LOCALIZATION PROBLEM OF THE ABSOLUTE RIESZ AND ABSOLUTE NÖRLUND SUMMABILITIES OF FOURIER SERIES

MASAKO IZUMI AND SHIN-ICHI IZUMI

1. Introduction and theorems.

1.1. Let $\sum a_{n}$ be an infinite series and s_{n} its nth partial sum. Let $\left(p_{n}\right)$ be a sequence of positive numbers such that

$$
P_{n}=p_{0}+p_{1}+\ldots+p_{n} \rightarrow \infty \quad \text { as } n \rightarrow \infty
$$

If the sequence

$$
\begin{equation*}
t_{n}=\frac{1}{P_{n}} \sum_{k=0}^{n} p_{k} s_{k} \quad(n=0,1,2, \ldots) \tag{1}
\end{equation*}
$$

is of bounded variation, that is, $\sum\left|t_{n}-t_{n-1}\right|<\infty$, then the series $\sum a_{n}$ is said to be absolutely $\left(R, p_{n}, 1\right)$ summable or $\left|R, p_{n}, 1\right|$ summable.

Let f be an integrable function with period 2π and let its Fourier series be

$$
\begin{equation*}
f(x) \sim \frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)=\sum_{n=0}^{\infty} A_{n}(x) \tag{2}
\end{equation*}
$$

Dikshit [4] (cf. Bhatt [1] and Matsumoto [7]) has proved the following theorems.

Theorem I. Suppose that (i) the sequence $\left(p_{n} / P_{n}\right)$ is monotone decreasing, (ii) $m_{n}>0$, (iii) the sequence ($m_{n} p_{n} / P_{n}$) decreases monotonically to zero, and (iv) the series $\sum\left(m_{n} p_{n} / P_{n}\right)$ is divergent. If $0<a<b<2 \pi$, there is a function f integrable over the interval (a, b) and vanishing on the intervals $(0, a)$ and $(b, 2 \pi)$ such that the series $\sum m_{n} A_{n}(x)$ is not $\left|R, p_{n}, 1\right|$ summable at the origin.

Theorem II. Suppose that (i) the sequence $\left(p_{n} / P_{n}\right)$ is monotone decreasing and (ii) the sequence $\left(P_{n} / n^{1+\theta} p_{n}\right)$ decreases for $a \theta, 0<\theta \leqq 1$. If

$$
\sum_{n=1}^{\infty}\left(\left|A_{n}(x)\right| p_{n} / P_{n}\right)<\infty
$$

then the summability $\left|R, p_{n}, 1\right|$ of the Fourier series (2) at the point x depends only on the behaviour of the function f in the immediate neighbourhood of the point x.

We shall first prove the following theorem.

Received March 28, 1969.

Theorem 1. Suppose that $\left(p_{n}\right)$ is a sequence of positive numbers such that $P_{n} \rightarrow \infty$ and ($p_{n} / P_{n-1} P_{n}$) is decreasing and the sequence $\left(m_{n}\right)$ of positive numbers is of bounded variation such that

$$
m_{n} p_{n} / P_{n} \leqq A m_{2 n} p_{2 n} / P_{2 n} \quad \text { for all } n
$$

and $\left(m_{n} p_{n} / P_{n}\right)$ is monotone decreasing. If

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\left|A_{n}(x)\right| m_{n} p_{n} / P_{n}\right)<\infty, \tag{3}
\end{equation*}
$$

then the summability $\left|R, p_{n}, 1\right|$ of the series $\sum m_{n} A_{n}(x)$ at the point x depends only on the behaviour of the function f in the immediate neighbourhood of the point x.
1.2. The nth Nörlund mean of the series $\sum a_{n}$ is defined by

$$
\begin{equation*}
t_{n}=\frac{1}{P_{n}} \sum_{k=0}^{n} p_{n-k} s_{k}, \tag{4}
\end{equation*}
$$

s_{k} being the k th partial sum of the series. If the sequence $\left(t_{n}\right)$ is of bounded variation, then the series $\sum a_{n}$ is said to be absolutely (N, p_{n}) summable or $\left|N, p_{n}\right|$ summable.

Daniel [3] has proved the following theorems which are a generalization of the theorems of Jurkat and Peyerimhoff [6] and Bhatt [2].

Theorem III. If the positive sequence $\left(m_{n}\right)$ satisfies the conditions

$$
\sum\left(m_{n}|\cos 2 n x| / P_{n}\right)<\infty
$$

and

$$
\sum\left(m_{n} / P_{n}\right)=\infty,
$$

then the summability $\left|N, p_{n}\right|$ of the series $\sum m_{n} A_{n}(x)$ at the point x is not a local property of f.

