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Affine Root Systems and Abstract Buildings

In this chapter we collect some of the background material used throughout the
book. We encourage the reader to skim this chapter, rather than read it linearly,
and refer back to it as needed.While some important objects, like the subgroups
G(k)0 and G(k)1, are defined in this chapter and used throughout the book, the
index of notation should help the reader locate the appropriate places in this
chapter as needed.

1.1 Metric Spaces

Let (X, d) be a metric space. Recall the notion of the ball B(x,r) = {y ∈
X | d(x, y) < r} of radius r with center x.

Definition 1.1.1
(1) A subset A ⊂ X is called bounded if there exist x ∈ X and r > 0 such

that A ⊂ B(x,r).
(2) For any two non-empty subsets A,B ⊂ X their joint diameter is

diam(A,B) = sup{d(a, b) | a ∈ A, b ∈ B}.

(3) The diameter of A ⊂ X is diam(A) = diam(A, A).

Note that diam(A) is finite precisely when A is bounded.
A curve is a continuousmap c : [0,1] → X . The length of the curve is defined

as

�(c) = sup
n−1∑
i=0

d(c(ti), c(ti+1)), (1.1.1)

where the supremum is taken over the set of finite sequences 0 = t0 < t1 <
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4 Affine Root Systems and Abstract Buildings

· · · < tn = 1. The curve is said to join the points x, y ∈ X if c(0) = x and
c(1) = y.

Definition 1.1.2 A curve c is called

(1) rectifiable, if �(c) < ∞,
(2) geodesic, if c is rectifiable and for all 0 < t1 < t2 < 1 the equalities hold

�(c |[t1 ,t2]) = d(c(t1), c(t2)) = d(c(0), c(1))|t1 − t2 |,
where c |[t1 ,t2] : [0,1] → X is defined by s �→ c(t1 + s(t2 − t1)).

Remark 1.1.3 If c is rectifiable, then so is c |[t1 ,t2]. Hence the definition of
geodesic makes sense.
It is clear from the definition that if c1, c2 : [0,1] → X both join x, y ∈ X

and c1 is geodesic, then d(x, y) = �(c1) � �(c2). The second equality in the
definition of geodesic expresses the fact that c is parameterized by arc length.

Definition 1.1.4 The space (X, d) is called geodesic, if any two points x, y ∈ X
are connected by a geodesic. It is called uniquely geodesic if that geodesic is
unique.

The length metric d� on X is defined as

d�(x, y) = inf �(c),
where the infimum is taken over all rectifiable curves c joining x and y, assuming
that at least one such curve exists (as is the case with a geodesic space). Since
d�(x, y) � d(x, y) one sees easily that d� is a metric.

Definition 1.1.5 The space (X, d) is called a length space if d = d� .

Fact 1.1.6 Every geodesic space is a length space.

Example 1.1.7 Consider the circle S1 as a metric space, where the metric
d is the restriction of the Euclidean metric on R2. For x, y ∈ S1 we have
d(x, y) = | |x − y | |, where | | − | | is the Euclidean norm on R2, while d�(x, y) =
arccos(〈x, y〉) > d(x, y). Thus (S1, d) is not a length space. Tautologically,
(S1, d�) is a length space, and in fact a geodesic space. However, it is not
uniquely geodesic, because two antipodal points are joined by two distinct
geodesics.

Definition 1.1.8 The space (X, d) is called non-positively curved, if for every
x, y ∈ X there exists m ∈ X such that for all z ∈ X ,

d(x, z)2 + d(y, z)2 � 2d(m, z)2 + (1/2)d(x, y)2.
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1.1 Metric Spaces 5

Remark 1.1.9 In a Euclidean space, if we let m be the midpoint between x, y,
then the above inequality becomes an equality, and is called the parallelogram
law: in a parallelogram, the sum of the squares of the lengths of the two
diagonals is equal to the sum of the squares of the lengths of the four sides.

x z

y
m

Remark 1.1.10 If (X, d) is uniquely geodesic, then for given x, y there is at
most onem that satisfies the inequality of Definition 1.1.8, namely the midpoint
c(1/2) of the unique geodesic c joining x and y, see the following Lemma.
Furthermore, the inequality of Definition 1.1.8 has the geometric interpre-

tation of pinching of triangles relative to Euclidean “reference” triangles, see
[BH99, Figure II.1.1, Proposition II.1.7(1),(2) and Exercise II.1.9(1)(a,c)].

Lemma 1.1.11 A non-positively curved geodesic space is uniquely geodesic.
The midpoint of the unique geodesic connecting x and y is the unique point m
satisfying the inequality of Definition 1.1.8.

Proof Let (X, d) be a non-positively curved geodesic space, let x, y ∈ X and
let c be a geodesic connecting x and y. Let m = c(1/2) be the midpoint. Then
d(x,m) = (1/2)d(x, y) = d(y,m). If m′ is any point satisfying the inequality,
we can take z = m and see (1/2)d(x, y)2 � 2d(m′,m)2 + (1/2)d(x, y)2, thus
m′ = m.
If c′ is another geodesic joining x and y we see that c(1/2) = c′(1/2).

Further bisections produce a dense set of t ∈ [0,1] such that c(t) = c′(t), hence
c = c′. �

Definition 1.1.12 Let (X, d) be a uniquely geodesic space.
(1) A subset M ⊂ X is called convex if given x, y ∈ M the (image of the)

unique geodesic joining x and y lies in M .
(2) The radius of a convex set M is r(M) := inf{diam(x,M) | x ∈ M}.
(3) A barycenter of a convex set M is a point x ∈ M such that diam(x,M) =

r(M).
Lemma 1.1.13 Let (X, d) be a non-positively curved metric space. Each
closed ball B(z,r) = {y ∈ X | d(x, y) � r} is convex.

