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1. Introduction 

The motion of a particle of mass m according to the central force 
of Newton, is denoted by 

dx dy K / n \ 
m d t = y> d± n p x ' ( 1 ) 

where K is a constant, x=0 corresponds to singular points of this equa­
tions. The domain of (l), denoted by3£=(R3-{0})xR3, is called the phase 
space of the Kepler motion. In the sequel we set m=K=l for simplicity 
and also transform the independent variable from t to s by dt = |x|ds 
(x^O), then the Kepler motion in the phase space 3E. is written as 

52. =|X| v %L = _ * (2) 
ds |X,y' ds 1x? # Kd) 

Further, we shall confine the following discussion to the case of the 
negative energy value, except the preliminary discussion. 

Moser [l] investigated the Kepler motion, describing the problem 
in an n-dimensional space, and showed that:(i) The energy surface with 
a negative constant is homeomorphic to the unit tangent bundle of the 
n-sphere Sn, punctured at one point which corresponds to the collision 
states, (in particular for n=2, the unit tangent bundle of the sphere S 
is homeomorphic to the 3-dimensional protective space P3.) (ii) The 
orbit space of the Kepler flow on an energy surface is homeomorphic to 
S2 for n=2, and to S2*S2 for n=3. 

In the investigation of Moser, however, the problem of the recon­
struction of the energy-manifold on the basis of the orbit space was 
not treated. The goal of this note is to fill up this gap. To this end, 
we consider first the Kepler flow on the Kustaanheimo-Stiefel's para­
metric space, by making use of theKustaanheimo-Stiefel's transforma­
tion (abbreviated as KS-map in the sequel) (Kustaanheimo-Stiefel [2]), 
and discuss the topology of the relevant energy-manifold, and then pull 
back the results to the phase space. 
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2. Preliminaries 
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We collect here the important properties with respect to the KS-map 
(cf. Stiefel-Scheifele [3]), and define the notions convenient in what 
follows. 

Def. 1. If we set: i= 

and cons t ruc t i u , j u , ku from a U-vector u=(ui ,u ,u ,u ) ? , where prime 
denotes " t r ansposed" , and i f any po in t of R3 i s au tomat i ca l ly supple­
mented t o a po in t of R** with fourth-component of va lue ze ro , then the 
KS-map T^R1*-*3 i s defined by u-*x=L(u)u, where L(u) = (u, i u , j u , k u ) . 

Def. 2 . For any ueR** ( u / 0 ) , - £ u i s defined by *Cu={veR^| L(u)v= 
=L(v)u}. 

Def. 3. For any ueR1* (u#0) , a map Tu : «CU -> R3 i s defined by 
v>y=(2/ | u | z ) L ( u ) v . 

Def. k. In R^XR1* we c a l l a s e t p = { ( u , v ) I U E ^ R M O } ) , v e X u } the KS-
space of Kustaanheimo-St iefe l . 

Def. 5 . We define a Cf°-surjection T:p-*J£; ( u , v M x , y ) by x=T, (u)= 
=L(u)u, y=T ( V ) = ( 2 / | U | 2 ) L ( U ) V . We c a l l T the enlarged KS-map. 

Lemma 1. For any Uj'ueR1* (u,u^0) and ve.£u, "VE^C^T, a necessary and 
sufficient condition for L(u)u=L(u)u", and Tu(v)=T^("vT is that there 
exists x(mo<i« 27T) such that u=exp(-xk)u, v=exp(-xk)v. 

Lemma 2. The system of differential equations onp: 
du 
ds 

dv 1 T |2 11 
ds- = T i p r - 2 j u (3) 

transforms to the Kepler motion (2) on the phase space 3E. by the enlarged 
KS-map T. 

Lemma 3« The system of differential equations (3) on the KS-space 
has the following integrals: 
(i) L(u)kv-L(v)ku=C, L(u)v-L(v)u=C0, L(u)iv-L(v)iu=C1, 

L(u)jv-L(v)ju=C2. 
The first one corresponds to the integral of angular momentum and the 
constant CQ of the second one must be zero for the consistency of the 
theory (cf. Def. k and 2). 
(ii) T~r2ilv' - p" I = b; this corresponds to the integral of energy. 