Theorem IV. Suppose that the sequences $\left(p_{n}\right)$ and $\left(m_{n}\right)$ are positive monotone decreasing and that they satisfy the following conditions:

$$
\begin{gather*}
m_{n+1} / m_{n+k} \leqq A, \text { uniformly in } k<n, \text { as } n \rightarrow \infty, \tag{5}\\
\frac{1}{n m_{n}} \sum_{k=1}^{n} \frac{m_{k}}{P_{k}} \leqq A \text { as } n \rightarrow \infty, \tag{6}\\
\sum_{n=1}^{\infty} \frac{m_{n}}{n P_{n}}<\infty . \tag{7}
\end{gather*}
$$

If

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\left|A_{n}(x)\right| m_{n} / P_{n}\right)<\infty \tag{8}
\end{equation*}
$$

then the summability $\left|N, p_{n}\right|$ of the series $\sum m_{n} A_{n}(x)$ depends only on the behaviour of f in the immediate neighbourhood of the point x.

We prove the following result.

Theorem 2. Suppose that the sequences $\left(p_{n}\right)$ and $\left(m_{n}\right)$ are positive, monotone decreasing and

$$
m_{n} / P_{n} \leqq A m_{2 n} / P_{2 n} \quad \text { for all } n .
$$

If the condition (8) is satisfied, then the summability $\left|N, p_{n}\right|$ of the series $\sum m_{n} A_{n}(x)$ depends only on the behaviour of f in the immediate neighbourhood of the point x.

Further, we prove the following.
Theorem 3. Suppose that $\left(m_{n}\right)$ is a positive, monotone decreasing and convex sequence such that

$$
\Delta m_{n} \leqq A \Delta m_{2 n} \quad \text { for all } n
$$

and that the sequence $\left(p_{n}\right)$ is monotone increasing and satisfies the condition

$$
\begin{equation*}
\sum_{n=j+1}^{\infty} \frac{p_{n-j}-p_{n-j-1}}{P_{n-1}} \leqq \frac{A}{j+1} \quad \text { for all } j \geqq 0 . \tag{9}
\end{equation*}
$$

If

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\left|A_{n}(x)\right| m_{n}}{n}<\infty \quad \text { and } \quad \sum_{n=1}^{\infty}\left|A_{n}(x)\right| \Delta m_{n} \log n<\infty \tag{10}
\end{equation*}
$$

then the summability $\left|N, p_{n}\right|$ of the series $\sum m_{n} A_{n}(x)$ depends only on the behaviour of f in the immediate neighbourhood of the point x.

Theorems 1, 2, and 3 hold also for conjugate series.

2. Proofs of the theorems.

2.1. Proof of Theorem 1. We can suppose that f is even and $x=0$. We shall consider the Riesz means (t_{n}) of the series $\sum m_{n} a_{n}$, then (1) yields

$$
t_{n}-t_{n-1}=\frac{P_{n}}{P_{n} P_{n-1}} \sum_{k=0}^{n-1} P_{k} m_{k+1} a_{k+1}
$$

and then

$$
\begin{align*}
\sum_{n=1}^{\infty}\left|t_{n}-t_{n-1}\right| & \leqq \sum_{n=1}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}}\left|\sum_{k=0}^{n-1} P_{k} m_{k+1} a_{k+1}\right| \tag{11}\\
& =\sum_{n=1}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}}\left|T_{n}\right|
\end{align*}
$$

We can write

$$
\begin{align*}
& \text { 2) } T_{n}=\sum_{k=0}^{n-1} P_{k} m_{k+1} a_{k+1}=\frac{2}{\pi} \int_{0}^{\pi} f(t)\left(\sum_{k=0}^{n-1} P_{k} m_{k+1} \cos (k+1) t\right) d t \tag{12}\\
& =\frac{2}{\pi} \int_{0}^{\pi} f(t)\left[\sum_{k=1}^{n-1}\left(P_{k-1} \Delta m_{k}-p_{k} m_{k+1}\right) D_{k}(t)+P_{n-1} m_{n} D_{n}(t)-P_{0} m_{1} D_{0}(t)\right] d t,
\end{align*}
$$

where $D_{k}(t)$ is the k th Dirichlet kernel [8], that is,

$$
D_{k}(t)=\frac{\sin \left(k+\frac{1}{2}\right) t}{2 \sin \frac{1}{2} t}=\frac{\sin k t}{2 \tan \frac{1}{2} t}+\frac{1}{2} \cos k t .
$$

Hence we put

$$
\begin{align*}
& T_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(t)\left[\sum_{k=1}^{n-1}\left(P_{k-1} \Delta m_{k}-p_{k} m_{k+1}\right) \frac{\sin k t}{2 \tan \frac{1}{2} t}+P_{n-1} m_{n} \frac{\sin n t}{2 \tan \frac{1}{2} t}\right] d t \tag{13}\\
& +\frac{1}{\pi} \int_{0}^{\pi} f(t)\left[\sum_{k=1}^{n-1}\left(P_{k} \Delta m_{k}-p_{k} m_{k+1}\right) \cos k t+P_{n-1} m_{n} \cos n t-P_{0} m_{1}\right] d t \\
& \quad=T_{n}^{\prime}+T_{n}^{\prime \prime}
\end{align*}
$$