Proof Let x, y ∈ B(z,r). Let c be the unique geodesic joining x and y and
let m = c(1/2) be its midpoint. Definition 1.1.8 implies d(m, z) � r , hence

https://doi.org/10.1017/9781108933049.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108933049.003


6 Affine Root Systems and Abstract Buildings

m ∈ B(z,r). The two halves of c are the geodesics joining x with m and m
with y. Proceeding inductively we obtain a dense set of t ∈ [0,1] such that
c(t) ∈ B(z,r). �

Definition 1.1.14 Let (X, d) be a non-positively curved metric space and
M ⊂ X a non-empty bounded subset. The closed convex hull of M is the
intersection of all closed bounded convex subsets of X containing M .

We note that Lemma 1.1.13 implies the existence of a closed bounded convex
subset of X containing M , therefore the closed convex hull of M exists and is
by construction a closed, bounded, convex set containing M .

Theorem 1.1.15 Let (X, d) be a complete non-positively curved geodesic
space.

(1) A non-empty bounded closed convex subset M ⊂ X has a unique bary-
center. It is invariant under all isometries of X that map M to M .

(2) If M ⊂ X is a non-empty bounded subset, the stabilizer of M in the group
of isometries of X has a fixed point in X .

Proof The second point follows by applying the first point to the closed convex
hull of the bounded subsetM in the sense of Definition 1.1.14. In the first point,
the fact that the unique barycenter is invariant under all isometries preserving
M is obvious, since the notion of barycenter is defined in terms of the metric.
It remains to prove the existence and uniqueness of a barycenter.
Assume now that M is bounded, closed, and convex. To prove existence of

a barycenter, let f (x) = diam(x,M) for x ∈ M and let r = inf{ f (x) | x ∈ M}.
Let ε be a positive real number and let x, y ∈ M be such that f (x) < r + ε and
f (y) < r + ε . We claim that x and y are close to each other. More precisely,
we claim d(x, y)2 < 16rε . To see this, let m be the midpoint of the geodesic
joining x and y. Since M is convex, m ∈ M . Thus f (m) � r . Therefore there
exists z ∈ M such that d(m, z) > r − ε . Applying the non-positive curvature
property to x, y,m, z and using that both d(x, z) and d(y, z) are less than r + ε ,
whereas d(m, z) > r − ε , we obtain the inequality d(x, y)2 < 16rε , proving the
claim.
Now let {xi} be a sequence in M such that f (xi) = r + εi , where {εi} is a

decreasing sequence of positive real numbers that converges to 0. For i < j we
have d(xi, xj)2 < 16rεi . The sequence {xi} is thus Cauchy and converges to a
point c ∈ X by completeness of X . Since M is closed, c ∈ M . By construction
f (c) = r , proving existence of c.
The uniqueness of c follows at once from the claim: if c1 and c2 are two
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1.1 Metric Spaces 7

barycenters, then f (c1) = r = f (c2) implies d(c1, c2) < 16rε for all ε > 0, thus
c1 = c2. �

Remark 1.1.16 The second point of Theorem 1.1.15 is called the Bruhat–
Tits Fixed Point Lemma. The proof presented here is due to Serre. The original
statement due to Bruhat–Tits is actually more general, as it does not assume that
the metric space is geodesic. This will not be relevant to us, since the Bruhat–
Tits building is a geodesic space. For the proof of the more general statement
we refer the reader to [BT72, Lemma 3.2.3], whose proof is self-contained as
long as one takes [BT72, Lemma 3.2.1] as a definition.

Lemma 1.1.17 For a set A of isometries of a non-empty metric space (X, d)
the following are equivalent.

(1) For every x ∈ X the set {g · x |g ∈ A} is bounded.
(2) There exists x ∈ X for which the set {g · x | g ∈ A} is bounded.

Proof Let x ∈ X such that the set {g · x |g ∈ A} is of bounded diameter. For
any y ∈ X , we have

d(gy, y) � d(gy,gx) + d(gx, x) + d(x, y) = 2d(x, y) + d(gx, x)
and hence d(gy, y) is also bounded. �

Definition 1.1.18 A set A of isometries of (X, d) that satisfies the equivalent
conditions of Lemma 1.1.17 is said to have bounded action on X .

Corollary 1.1.19 Let (X, d) be a non-empty complete non-positively curved
metric space. A group A of isometries of (X, d) that has bounded action fixes a
point of X .

Proof Any orbit of A in X is non-empty and bounded. �

Proposition 1.1.20 Let (X, d) be a complete non-positively curved geodesic
space. Let Y ⊂ X be a closed convex subset.

(1) Given x ∈ X there exists among all y ∈ Y a unique one whose distance
to x is minimal.

(2) The function π : X → Y , defined so that π(x) ∈ Y is the unique point of Y
closest to X , is continuous.

(3) The function π : X → Y of (2) is equivariant with respect to any isometry
of X that preserves Y .

Proof (1) The proof is very similar to that of Theorem 1.1.15(1) so we only
give a sketch. Let r = inf{d(x, y) | y ∈ Y }. Existence and uniqueness are reduced
to the claim that for any ε > 0 and y1, y2 ∈ Y such that d(x, y1) < r + ε and
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8 Affine Root Systems and Abstract Buildings

d(x, y2) < r+ε we have d(y1, y2)2 < 16rε . This in turn is proved by takingm to
be the midpoint of the geodesic joining y1, y2, observing m ∈ Y by convexity of
Y , concluding d(x,m) � r , hence d(x,m) > r−ε , and applying the non-positive
curvature property to y1, y2,m, x.
(2) Let (xn) be a sequence of points of X that converges to x ∈ X . We need

to show that the sequence (π(xn)) converges to π(x). We have

d(x, π(x)) � d(x, π(xn)) � d(x, xn) + d(xn, π(xn)) � d(x, xn) + d(xn, π(x)),

the first inequality by definition of π(x), the second by the triangle inequality,
and the third by definition of π(xn). The limit for n→∞ of the right-most term
equals d(x, π(x)).
(3) Let f : X → X be an isometry that preserves Y . Then

d( f (x), π( f (x))) � d( f (x), f (π(x))) = d(x, π(x)), for all x ∈ X .