Taking the energy-integral into account, the system of differential 
equations (3) reduces to the following system: 

du 
ds = v, 

dv h 
ds-= 2 U> (M 

on each energy-manifold Pg in KS-space, where 

P£ «{(u ,v) u * ) , v * 6 u , - ^ v l 2 - i ] = h } . (5) 

Since, for a given constant h, the functions on the right-hand sides of 
(h) have no singular points on Ri*xRt*5 w e shall extend its domain from 
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(5) to 

Ph = {(u,v) |2|v|2 - h|ul2= 1, and ve£ u if u^0>. (6) 

Hence P^ is a union of Pg and Pcoi> which is defined as: 

Pcol = {(u,v)|u=0, tv|2=|>. (7) 
Def. 6. Any two points (u,v) and Cu,"v) on Ph are call orbit-

equivalent each other, if they are on a same solution curve of the 
flow (h) on P^, and are called KS-equivalent each other, if there exists 
such x(m°d. 2TT) that "u=exp(-xk)u, *v=exp(-)<k)v. 

3. Results 

In what follows we shall restrict ourselves to a discussion of a 
negative energy-manifold with an energy constant h = -2a)2. And we here 
introduce an important diffeomorphism H on R̂ xR** after Stiefel-Schei-
fele ([3], § *15) by 

u = f(£+ri), v = - |u)k(s-n). (8) 
By the transformation (8), the Kepler flow (k) on Pft is transformed into 

£--«*«. g-«*n. ' (9) 
In the (£,r))-space we can easily consider the topological structure of 
the corresponding energy-manifold induced by the diffeomorphism H. In 
the sequel we will state the main results without proof. 

We define a C°°-surjection II by U,n)+n(S,n)=(L(£)?,L(n)n) in (S,n)-
space, which defines a C°°-projection of S 3xS3 onto S2*S . With this II we 
obtain the following: 

Prop. 1. Ph is diffeomorphic to S3xS3. 
Prop. 2. S xS3 is a bundle space of a fibre bundle with base space 

S2xS2, fibre S^S 1 and structure group S0(2)xS0(2). 
Let us consider a quotient space of S3xS3 by the KS-equivalence re­

lation, induced in (£,n)-space by the same way as § 2, Def. 6. We denote 
it by (S3xS3)/KS^, and let T be a canonical projection of S3xS3 onto 
(S3xS3)/KS^. Since n is compatible with the KS-equivalence relation, 
there exists uniquely a C°°-surjection IT* of (S3xS3)/KS^ onto S2xS2 such 
that n = II* •T. By the projection II any points which are orbit- or KS-
equivalent each other, are mapped onto a same point. The set of equiva­
lence classes S2xS2 corresponds to the orbit space of the Kepler motion. 

Prop. 3. ((S3xS3)/KS%, n*, S2xS2, S1, S0(2)) is a fibre bundle. 

On the basis of Prop. 2 and 3 we obtain the following theorems. 
Theo. 1. P^ is diffeomorphic to a bundle space S3xS3 of a fibre 

bundle: (S'xs3, IT, S2xS2, S^S1, S0(2)xS0(2)). 
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Theo. 2. P^/KS^ is diffeomorphic to a bundle space (S3xS3)/KS% of a 
fibre bundle: ((S 3xS 3)/KS% II*, S^xs2, S1, S0(2)). 

Let Pjj c be a set of all (u,v) with energy h=-2a)2 and with angular 
momentum C: 

ph,c ={(u,v) |L(u)kv-L(v)ku=C, 2 |v|2 + 2co2 |u|2 = 1, and ve<Cu if u^O}. 

Theo. 3. If |C|£L/2a>, #), Ph C/KS^ is diffeomorphic to S^S1, if 
IC|=l/2oo, Phjc/KS^ is diffeomorphic to S1, and if C=0, Ph>c/KS^ is dif­
feomorphic to S2xs1. 

Theo. k. The energy-manifold X^CiCof the Kepler motion is homeomor-
phic to a subset (Ph\Pcol)/KS^ of Ph/KS^. 

In a planar case, P^/KS^ is diffeomorphic to a projective space P3 

and Theo. 2 should be rewritten as: 
Theo. 2T. In the planar case P^/KS^ is diffeomorphic to a bundle 

space P of a fibre bundle with base space S2, fibre S1 and structure 
group S0(2). 
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