then

$$
\left|T_{n}^{\prime \prime}\right| \leqq A \sum_{k=1}^{n-1}\left(P_{k-1}\left|\Delta m_{k}\right|+p_{k} m_{k+1}\right)\left|a_{k}\right|+A P_{n-1} m_{n}\left|a_{n}\right|+A
$$

and hence, by (3) and since m_{k} is of bounded variation, we have

$$
\begin{align*}
& \sum_{n=1}^{\infty} \frac{p_{n}\left|T_{n}{ }^{\prime \prime}\right|}{P_{n} P_{n-1}} \leqq A \sum_{n=1}^{\infty} \frac{p_{n} m_{n}\left|a_{n}\right|}{P_{n}}+A \sum_{n=1}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}} \tag{14}\\
& +A \sum_{k=1}^{\infty}\left(P_{k-1}\left|\Delta m_{k}\right|+p_{k} m_{k+1}\right)\left|a_{k}\right| \sum_{n=k+1}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}} \\
& \leqq A+\sum_{k=1}^{\infty} \frac{P_{k-1}\left|\Delta m_{k}\right|+p_{k} m_{k+1}}{P_{k}}\left|a_{k}\right|<\infty .
\end{align*}
$$

By (11), (13), and (14), we obtain

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left|t_{n}-t_{n-1}\right| \leqq A+\sum_{n=1}^{\infty} \frac{p_{n}\left|T_{n}{ }^{\prime}\right|}{P_{n} P_{n-1}} \tag{15}
\end{equation*}
$$

We shall prove that the last sum is finite except for the terms depending on the behaviour of f in the interval $(0, \epsilon), \epsilon$ being any positive fixed number.

Now, we define an odd continuous function g, periodic with period 2π, such that

$$
g(t)=\frac{1}{2} \cot \frac{1}{2} t \text { in the interval }(\epsilon, \pi)
$$

and that g is differentiable at least four times everywhere. If we write

$$
\begin{equation*}
g(t) \sim \sum_{n=1}^{\infty} c_{n} \sin n t \tag{16}
\end{equation*}
$$

then $c_{n}=O\left(1 / n^{3}\right)$ as $n \rightarrow \infty$. Using this function $g(t)$, we obtain the following formula:

$$
\begin{align*}
\int_{0}^{\pi} \frac{f(t)}{2 \tan \frac{1}{2} t} \sin n t d t=\int_{0}^{\epsilon} f(t)\left(\frac{1}{2 \tan \frac{1}{2} t}-g(t)\right) & \sin n t d t \tag{17}\\
& +\int_{0}^{\pi} f(t) g(t) \sin n t d t
\end{align*}
$$

Since the first integral on the right side of (17) depends on the values of f in the interval $(0, \epsilon)$, we leave it out of consideration. Hence it is enough to show that

$$
\begin{align*}
\sum_{n=1}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}} \sum_{k=1}^{n-1}\left(P_{k-1}\left|\Delta m_{k}\right|\right. & \left.+p_{k} m_{k+1}\right)\left|\int_{0}^{\pi} f(t) g(t) \sin k t d t\right| \tag{18}\\
& +\sum_{n=1}^{\infty} \frac{m_{n} p_{n}}{P_{n}}\left|\int_{0}^{\pi} f(t) g(t) \sin 3 n t d t\right|=U+V
\end{align*}
$$

is finite. By (16), we obtain

$$
\begin{align*}
\int_{0}^{\pi} f(t) g(t) \sin n t d t & =\sum_{j=1}^{\infty} c_{j} \int_{0}^{\pi} f(t) \sin j t \sin n t d t \tag{19}\\
& =\frac{\pi}{4} \sum_{j=1}^{\infty} c_{j}\left(a_{|j-n|}-a_{j+n}\right)
\end{align*}
$$

and then

$$
\begin{equation*}
V \leqq A \sum_{n=1}^{\infty} \frac{m_{n} p_{n}}{P_{n}} \sum_{j=1}^{\infty}\left|c_{j}\right|\left(\left|a_{|j-n|}\right|+\left|a_{j+n}\right|\right)=V_{1}+V_{2} \tag{20}
\end{equation*}
$$

where

$$
\begin{align*}
V_{1} & =A \sum_{j=1}^{\infty}\left|c_{j}\right| \sum_{n=1}^{\infty} \frac{m_{n} p_{n}}{P_{n}}\left|a_{|j-n|}\right| \tag{21}\\
& =A \sum_{j=1}^{\infty}\left|c_{j}\right|\left(\sum_{n=1}^{j} \frac{m_{n} p_{n}}{P_{n}}\left|a_{j-n}\right|+\sum_{n=j+1}^{\infty} \frac{m_{n} p_{n}}{P_{n}}\left|a_{n-j}\right|\right) \\
& \leqq A \sum_{n=1}^{\infty} \frac{m_{n} p_{n}}{P_{n}} \sum_{j=n}^{\infty}\left|c_{j}\right|+\sum_{j=1}^{\infty}\left|c_{j}\right| \sum_{n=1}^{\infty} \frac{m_{n} p_{n}}{P_{n}}\left|a_{n}\right| \\
& \leqq A \sum_{n=1}^{\infty} \frac{m_{n} p_{n}}{P_{n}} \frac{1}{n^{2}}+A \sum_{j=1}^{\infty} \frac{1}{j^{3}} \\
& <\infty
\end{align*}
$$