Applying the same argument to f −1 gives the opposite inequality. We conclude
that

d( f (x), π( f (x))) = d( f (x), f (π(x))).

The uniqueness of π( f (x)) implies π( f (x)) = f (π(x)). �

Proposition 1.1.20 can be strengthened when X has more structure, see
Remark 4.2.19.

1.2 Affine Spaces

Let W be a vector space over a field k and let V ⊂ W be a subspace. The
quotient W/V consists of the orbits in W for the action of V by translation. In
some sense all orbits look the same, with the following exception. The orbit
through 0, i.e. the subspace V itself, is special, because it has a distinguished
element, namely 0. No other orbit has a special point.
In this section we will recall the concept of an affine space, which is a

formalization of this basic example. This will be important in the development
of Bruhat–Tits theory, because apartments in Bruhat–Tits buildings are affine
spaces. The simplest example of this is discussed towards the end of §3.1.
Let V be a vector space over a field k.

Definition 1.2.1 An affine space over V is a non-empty set A equipped with
a simply transitive action of the additive group of V . We declare dim(A) :=
dim(V). More generally, an affine space over k is a pair (V, A) consistsing of a
k-vector space V and an affine space A over V .
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1.2 Affine Spaces 9

In particular, every v ∈ V gives a map Tv : A→ A, usually called translation
by v, and one oftenwritesTv(x) = x+v. For any x, y ∈ A onewrites y−x ∈ V for
the unique v ∈ V such that y = x+v. Then one has the rule (z−y)+(y−x) = z−x
for x, y, z ∈ A.

Example 1.2.2 The vector space V is tautologically an affine space over V .
More generally, if V is a subspace in a vector spaceW , then every fiber of the
projection mapW → W/V is an affine space overV . We will see in Proposition
1.2.10 that every affine space over V arises in this way in a canonical manner.

For any x ∈ A the map ix : V → A, v �→ x + v is a bijection that translates
the action of V on A to the action of V on itself by translation. Thus, one may
intuitively think of A as being V , but “after one has forgotten where the origin
is.” The inverse i−1x : A→ V is given by i−1x (y) = y − x.

Definition 1.2.3 Let A be an affine space over V . An affine subspace B ⊂ A
is a non-empty subset of A having the property thatW = {y − x | x, y ∈ B} is a
vector subspace of V . We may callW the derivative of B, and write f = ∇F.

Clearly B is an affine space over W . Under the bijection ia the set of affine
subspaces of A is identified with the set of subsets of V of the form v +W for
an element v ∈ V and a vector subspaceW ⊂ V .

Definition 1.2.4 Let A and A′ be affine spaces over the vector spaces V and
V ′ respectively. A map F : A→ A′ is called affine if there exists a linear map
f : V → V ′ such that F(x + v) = F(x) + f (v) for all x ∈ A and v ∈ V . We call
f the derivative of F.

Note that f is uniquely determined by F, namely via f (v) = F(x + v) − F(x)
for some fixed x. If G : A′ → A′′ is another affine map, with derivative g, then
G ◦F : A→ A′′ is also affine and its derivative is g ◦ f . If F1,F2 : A→ A′ have
the same derivative, then the vector v = F2(x) − F1(x) ∈ V ′ is independent of
x ∈ A and thus F2(x) = F1(x) + v for all x ∈ A. We may write v = F2 − F1.

Example 1.2.5 (1) The constant map F : A→ A′ given by F(x) = x ′ for a
fixed x ′ ∈ A′ is affine. Its derivative of F is the zero linear map.

(2) The translationTv : A→ A for v ∈ V is affine. Its derivative is the identity
map on V .

If we fix origins x ∈ A and x ′ ∈ A′, then F �→ i−1x′ ◦ F ◦ ix identifies the set
of affine maps A→ A′ with the set of mapsV → V ′ of the form v �→ f (v)+ v ′,
where f : V → V ′ is linear and v ′ ∈ V ′.

Remark 1.2.6 One checks immediately that an affine map is an isomorphism
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10 Affine Root Systems and Abstract Buildings

if and only if it is bijective, or equivalently that its derivative is an isomorphism
of vector spaces.

It is clear that if A and A′ are affine spaces over the same vector spaceV , then
there exists an affine isomorphism A → A′. The set of affine isomorphisms
whose derivative is the identity is again an affine space over V . If A = A′, then
that affine space has a distinguished point, namely idA, and is hence naturally
identified with V .
Given an affine space A over V let Aff(A) denote the set of affine iso-

morphisms A → A. Composition turns Aff(A) into a group. Taking deriva-
tive produces a group homomorphism ∇ : Aff(A) → Aut(V). This homomor-
phism is surjective, for given f ∈ Aut(V) we can choose x ∈ A and then
ix ◦ f ◦ i−1x ∈ Aff(A) has derivative f . We thus obtain the exact sequence

0→ V → Aff(A) → Aut(V) → 1

where the inclusion V → Aff(A) maps v to the translation Tv . This exact
sequence splits non-canonically; a choice of x ∈ A gives the splitting f �→
ix ◦ f ◦ i−1x .

Definition 1.2.7 Let Γ be a group. An affine action of Γ on A is a group
homomorphism τ : Γ→ Aff(A).

Clearly an affine action τ of Γ on A leads to a linear action ∇ ◦ τ of Γ on V .
Assume now that the action τ is faithful, so we can identify Γ with its image
under τ, a subgroup of Aff(A). There are two extreme cases that are useful to
keep in mind. If Γ is finite and k is infinite, then V ∩ Γ = {0} and ∇ restricts to
an isomorphism Γ→ ∇Γ. If Γ contains V , then we obtain the exact sequence

0→ V → Γ→ ∇Γ→ 1

which is again split, a splitting being given by a choice of a ∈ A as above.

