and this has the familiar
description

Cn(A, M) ∼= A⊗n ⊗k M, (2)

with differential

d : a1 ⊗ · · · ⊗ an ⊗ m �→ a2 ⊗ · · · ⊗ an ⊗ ma1

+
n∑

i=1

(−1)ia1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ an

+ (−1)na1 ⊗ · · · ⊗ an−1 ⊗ anm.

If A is an involutive algebra (that is projective as an involutive vector space) and
M is an involutive bimodule then the involutive Hochschild homology is computed
by the complex Bar(A) ⊗Aie M, and by Proposition 2.3.2, this is the �/2-coinvariants
of Bar(A) ⊗Ae M for the action given by a0 ⊗ · · · ⊗ an+1 ⊗ m �→ a∗

n+1 ⊗ · · · ⊗ a∗
n ⊗ m∗.

Under the identification in (2), the �/2-action on Bar(A) ⊗A M corresponds to

a1 ⊗ · · · ⊗ an ⊗ m �→ a∗
n ⊗ · · · ⊗ a∗

1 ⊗ m∗.

We thus have the following result.

PROPOSITION 3.3.2. If A is an involutive algebra that is projective as an involutive
vector space, and M is an involutive bimodule, then iHH∗(A, M) is computed by the
complex iC∗(A, M) defined as

iCn(A, M) = A⊗n ⊗ M/(a1 ⊗ · · · ⊗ an ⊗ m − a∗
n ⊗ · · · ⊗ a∗

1 ⊗ m∗)
∼= Cn(A, M)�/2,

with differential induced by the usual Hochschild differential.

The �/2 action on C∗(A, M) induces an action on HH∗(A, M).

PROPOSITION 3.3.3. If the characteristic of the ground field k is different from 2, then

iHH∗(A, M) = HH∗(A, M)�/2.

Proof. This is immediate from the fact that taking �/2-coinvariants is exact when
the characteristic is not equal to 2. �
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4. Comparison with Braun’s definition. We now compare our definition of
involutive Hochschild cohomology with Braun’s definition and show that they agree
when for involutive algebras that are projective as involutive vector spaces.

4.1. Derivations and coderivations. Given a graded algebra A, let Der(A) denote
the space of graded derivations of A into itself, and given a coalgebra C, let Coder(C)
denote the space of coderivations of C into itself. If A is an involutive algebra, then
we write iDer(A) for the subspace of involution-preserving derivations, and likewise
for the notation iCoder(C) if C carries an involution. The spaces of derivations and
coderivations are graded Lie algebras with respect to the commutator bracket, and the
subspaces iDer(A) and iCoder(A) are Lie subalgebras.

If V is a graded involutive vector space then the tensor algebra TV carries an
involution given by

(v1 ⊗ · · · ⊗ vn)∗ = v∗
n ⊗ · · · ⊗ v∗

1 .

If A is an associative algebra, then the multiplication map induces a coderivation m
on T�A of degree −1 and a derivation m′ on T̂�−1A∨ also of degree −1. If A is
an involutive algebra then m and m′ are both involution-preserving. The commutator
[m,−] defines a differential on iCoder(T�A), and likewise for the space iDer(T̂�−1A∨)
of continuous involution-preserving derivations on the completed tensor algebra.

Braun defines the involutive Hochschild cohomology to be the cohomology
computed by the complex

�−1iDer(T̂�−1A∨).

Since T�A dualizes to T̂�−1A∨, algebra derivations on the latter are the same as
coalgebra coderivations on the former, and hence there is an isomorphism of complexes

�−1iDer(T̂�−1A∨) ∼= �−1iCoder(T�A).

As we have seen, the bar resolution provides a resolution in the involutive category,
and this next proposition confirms that our derived functor definition of Hochschild
cohomology agrees with Braun’s definition.

PROPOSITION 4.1.1. There is a canonical isomorphism of complexes,

HomA-iBimod (Bar(A), A) ∼= �−1iCoder(T�A).

Proof. Since Bar(A) ∼= A ⊗k T�A ⊗k A, the degree n part of
HomA−Bimod (Bar(A), A) is the space of degree −n linear maps T�A → A, which is
isomorphic to the space of degree (−n − 1) linear maps T�A → �A. By the universal
property of the tensor coalgebra, there is a bijection between degree (−n − 1) linear
maps T�A → �A and degree (−n − 1) coderivations on T�A. Hence, the degree n
part of HomA−Bimod (Bar(A), A) is isomorphic to the degree n part of �−1Coder(T�A).
One now checks directly that this isomorphism restricts to an isomorphism of graded
vector spaces

iHomA−Bimod (Bar(A), A) ∼= �−1iCoder(T�A).
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With a bit of tedious but straightforward algebra, one can check that the differentials
coincide under the above isomorphism, cf. [4, Section 12.2.4]. �
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