by using the monotonicity of the sequence $\left(m_{n} p_{n} / P_{n}\right)$ and the condition (3), and

$$
\begin{align*}
V_{2} & =A \sum_{n=1}^{\infty} \frac{m_{n} p_{n}}{P_{n}}\left(\sum_{j=1}^{n}+\sum_{j=n+1}^{\infty}\right)\left|c_{j}\right|\left|a_{j+n}\right| \tag{22}\\
& \leqq A \sum_{j=1}^{\infty}\left|c_{j}\right| \sum_{n=j}^{\infty} \frac{m_{n} p_{n}}{P_{n}}\left|a_{2 n}\right|+A \sum_{n=1}^{\infty} \frac{m_{n} p_{n}}{P_{n}} \sum_{j=n+1}^{\infty} \frac{1}{j^{3}} \\
& \leqq A \sum_{j=1}^{\infty}\left|c_{j}\right| \sum_{n=j}^{\infty} \frac{m_{2 n} p_{2 n}}{P_{2 n}}\left|a_{2 n}\right|+A \sum_{n=1}^{\infty} \frac{m_{n} p_{n}}{n^{2} P_{n}} \\
& <\infty,
\end{align*}
$$

by the conditions $m_{n} p_{n} / P_{n} \leqq A m_{2 n} p_{2 n} / P_{2 n}$ and (3).

On the other hand we put

$$
\begin{align*}
& U \leqq A \sum_{n=1}^{\infty} \frac{p_{n}}{P_{n-1} P_{n}} \sum_{k=1}^{n-1}\left(P_{k-1}\left|\Delta m_{k}\right|+p_{k} m_{k+1}\right) \sum_{j=1}^{\infty}\left|c_{j}\right|\left(\left|a_{1 j-n \mid}\right|+\left|a_{j+n}\right|\right) \tag{23}\\
& \leqq A \sum_{j=1}^{\infty}\left|c_{j}\right| \sum_{k=1}^{\infty} \frac{P_{k-1}\left|\Delta m_{k}\right|}{P_{k}} \\
& +A \sum_{n=1}^{\infty} \frac{p_{n}}{P_{n-1} P_{n}} \sum_{k=1}^{n-1} p_{k} m_{k+1}\left(\sum_{j=0}^{n-1}\left|c_{n-j}\right|\left|a_{j}\right|+\sum_{j=1}^{\infty}\left|c_{n+j}\right|\left|a_{j}\right|\right. \\
& \left.+\sum_{j=1}^{\infty}\left|c_{j}\right|\left|a_{j+n}\right|\right) \\
& =W+X+Y+Z .
\end{align*}
$$

W is evidently finite. We write

$$
\begin{align*}
X & =A \sum_{j=0}^{\infty}\left|a_{j}\right| \sum_{n=j+1}^{\infty} \frac{p_{n}\left|c_{n-j}\right|}{P_{n-1} P_{n}} \sum_{k=1}^{n-1} p_{k} m_{k+1} \tag{24}\\
& =A \sum_{j=0}^{\infty}\left|a_{j}\right| \sum_{n=j+1}^{\infty} \frac{p_{n}\left|c_{n-j}\right|}{P_{n-1} P_{n}}\left(\sum_{k=1}^{j-1}+\sum_{k=j}^{n-1}\right) p_{k} m_{k+1} \\
& =X_{1}+X_{2} .
\end{align*}
$$

Since the sequence ($p_{n} / P_{n-1} P_{n}$) decreases as $n \rightarrow \infty$, we have

$$
\begin{align*}
X_{1} & \leqq A \sum_{j=0}^{\infty}\left|a_{j}\right| \sum_{n=j+1}^{\infty} \frac{p_{n}\left|c_{n-j}\right|}{P_{n-1} P_{n}}\left(P_{j-1} m_{j}+\sum_{k=1}^{j-2} P_{k} \Delta m_{k+1}+P_{0} m_{2}\right) \tag{25}\\
& \leqq A \sum_{j=0}^{\infty} \frac{p_{j} m_{j}\left|a_{j}\right|}{P_{j}}+A \sum_{j=0}^{\infty} \frac{\left|a_{j}\right| p_{j}}{P_{j-1} P_{j}} \sum_{k=1}^{j-2} P_{k}\left|\Delta m_{k+1}\right|+A \\
& \leqq A+A \sum_{k=1}^{\infty} P_{k}\left|\Delta m_{k+1}\right| \sum_{j=k+2}^{\infty} \frac{\left|a_{j}\right| p_{j}}{P_{j-1} P_{j}} \\
& <\infty,
\end{align*}
$$