Definition 1.2.8 An affine functional on A is an affine map ψ : A → k. We
will write �ψ := ∇ψ ∈ V∗ and Hψ = Aψ=0 = {x ∈ A | ψ(x) = 0}.

If ψ is not constant, the subset Hψ is a hyperplane in A. We have Hψ = Hη

if and only if η = rψ with r ∈ k×.
If ψ is an affine functional, then so is −ψ. It has the properties ∇(−ψ) = −∇ψ

and H−ψ = Hψ , and these properties characterize −ψ uniquely.
The set A∗ of all affine functionals A → k is a vector space over k with

respect to pointwise addition and scalar multiplication. The map ∇ : A∗ → V∗

is linear and surjective and its kernel is the subspace of constant affine linear
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1.2 Affine Spaces 11

functionals, which is naturally identified with k. In this way we obtain the exact
sequence of k-vector spaces

0→ k → A∗ → V∗ → 0. (1.2.1)

The map ψ �→ Hψ is a bijection between the set of lines in A∗, without the
constant line, and the set of affine hyperplanes in A.

Example 1.2.9 In the special case A = V , an affine functional has the form
ψ(v) = λ(v) + c, where λ ∈ V∗ and c ∈ k. Thus A∗ = V∗ ⊕ k, that is, the above
exact sequence is canonically split. For general A, the above exact sequence is
non-canonically split; choosing x ∈ A and using the identification ix : V → A
induces a splitting. If x ∈ A is replaced by x + v for v ∈ V , then the splitting
changes by the automorphism of V∗ ⊕ k sending λ + c to λ − λ(v) + c.

We will now show that any affine space over a vector spaceV arises naturally
as an orbit of the action of V on a larger vector spaceW . For this, consider the
linear dual space A∗∗ of A∗. The exact sequence (1.2.1) dualizes to

0→ V → A∗∗ → k → 0. (1.2.2)

In concrete terms, the embedding V → A∗∗ is given by the pairing 〈ψ, v〉 =
〈 �ψ, v〉 for ψ ∈ A∗ and v ∈ V . The map A∗∗ → k in this sequence is the
linear functional on A∗∗ corresponding to the element of A∗ that is the affine
functional on Awith constant value 1. Let us write 1A for it. We have the natural
embedding A → A∗∗ via the natural pairing 〈ψ,a〉 = ψ(a). This embedding
identifies A with the fiber over 1 ∈ k of the linear functional 1A : A∗∗ → k.

Proposition 1.2.10 Consider the category Aff whose objects are all affine
spaces over k and whose morphisms are affine transformations between affine
spaces. Consider the category fVect whose objects are pairs (W, λ) consisting
of a k-vector space W and a non-zero linear functional 0 � λ ∈ W∗, and whose
morphisms are linear maps of vector spaces that respect the given functionals.
Then the functors

F : Aff → fVect, (V, A) �→ (A∗∗,1A), f �→ f ∗∗

and
G : fVect→ Aff, (W, λ) �→ (λ−1(0), λ−1(1)),F �→ F |λ−1(1)

are mutually inverse equivalences of categories.

Proof We need to exhibit natural transformations η : idAff → G ◦ F and
ε : F ◦G→ idfVect. Given an affine space (V, A) setW = A∗∗ and λ = 1A. The
discussion before the statement of this proposition provides isomorphismsV →
λ−1(0) and A → λ−1(1). These isomorphisms comprise η(V ,A). Conversely,
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12 Affine Root Systems and Abstract Buildings

given a vector space W and a non-zero linear functional λ, set V = λ−1(0)
and A = λ−1(1). Restriction from W to A provides a linear map W∗ → A∗.
We will prove that it is an isomorphism. Admitting this, we obtain dually an
isomorphism A∗∗ → W which tautologically identifies 1A with λ, and hence
provides the desired ε(W ,λ). To prove that W∗ → A∗ is an isomorphism we
note that the kernel of any element ofW∗ is a hyperplane inW containing zero
and hence cannot contain the affine hyperplane λ−1(1). ThereforeW∗ → A∗ is
injective. When dim(W) < ∞ this is enough. In general let μ ∈ A∗. Choose an
element μ1 ∈ V∗ that extends �μ ∈ V∗. The restriction μ1 |A is an affine functional
with the same derivative as μ. Therefore μ − μ1 |A is a constant n ∈ k, and we
see μ = (μ1 + nλ)|A. �

Definition 1.2.11 For x ∈ A define A∗x = {ψ ∈ A∗ | ψ(x) = 0}.
It is clear that restricting ∇ to A∗x provides an isomorphism ∇ : A∗x → V∗.

Definition 1.2.12 Let Abe an affine space overV and letW ⊂ V be a subspace.
The quotient A/W is the set of orbits in A for the action ofW .

It is clear that A/W is an affine space overV/W . Pulling back affine function-
als under the quotient map A→ A/W gives an injection (A/W)∗ → A∗ which
identifies (A/W)∗ with the subspace {ψ ∈ A∗ | �ψ ∈ W⊥}, where W⊥ ⊂ V∗ is
the annihilator ofW .

Definition 1.2.13 For a non-empty subset Ω ⊂ A let 〈Ω〉 ⊂ A be the smallest
affine space containing Ω, and let A∗

Ω
be the subspace of A∗ consisting of those

affine functionals that vanish identically on Ω.

Note that when Ω = {x} we obtain A∗
Ω
= A∗x .

Fact 1.2.14 Let Ω ⊂ A be non-empty.

(1) An affine functional vanishes on Ω if and only if it vanishes on 〈Ω〉.
(2) If W ⊂ V is the derivative space of 〈Ω〉, then the map ∇ : A∗

Ω
→ W⊥ is

an isomorphism.
(3) The bijection Hψ ↔ k× ·ψ restricts to a bijection between the set of affine

hyperplanes in A containing Ω and the set of lines in A∗
Ω

, hence the set
of lines in W⊥.

Let A and A′ be affine spaces over V and V ′ and let f : A→ A′ be an affine
map. Its dual f ∗ : (A′)∗ → A∗ is defined by f ∗(ψ ′) = ψ ◦ f . Then f ∗ is a linear
map.

1.2.15 Given affine spaces A1, A2 over vector spaces V1,V2 we can form the
affine space A = A1 × A2 over the vector space V = V1 × V2. The projection
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1.2 Affine Spaces 13

A→ Ai dualizes to an injection A∗i → A∗ that identifies A∗i with those elements
of A∗ whose derivative lies in V∗i ⊂ V∗. The sum of these two injections fits
into the exact sequence

0→ k → A∗1 ⊕ A∗2 → A∗ → 0, (1.2.3)

where k is embedded anti-diagonally into A∗1 ⊕ A∗2. More generally, if {Ai}ni=1
is a finite collection of affine spaces over vector spaces Vi and we consider the
affine space A =

∏
Ai over the vector space

∏
i Vi , we have the surjective map⊕

A∗i → A∗ whose kernel is the hyperplane in kn ⊂⊕ A∗i consisting of those
tuples whose coordinates sum to 0.

1.2.16 Let A be an affine space over the vector space V and assume given
a direct product decomposition V = V1 × V2. This decomposition induces
a direct product decomposition A = A1 × A2 as follows. Let A1 = A/V2
and A2 = A/V1. Then Ai is an affine space over Vi . The product of the two
projections A→ A1× A2 is equivariant for the translation action ofV = V1×V2
and injective, hence bijective, and therefore an isomorphism of affine spaces
over V .

Assume from now on that k = R.

Definition 1.2.17

(1) For an affine functional ψ we will write Aψ>0 = {x ∈ A | ψ(x) > 0}.
Analogously we define Aψ�0, Aψ<0, Aψ�0.

(2) For two affine functionals ψ1,ψ2 : A→ R we write ψ1 � ψ2 if ψ1(x) �
ψ2(x) for all x ∈ A.

Fact 1.2.18 ψ1 � ψ2 if and only if �ψ1 = �ψ2 and ψ2 − ψ1 � 0.
Assume further that V is finite-dimensional and equipped with a scalar

product (a positive definite symmetric bilinear form) 〈−,−〉. We may then
identify V with V∗ and consider �ψ as an element of V . Define a symmetric
bilinear form on A∗, again denoted by 〈−,−〉, via 〈ψ1,ψ2〉 = 〈 �ψ1, �ψ2〉. This
symmetric bilinear form is positive semi-definite and ψ is isotropic (〈ψ,ψ〉 = 0)
if and only if it is constant. Define v∨ = 2v/〈v, v〉 and ψ∨ = 2ψ/〈ψ,ψ〉 for any
non-zero v ∈ V and any non-constant ψ ∈ A∗. We have (cv)∨ = c−1v∨ and
(cψ)∨ = c−1ψ∨ for c ∈ R×. We have ∇(ψ∨) = (∇ψ)∨.
For non-constant ψ, the orthogonal reflection along the affine hyperplane Hψ

is given by
rψ(x) = x − ψ(x) · �ψ∨ = x − ψ∨(x) · �ψ. (1.2.4)

Note rcψ = rψ for any c ∈ R×. We denote the dual of rψ again by rψ . We have
rψψ = −ψ. If v = �ψ, then we also have the orthogonal reflection in V along
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14 Affine Root Systems and Abstract Buildings

the derivative hyperplane v⊥ of Hψ (cf. Definition 1.2.3). It has the analogous
formula

rv(w) = w − 〈w, v〉v∨

and we have ∇rψ = r∇ψ .

Definition 1.2.19 Let A1 and A2 be affine spaces An affine map f : A1 → A2
is called an isometry if its derivative ∇ f : V1 → V2 is an isometry, that is, a
linear isomorphism preserving given scalar products on V1 and V2.

The affine space A is a metric space with metric d(x, y) = | |x − y | |, where
| |v | | = 〈v, v〉1/2. The translation action of V on A is via isometries for this
metric. The topology on A induced by this metric coincides with the topology
transported from the topology on V coming from V being a finite-dimensional
R-vector space.

1.3 Affine Root Systems

We review here the definition and basic properties of affine root systems fol-
lowing [Mac72, §§2-6]. Note however that we are using Greek letters for affine
roots, and roman letters for their derivatives, which is the opposite of the
convention of [Mac72].
Let V be a finite-dimensional R-vector space. Let A be an affine space over

V . We refer to §1.2 for relevant notation. We denote by V∗ the dual of V , by A∗

the dual of A, and by A∗∗ the vector space dual of A∗. Recall the exact sequence
(1.2.2)

0→ V → A∗∗ → R→ 0.

Definition 1.3.1 An affine root system is a subset Ψ ⊂ A∗ subject to the
following axioms.

AR 1 Ψ spans A∗, consists of non-constant functionals, and its image under
∇ : Ψ→ V∗, to be denoted by Φ, is finite.

AR 2 For every ψ ∈ Ψ there exists �ψ∨ ∈ V such that �ψ( �ψ∨) = 2 and the
reflection rψ, �ψ∨ on A∗, defined by

rψ, �ψ∨(x) = x − �x( �ψ∨)ψ for x ∈ A∗,

preserves Ψ.
AR 3 For every ψ,η ∈ Ψ we have �ψ( �η∨) ∈ Z.
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1.3 Affine Root Systems 15

AR 4 For each a ∈ Φ, the set {ψ ∈ Ψ | �ψ = a} does not have an accummulation
point.