and, by the monotonicity of the sequences $\left(p_{n} / P_{n-1} P_{n}\right)$ and $\left(m_{n} p_{n} / P_{n}\right)$, we can see that

$$
\begin{align*}
X_{2} & \leqq A \sum_{j=0}^{\infty}\left|a_{j}\right| \sum_{k=j}^{\infty} p_{k} m_{k+1} \sum_{n=k+1}^{\infty} \frac{p_{n}\left|c_{n-j}\right|}{P_{n-1} P_{n}} \tag{26}\\
& \leqq A \sum_{j=0}^{\infty}\left|a_{j}\right| \sum_{k=j}^{\infty} \frac{p_{k} m_{k+1} p_{k+1}}{P_{k} P_{k+1}(k-j+1)^{2}} \\
& \leqq A \sum_{j=0}^{\infty} \frac{\left|a_{j}\right| p_{j} m_{j}}{P_{j}} \\
& <\infty .
\end{align*}
$$

Further we obtain

$$
\begin{equation*}
Y \leqq A \sum_{n=1}^{\infty} \frac{p_{n}}{P_{n-1} P_{n}} \sum_{k=1}^{n-1} p_{k} m_{k+1} \sum_{j=1}^{\infty}\left|c_{n+j}\right| \leqq A \sum_{n=1}^{\infty} \frac{p_{n}}{n^{2} P_{n}}<\infty \tag{27}
\end{equation*}
$$

and
(28) $Z \leqq A \sum_{j=1}^{\infty}\left|c_{j}\right| \sum_{n=1}^{\infty} \frac{p_{n}\left|a_{n+j}\right|}{P_{n-1} P_{n}} \sum_{k=1}^{n-2} p_{k} m_{k+1}$

$$
\begin{aligned}
& \leqq A \sum_{j=1}^{\infty}\left|c_{j}\right| \sum_{n=1}^{\infty} \frac{p_{n}\left|a_{n+j}\right|}{P_{n-1} P_{n}}\left(P_{0} m_{2}+P_{n-1} m_{n}+\sum_{k=1}^{n-2} P_{k}\left|\Delta m_{k+1}\right|\right) \\
& \leqq A \sum_{j=1}^{\infty} c_{j}+A \sum_{n=1}^{\infty} \frac{m_{n} p_{n}}{P_{n}} \sum_{j=1}^{\infty}\left|c_{j}\right|\left|a_{n+j}\right|+A \sum_{j=1}^{\infty}\left|c_{j}\right| \sum_{k=1}^{\infty}\left|\Delta m_{k+1}\right| \\
& <\infty
\end{aligned}
$$

by using (22).
Collecting (23)-(28), we can see that U is finite. Combining this with (18), (20), (21), and (22), we obtain the required result.
2.2. Proof of Theorem 2. We can suppose that f is even and $x=0$. Let $\left(t_{n}\right)$ be the nth Nörlund mean of the series $\sum m_{n} a_{n}$, then; by (4),

$$
t_{n}=\frac{1}{P_{n}} \sum_{k=0}^{n} p_{n-k} s_{k}^{\prime}
$$

where $s_{k}{ }^{\prime}$ is the k th partial sum of the series $\sum m_{n} a_{n}$. Hence

$$
\begin{align*}
t_{n}-t_{n-1}= & \frac{1}{P_{n} P_{n-1}} \sum_{k=0}^{n}\left(p_{k} P_{n}-p_{n} P_{k}\right) m_{n-k} a_{n-k} \tag{29}\\
= & \frac{1}{P_{n} P_{n-1}}\left\{\sum _ { k = 1 } ^ { n - 1 } \left[P_{n}\left(p_{k} m_{n-k}-p_{k-1} m_{n-k+1}\right)\right.\right. \\
& \left.\quad-p_{n}\left(P_{k} m_{n-k}-P_{k-1} m_{n-k+1}\right)\right] s_{n-k} \\
& \left.\quad-m_{1}\left(P_{n} p_{n-1}-P_{n-1} p_{n}\right) s_{0}+m_{n}\left(p_{0} P_{n}-P_{0} p_{n}\right) s_{n}\right\} \\
& =R_{n}+S_{n}+T_{n}
\end{align*}
$$

where s_{n} is the nth partial sum of the series $\sum a_{n}$.
Now, the coefficient of s_{n-k} in R_{n} is

$$
\begin{aligned}
\frac{1}{P_{n} P_{n-1}} & \left\{P_{n}\left(p_{k} m_{n-k}-p_{k-1} m_{n-k+1}\right)-p_{n}\left(P_{k} m_{n-k}-P_{k-1} m_{n-k+1}\right)\right\} \\
& =\frac{1}{P_{n} P_{n-1}}\left\{\left(P_{n} p_{k}-p_{n} P_{k}\right)\left(m_{n-k}-m_{n-k+1}\right)+\left(P_{n-1} p_{k}-P_{n} p_{k-1}\right) m_{n-k+1}\right\},
\end{aligned}
$$

so that

$$
\begin{align*}
& \sum_{n=1}^{\infty}\left|R_{n}\right| \leqq \sum_{n=1}^{\infty} \frac{1}{P_{n} P_{n-1}} \sum_{k=1}^{n-1}\left(P_{n} p_{k}-p_{n} P_{k}\right)\left(m_{n-k}-m_{n-k+1}\right)\left|s_{n-k}\right| \tag{30}\\
& \quad+\sum_{n=1}^{\infty} \frac{1}{P_{n} P_{n-1}} \sum_{k=1}^{n-1}\left(P_{n} p_{k-1}-P_{n-1} p_{k}\right) m_{n-k+1}\left|s_{n-k}\right| \\
&=U+V .
\end{align*}
$$