The groupW(Ψ) generated by {rψ, �ψ∨ | ψ ∈ Ψ} is called the affine Weyl group
of Ψ. The number dimV is called the rank of Ψ (which is positive precisely
when Ψ � ∅).

Remark 1.3.2 (1) We emphasize that Ψ is a subset of the vector space A∗

of affine functionals on A, and not a subset of the affine space A.
(2) Since the derivative of rψ, �ψ∨ is the reflection r �ψ, �ψ∨ on V∗, it follows as

in the case of finite root systems from [Bou02, Chapter VI, §1, no. 1,
Lemma 1] that the element �ψ∨ ∈ V of AR 2 is unique, and is uniquely
determined by �ψ. Hence AR 3 makes sense. We will write rψ in place of
rψ, �ψ∨ in what follows.

(3) For ψ ∈ Ψ, we also have the dual reflection on A, to be denoted again by
rψ , defined by x �→ x − ψ(x) �ψ∨ for x ∈ A.

(4) Proposition 1.3.11 below shows that both Ψ and W(Ψ) are necessarily
infinite, provided Ψ � ∅.

Throughout this section, unless specifically stated otherwise, A will denote
an affine space over a R-vector space V and Ψ ⊂ A∗ will denote an affine root
system.
The following proposition shows that affine root systems are closely related

to finite root systems. As before, we will often denote the derivative ∇ψ (∈ V∗)
of a real valued affine function ψ on A by �ψ.
Proposition 1.3.3
(1) Φ = { �ψ | ψ ∈ Ψ} ⊂ V∗ is a finite root system.
(2) �ψ∨ is the coroot of �ψ. Hence, { �ψ∨ | ψ ∈ Ψ} span V .
(3) Given ψ ∈ Ψ, and c, r ∈ R, if η := rψ + c is in Ψ, then r ∈ {± 12 ,±1,±2}

and �ψ∨ = r �η∨.
(4) The mapping ∇ : W(Ψ) → W(Φ) is surjective and its kernel consists of

the subgroup of translations contained in W(Ψ).
We call Φ the derivative root system of Ψ.

Proof (1) The axioms for Φ follow at once from those for Ψ.
(2) As �ψ∨ lies in V , the reflection rψ, �ψ∨ is the identity on
R ⊂ A∗ and induces on V∗ the reflection r �ψ, �ψ∨ .
(3) Since �η = r �ψ, it follows that the finite root system Φ contains both �ψ and

r �ψ. This implies the third assertion.
(4) Immediate. �

https://doi.org/10.1017/9781108933049.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108933049.003


16 Affine Root Systems and Abstract Buildings

We now introduce the concept of a reduced affine root system.

Definition 1.3.4 The affine root system Ψ is called reduced if ψ ∈ Ψ implies
2ψ � Ψ.

Remark 1.3.5 To Ψ we associate the subsets

Ψ
nd = {ψ ∈ Ψ | ψ/2 � Ψ},
Ψ
nm = {ψ ∈ Ψ | 2ψ � Ψ}.

These subsets are reduced affine subroot systems of Ψ. The three affine root
systems Ψ, Ψnd, Ψnm share the same set of affine hyperplanes and the same
Weyl group. We have Ψnd = Ψ = Ψnm if and only if Ψ is reduced. We have the
inclusions

Φ
nd ⊂ ∇(Ψnd) ⊂ ∇Ψ,

where for a finite root systemΦwe define analogouslyΦnd = {a ∈ Φ |a/2 � Φ}.
Recall that V carries a canonical topology, namely the topology transported

from the identification V → Rn obtained from an arbitrary choice of basis
of V . In the same way, A carries a canonical topology, namely the topology
transported from the identification A → V obtained by choosing an arbitrary
point a ∈ A.

Lemma 1.3.6 The group W(Ψ) acts properly on A. That is, if K1,K2 ⊂ A are
compact subsets, the set {w ∈ W(Ψ) | wK1 ∩ K2 � ∅} is finite.

Proof According to Proposition 1.3.3 and the finiteness of the Weyl group of
a finite root system, the subgroup T ⊂ W(Ψ) of translations is of finite index. It
is therefore enough to prove that T acts properly on A. Identifying each element
of T with the vector in V by which it translates, we obtain an identification of
T with a subgroup of the additive group of V . The action of T on A is proper if
and only if T , as a subgroup of V , is discrete. Assume by way of contradiction
that there exists a sequence (xn) in T that converges to 0 and xn � 0 for all n.
Since Φ = ∇Ψ generates V∗ there exists a ∈ Φ such that, after possibly passing
to a subsequence of (xn), we have a(xn) � 0 for all n. Let η ∈ Ψ be such that
�η = a. If tn ∈ T is the translation by xn, then ηn := tnη = η−a(xn) is a sequence
of elements of {ψ ∈ Ψ | �ψ = a} that converges to η, but ηn � η for all n. This
contradicts AR 4. �

Definition 1.3.7 For any affine root ψ ∈ Ψ, the hyperplane Hψ = {a ∈
A | ψ(a) = 0} in A is called the affine root hyperplane associated to ψ, or just
an affine root hyperplane.

The derivative ∇Hψ ⊂ V is the root hyperplane H �ψ = {v ∈ V | �ψ(v) = 0}.
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1.3 Affine Root Systems 17

Remark 1.3.8 Let 〈−,−〉 be a scalar product on V∗ invariant under the finite
group ∇W(Ψ) = W(Φ). IdentifiyV withV∗ via this scalar product and transport
the scalar product to V via this identification. Then r �ψ becomes the orthogonal
reflection in V with respect to the hyperplane H �ψ = {v ∈ V | �ψ(v) = 0}. Since
the derivative of rψ is r �ψ , rψ becomes the orthogonal reflection in Awith respect
to the affine hyperplane Hψ .