As in the proof of Theorem 1, we define the function $g(t)$, and we write

$$
\begin{aligned}
U= & \sum_{n=1}^{\infty} \frac{1}{P_{n} P_{n-1}} \sum_{j=1}^{n-1}\left(P_{n} p_{n-j}-p_{n} P_{n-j}\right)\left(m_{j}-m_{j+1}\right) \\
& \times\left\{\frac { 2 } { \pi } \left[\int_{0}^{\epsilon} f(t)\left(\frac{1}{2 \tan \frac{1}{2} t}-g(t)\right) \sin j t d t\right.\right. \\
= & \left.\left.+\int_{0}^{\pi} f(t) g(t) \sin j t d t\right]+\frac{1}{2} a_{j}\right\}
\end{aligned}
$$

$$
V=\sum_{n=1}^{\infty} \frac{1}{P_{n} P_{n-1}} \sum_{j=1}^{n-1}\left(P_{n} p_{n-j-1}-P_{n-1} p_{n-j}\right) m_{j+1}
$$

$$
\times\left\{\frac { 2 } { \pi } \left[\int_{0}^{\epsilon} f(t)\left(\frac{1}{2 \tan \frac{1}{2} t}-g(t)\right) \sin j t d t\right.\right.
$$

$$
\left.\left.+\int_{0}^{\pi} f(t) g(t) \sin j t d t\right]+\frac{1}{2} a_{j}\right\}
$$

$$
=V_{1}+V_{2}+V_{3}
$$

where U_{1} and V_{1} depend only on the value of f in the immediate neighbourhood of the origin. Thus it is sufficient to show that U_{2}, U_{3}, V_{2}, and V_{3} are finite.

Since the sequence (p_{n}) decreases monotonically and

$$
\begin{equation*}
\sum_{n=j+1}^{\infty} \frac{p_{n-j-1}-p_{n-j}}{P_{n-1}} \leqq \frac{A}{P_{j}} \quad \text { for all } j \geqq 0 \tag{31}
\end{equation*}
$$

we have, by (8),

$$
\begin{align*}
V_{3} & \leqq \sum_{n=1}^{\infty} \frac{1}{P_{n} P_{n-1}} \sum_{j=1}^{n-1}\left(P_{n} p_{n-j-1}-P_{n-1} p_{n-j}\right) m_{j+1}\left|a_{j}\right| \tag{32}\\
& =\sum_{j=1}^{\infty} m_{j+1}\left|a_{j}\right| \sum_{n=j+1}^{\infty}\left(\frac{p_{n-j-1}-p_{n-j}}{P_{n}}+p_{n-j-1}\left(\frac{1}{P_{n-1}}-\frac{1}{P_{n}}\right)\right) \\
& \leqq A \sum_{j=1}^{\infty} \frac{m_{j}\left|a_{j}\right|}{P_{j}} \\
& <\infty .
\end{align*}
$$

We see that (cf. [5, formula (17)])

$$
\begin{equation*}
\sum_{n=j+1}^{\infty} \frac{P_{n} p_{n-j}-p_{n} P_{n-j}}{P_{n} P_{n-1}} \leqq A \tag{33}
\end{equation*}
$$

and thus

$$
\begin{align*}
U_{3} & \leqq \sum_{n=1}^{\infty} \frac{1}{P_{n} P_{n-1}} \sum_{j=1}^{n-1}\left(P_{n} p_{n-j}-p_{n} P_{n-j}\right) \Delta m_{j}\left|a_{j}\right| \tag{34}\\
& =\sum_{j=1}^{\infty} \Delta m_{j}\left|a_{j}\right| \sum_{n=j+1}^{\infty} \frac{P_{n} p_{n-j}-p_{n} P_{n-j}}{P_{n} P_{n-1}} \\
& <\infty .
\end{align*}
$$

By (19) and (33), we obtain

$$
\begin{align*}
U_{2} & \leqq A \sum_{n=1}^{\infty} \frac{1}{P_{n} P_{n-1}} \sum_{j=1}^{n-1}\left(P_{n} p_{n-j}-p_{n} P_{n-j}\right) \Delta m_{j} \sum_{k=1}^{\infty}\left|c_{k}\right|\left|a_{|k-j|}+a_{k+j}\right| \tag{35}\\
& \leqq A \sum_{j=1}^{\infty} \Delta m_{j} \sum_{n=j+1}^{\infty} \frac{P_{n} p_{n-j}-p_{n} P_{n-j}}{P_{n} P_{n-1}} \\
& \leqq A \sum_{j=1}^{\infty} \Delta m_{j} \\
& <\infty .
\end{align*}
$$