Remark 1.3.9 Definition 1.3.1 is slightly different from the definition of an
affine root system given in [Mac72]. The latter definition requires that V be
equipped with a scalar product. It does not require that Φ be finite. In place of
AR 4, it requires that the action ofW(Ψ) on A be proper.
If Ψ is an affine root system in the sense of Definition 1.3.1 and we equip V

with a scalar product invariant underW(Φ) as in Remark 1.3.8, thenΨ becomes
an affine root system in the sense of Macdonald, the properness of the action
ofW(Ψ) being guaranteed by Lemma 1.3.6.
Conversely, given an affine root system Ψ in the sense of Macdonald it

follows from [Mac72, Proposition 6.1] that Φ is finite, and AR 4 follows from
the assumed properness of the action ofW(Ψ) by the same argument as in the
proof of Lemma 1.3.6.

For the study of affine root systems we will use the material in [Bou02,
Chapter V]. This material requires that the vector space V be equipped with
a scalar product so that the reflection rψ becomes the orthogonal reflections
with respect to the affine hyperplane Hψ . We can choose such a scalar product
as in Remark 1.3.8. This material further requires that the set of hyperplanes
{Hψ | ψ ∈ Ψ} satisfies conditions D1 and D2 of [Bou02, Chapter V, §3]. We
recall that these conditions require that the set of hyperplanes be invariant under
W(Ψ) and thatW(Ψ) acts properly on A.

Lemma 1.3.10 The set of hyperplanes {Hψ | ψ ∈ Ψ} satisfies conditions D1
and D2. In particular, it is locally finite.

Proof Condition D2 is Lemma 1.3.6. Condition D1 follows from wHψ = Hwψ

for all w ∈ W(Ψ) and Axiom AR 2. The local finiteness is [Bou02, Chapter V,
§3, Lemma 1]. �

Proposition 1.3.11 AssumeΨ � ∅. The Weyl group W(Ψ) is infinite and does
not fix any non-zero vector in V . The set Ψ is infinite.

Proof Any v ∈ V fixed byW(Ψ) must be orthogonal to �ψ ∈ V∗ for all ψ ∈ Ψ.
By assumption Ψ generates A∗, so v = 0.
Assume by way of contradiction that W(Ψ) is finite. We claim that then its

action on A must have a fixed point. To see this, choose a scalar product on V
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18 Affine Root Systems and Abstract Buildings

invariant underW(Ψ) (say, by averaging an arbitrary scalar product on V) and
endow Awith the resulting Euclidean metric, which is then also invariant under
W(Ψ). The orbit underW(Ψ) of an arbitrarily chosen point of A is finite, so the
center of mass of its convex hull, with respect to the metric on A, is fixed by
W(Ψ). Let x ∈ A be a point fixed byW(Ψ). Then ψ(x) = 0 for all ψ ∈ Ψ. This
implies Ψ ⊂ A∗x (Definition 1.2.11). But A∗x is a proper subspace of A∗ and this
contradicts Axiom AR 1.
We conclude that the map ∇ : W(Ψ) → W(Φ)must have a non-trivial kernel.

Thus W(Ψ) contains a non-trivial translation. Axiom AR 2 implies that Ψ is
infinite. �

The following proposition gives a reformulation of the definition of an affine
root system that is sometimes more convenient.

Proposition 1.3.12 A subset Ψ ⊂ A∗ is an affine root system if and only if it
satisfies the following conditions.

(1) Φ(= ∇Ψ) ⊂ V∗ is a finite root system.
(2) For eachψ ∈ Ψ, the affine endomorphism rψ of A that fixes the hyperplane

Hψ ⊂ A and whose derivative is the reflection r �ψ , preserves the set Ψ.
(3) For each a ∈ Φ the set {ψ ∈ Ψ | �ψ = a} contains at least two elements

and does not have an accumulation point in A∗.

Proof Assume that Ψ is an affine root system. Then Proposition 1.3.3 shows
that Φ is a finite root system. The endomorphism rψ is equal to the reflection
rψ, �ψ∨ and preserves Ψ by AR 2. If for each a ∈ Φ the set {ψ ∈ Ψ | �ψ = a} had
just one element, then Ψ would be finite, contradicting Proposition 1.3.11.
Assume conversely that Ψ is a set satisfying the assumptions of the propo-

sition. We will show that it satisfies the axioms of Definition 1.3.1. As Φ is
a root system, it spans V∗ and does not contain 0 ∈ V∗. Therefore Ψ consists
of non-constant elements, and since we can find two distinct ψ1,ψ2 ∈ Ψ with
the same derivative, the set Ψ spans A∗, proving AR 1. Given ψ ∈ Ψ with
derivative a ∈ V∗, let a∨ ∈ V be the coroot for a. Then �ψ(a∨) = a(a∨) = 2.
The endomorphism rψ,a∨ has derivative ra and fixes the hyperplane Hψ . By
assumption it preserves Ψ, proving AR 2. It further identifies, for any given
ψ ∈ Ψ, the element �ψ∨ ∈ V as the coroot associated to the root �ψ of the finite
root systemΦ. For ψ,η ∈ Ψ this means �ψ( �η∨) = �ψ( �η∨)which is an integer since
Φ is a finite root system. This proves AR 3, and AR 4 is just assumption (3). �

Definition 1.3.13 A non-empty affine root system Ψ is called reducible if
there exist non-empty subsets Ψ1,Ψ2 ⊂ Ψ that are orthogonal in the sense that
�ψ( �η∨) = 0 = �η( �ψ∨) for every every ψ ∈ Ψ1 and η ∈ Ψ2 (in particular, Ψ1 and
Ψ2 are disjoint) and Ψ = Ψ1 ∪ Ψ2. Otherwise Ψ is said to be irreducible.

https://doi.org/10.1017/9781108933049.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108933049.003


1.3 Affine Root Systems 19

Lemma 1.3.14 The following are equivalent.
(1) The affine root system Ψ is irreducible.
(2) The finite root system Φ is irreducible.
(3) The representation of W(Ψ) on V is irreducible.