Finally we shall estimate V_{2}. We put

$$
\begin{aligned}
& V_{2} \leqq A \sum_{n=1}^{\infty} \frac{1}{P_{n} P_{n-1}} \sum_{j=1}^{n-1}\left(P_{n} p_{n-j-1}-P_{n-1} p_{n-j}\right) m_{j+1} \sum_{k=1}^{\infty}\left|c_{k}\right|\left(\left|a_{|j-k|}\right|+\left|a_{j+k}\right|\right) \\
&=A \sum_{n=1}^{\infty} \frac{1}{P_{n-1}} \sum_{j=1}^{n-1}\left(p_{n-j-1}-p_{n-j}\right) m_{j+1} \sum_{k=1}^{\infty}\left|c_{k}\right|\left(\left|a_{1 j-k \mid}\right|+\left|a_{j+k}\right|\right) \\
& \quad+A \sum_{n=1}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}} \sum_{j=1}^{n-1} p_{n-j} m_{j+1} \sum_{k=1}^{\infty}\left|c_{k}\right|\left(\left|a_{1 j-k \mid}\right|+\left|a_{j+k}\right|\right) \\
&=X+Y
\end{aligned}
$$

then, by (31) and the assumption of the theorem, we obtain
(36) $X \leqq \sum_{k=1}^{\infty}\left|c_{k}\right| \sum_{j=1}^{\infty}\left(\left|a_{|j-k|}\right|+\left|a_{j+k}\right|\right) m_{j+1} \sum_{n=j+1}^{\infty} \frac{p_{n-j-1}-p_{n-j}}{P_{n-1}}$
$\leqq A \sum_{k=1}^{\infty}\left|c_{k}\right| \sum_{j=1}^{\infty} \frac{m_{j+1}}{P_{j}}\left(\left|a_{|j-k|}\right|+\left|a_{j+k}\right|\right)$
$\leqq A \sum_{k=1}^{\infty}\left|c_{k}\right|\left(\sum_{j=1}^{k}+\sum_{j=k+1}^{\infty}\right) \frac{m_{j+1}}{P_{j}}\left(\left|a_{\mid j-k}\right|+\left|a_{j+k}\right|\right)$
$\leqq A \sum_{j=1}^{\infty} \frac{m_{j+1}}{P_{j}}\left|a_{k-j}\right| \sum_{k=j}^{\infty}\left|c_{k}\right|+A \sum_{k=1}^{\infty}\left|c_{k}\right| \sum_{j=k+1}^{\infty} \frac{m_{j-k}}{P_{j-k}}\left|a_{j-k}\right|$
$+A \sum_{j=1}^{\infty} \frac{m_{j+1}}{P_{j}}\left|a_{j+k}\right| \sum_{k=j}^{\infty}\left|c_{k}\right|+A \sum_{k=1}^{\infty}\left|c_{k}\right| \sum_{j=k+1}^{\infty} \frac{m_{2 j}}{P_{2 j}}\left|a_{j+k}\right|$
$\leqq A \sum_{j=1}^{\infty} \frac{m_{j+1}}{j^{2} P_{j}}+A \sum_{k=1}^{\infty}\left|c_{k}\right| \sum_{j=1}^{\infty} \frac{m_{j}}{P_{j}}\left|a_{j}\right|+A \sum_{k=1}^{\infty}\left|c_{k}\right| \sum_{j=k+1}^{\infty} \frac{m_{j+k}}{P_{j+k}}\left|a_{j+k}\right|$
$<\infty$
and further, by (31), we similarly have

$$
\begin{align*}
& Y \leqq A \sum_{k=1}^{\infty}\left|c_{k}\right| \sum_{j=1}^{\infty} m_{j+1}\left(\left|a_{\mid j-k}\right|+\left|a_{j+k}\right|\right) \sum_{n=j+1}^{\infty} \frac{p_{n} p_{n-j}}{P_{n} P_{n-1}} \tag{37}\\
& \leqq A \sum_{k=1}^{\infty}\left|c_{k}\right| \sum_{j=1}^{\infty} \frac{m_{j+1}}{P_{j}}\left(\left|a_{|j-k|}\right|+\left|a_{j+k}\right|\right) \\
& <\infty,
\end{align*}
$$

Combining (36) and (37), we see that V_{2} is finite. By (32)-(35), and the finiteness of V_{2}, we see that Theorem 2 is proved for $\sum\left|R_{n}\right|$.

We shall now consider

$$
\sum_{n=1}^{\infty}\left|T_{n}\right|=\sum_{n=1}^{\infty} \frac{m_{n}\left|s_{n}\right|}{P_{n}}
$$

By (17), it is sufficient to prove that

$$
\sum_{n=1}^{\infty} \frac{m_{n}}{P_{n}}\left|\int_{0}^{\pi} f(t) g(t) \sin n t d t\right|<\infty .
$$

This follows from

$$
\sum_{n=1}^{\infty} \frac{m_{n}}{P_{n}} \sum_{j=1}^{\infty}\left|c_{j}\right|\left(\left|a_{1 j-n \mid}\right|+\left|a_{j+n}\right|\right)<\infty \quad(\text { by } \quad(19))
$$

estimated in the same way as (36). Hence we obtain $\sum\left|T_{n}\right|<\infty$. Evidently, $\sum\left|S_{n}\right|<\infty$. Thus the theorem is proved.
2.3. Proof of Theorem 3. The proof is similar to that of Theorem 2. Since (p_{n}) increases, we obtain by condition (9), instead of (31) (see [8, formula (15)]),

$$
\begin{equation*}
\sum_{n=j+1}^{\infty} \frac{P_{n} p_{n-j}-p_{n} P_{n-j}}{P_{n} P_{n-1}} \leqq A \log (j+1) \quad \text { for all } j \geqq 0 \tag{38}
\end{equation*}
$$

We shall only estimate U_{2}, defined in $\S 2.2$, since the others are quite similar, as in the proof of Theorem 2. By (10), (38), and convexity of the sequence (m_{n}), we have

$$
\begin{aligned}
& U_{2} \leqq A \sum_{n=1}^{\infty} \frac{1}{P_{n} P_{n-1}} \sum_{j=1}^{n-1}\left(P_{n} P_{n-j}-p_{n} P_{n-j}\right) \Delta m_{j} \sum_{k=1}^{\infty}\left|c_{k}\right|\left(\left|a_{|k-j|}\right|+\left|a_{k+j}\right|\right) \\
& \leqq A \sum_{k=1}^{\infty}\left|c_{k}\right| \sum_{j=1}^{\infty} \log (j+1) \Delta m_{j}\left(\left|a_{|k-j|}\right|+\left|a_{k+j}\right|\right) \\
& \leqq A \sum_{k=1}^{\infty}\left|c_{k}\right|\left\{\sum_{j=1}^{2 k} \log (j+1) \Delta m_{j}\left|a_{|k-j|}\right|+\sum_{j=2 k+1}^{\infty} \log (j+1) \Delta m_{j}\left|a_{j-k}\right|\right. \\
& \left.+\sum_{j=1}^{k} \log (j+1) \Delta m_{j}\left|a_{k+j}\right|+\sum_{j=k+1}^{\infty} \log (j+1) \Delta m_{j}\left|a_{k+j}\right|\right\} \\
& \leqq A \sum_{j=1}^{\infty} \log (j+1) \Delta m_{j} \sum_{k=\frac{1}{2} j}^{\infty} \frac{1}{k^{3}}+A \sum_{k=1}^{\infty}\left|c_{k}\right| \sum_{j=k+1}^{\infty} \log j \cdot \Delta m_{j}\left|a_{j}\right| \\
& +A \sum_{j=1}^{\infty} \log (j+1) \Delta m * \sum_{k=j}^{\infty} c_{k}\left|a_{k+j}\right|+A \sum_{k=1}^{\infty}\left|c_{k}\right| \sum_{j=k+1}^{\infty} \log 2 j \cdot \Delta m_{2_{j}}\left|a_{2 j}\right| \\
& \leqq A \sum_{j=1}^{\infty} \frac{\log (j+1)}{j^{2}}+A \sum_{k=1}^{\infty} \frac{1}{k^{3}} \\
& <\infty \text {. }
\end{aligned}
$$

References

1. S. N. Bhatt, An aspect of local property of $|R, \log n, 1|$ summability of Fourier series, Tôhoku Math. J. (2) 11 (1959), 13-19.
2. ——An aspect of local property of absolute Nörlund summability of a Fourier series, Proc. Nat. Inst. Sci. India Part A 28 (1962), 787-794.
3. E. C. Daniel, The non-local character of summability $\left|N, p_{n}\right|$ of a Fourier series with factors, Math. Z. 99 (1967), 392-399.
4. G. D. Dikshit, Localization relating to the summability $\left|R, \lambda_{n}, 1\right|$ of Fourier series, Indian J. Math. 17 (1965), 31-39.
5. M. Izumi and S. Izumi, The absolute Nörlund summability factors of Fourier series (to appear in Indian J. Math.).
6. W. Jurkat and A. Peyerimhoff, Lokalisation bei absoluter Cesàro-Summierbarkeit von Potenzreihen und trigonometrischen Reihen. II, Math. Z. 64 (1956), 151-158.
7. K. Matsumoto, Local property of the summability $|R, \lambda, 1|$, Tôhoku Math. J. (2) 8 (1956), 354-364.
8. A. Zygmund, Trigonometric series, 2nd ed., Vol. I (Cambridge Univ. Press, New York, 1959).

The Australian National University, Canberra (ACT), Australia