Proof The equivalence of (1) and (2) is obvious from the definitions. The
equivalence of (2) and (3) is [Bou02, Chapter 6, §1, no. 2, Corollary to Propo-
sition 5]. �

Construction 1.3.15 Consider for i = 1,2 affine spaces Ai over vector spaces
Vi and affine root systems Ψi ⊂ A∗i . The map (1.2.3) transports Ψ1 ∪ Ψ2 ⊂
A∗1 ⊕ A∗2 bijectively to a subset of A∗, which we denote by Ψ1 ⊕ Ψ2. It is an
affine root system, called the direct sum of Ψ1 and Ψ2.

We will see in Proposition 1.3.21 below that every affine root system decom-
poses naturally as the direct sum of irreducible root systems. Before we can do
this, we need to establish some basic structure.

Remark 1.3.16 The hyperplanes Hψ endow the affine space Awith important
additional structure. The connected components of A −⋃ψ∈Ψ Hψ are open in
A by the local finiteness of {Hψ | ψ ∈ Ψ}. They are called chambers. The
connected components of⋃

ψ∈Ψ
Hψ −

⋃
ψ1 ,ψ2∈Ψ
Hψ1�Hψ2

(Hψ1 ∩ Hψ2 ),

are open in
⋃

ψ∈Ψ Hψ for the same reason. They are called facets of codimension
1, that is, of dimension dim(A) − 1. Continuing in this manner, one expresses
A as the disjoint union of facets of various dimensions. The facets of smallest
dimension are called vertices. A face of a facet F is a facet F ′ contained in the
closure F of F. A hyperplane Hψ is called a wall of a chamber C, if Hψ ∩ C is
a face of C of codimension 1.
IfΨ is irreducible, then this decomposition is a simplicial decomposition, that

is, each facet is a simplex. That each chamber is a simplex is stated in [Bou02,
Chapter V, §3, no. 9, Proposition 8], using Proposition 1.3.11 and Lemma
1.3.14. The remaining facets, being faces of chambers, are also simplices.
This makes A into (the geometric realization of) a simplicial complex. The
simplicial complexes for the four 2-dimensional irreducible reduced affine root
systems (cf. Theorem 1.3.63) are displayed in Figure. 1.3.1. In Figure 1.3.2, the
hyperplanes for affine roots with non-divisible derivative are displayed solid,
while the hyperplanes for affine roots with divisible derivative (which only
appear when the derivative root system is non-reduced) are displayed dotted.

https://doi.org/10.1017/9781108933049.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108933049.003


20 Affine Root Systems and Abstract Buildings

Figure 1.3.1 The hyperplane arrangements of the irreducible reduced affine root
systems A2 (top),C2 (middle), and G2 (bottom).
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Figure 1.3.2 The hyperplane arrangement of the irreducible reduced affine root
system BC2.

When Ψ is no longer irreducible, Proposition 1.3.21 below expresses Ψ
canonically as the direct sum Ψ1 ⊕ · · · ⊕ Ψn of irreducible affine root systems,
and A canonically as the product A1 × · · · × An of affine spaces. As shown in
[Bou02, Chapter V, §3, no. 8, Proposition 6], each affine root hyperplane is of
the form A1 × · · · × Ai−1 × Hi × Ai+1 × · · · × An for an affine root hyperplane
Hi ⊂ Ai associated to some member of Ψi , and each chamber is a product of
chambers C = C1 × · · · × Cn. More generally, each facet is a product of facets.
Consequently, each facet is a product of simplices, that is, a polysimplex. This
makes A into (the geometric realization of) a polysimplicial complex, a notion
discussed in §1.5.

Lemma 1.3.17 Let C be a chamber. Its closure C is a fundamental domain
for the action of W(Ψ) on A. For w ∈ W(Ψ) and a facet F the following are
equivalent.

(1) w fixes a point of F.
(2) w fixes all points of F.
(3) w fixes all points of the closure of F.
(4) w leaves F invariant.
(5) w is a product of reflections along hyperplanes containing F.

In particular, W(Ψ) acts simply transitively on the set of chambers.

Proof This is [Bou02, Chapter V, §3, no. 3, Proposition 1, Theorem 2]. �

https://doi.org/10.1017/9781108933049.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108933049.003
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Definition 1.3.18 Let C be a chamber. Then ψ ∈ Ψ is called positive (respec-
tively negative) if ψ(x) > 0 (respectively ψ(x) < 0) for all x ∈ C. We denote
by Ψ(C)+ and Ψ(C)− the set of positive and negative affine roots, respectively.
The subsets Ψ(C)+ ∩ Ψnd and Ψ(C)− ∩ Ψnd will be denoted by Ψ(C)nd,+ and
Ψ(C)nd,− respectively.
Since no Hψ meets C, every ψ ∈ Ψ is either positive or negative, and
−ψ is negative if and only if ψ is positive. Thus we have the disjoint union
Ψ = Ψ(C)+ ∪ Ψ(C)−.
Definition 1.3.19 Let C be a chamber. The set Ψ(C)0 consisting of those
indivisible ψ ∈ Ψ(C)+ for which Hψ is a wall of C is called a basis of Ψ, and
its elements are called simple affine roots.

Note that C is uniquely determined by Ψ(C)0, namely as the intersection of
the half-spaces Aψ>0 for ψ ∈ Ψ(C)0.
Proposition 1.3.20 Let C ⊂ A be a chamber and let Ψ(C)0 ⊂ Ψ be the
corresponding set of simple affine roots. Let S ⊂ W(Ψ) be the set of reflections
along the elements of Ψ(C)0. Then (W(Ψ),S) is a Coxeter system.

Proof This is [Bou02, Chapter V, §3, no.2, Theorem 1(i)]. �

Proposition 1.3.21 Every affine root system is in a natural way the direct sum
of irreducible affine root systems.

Proof Let W = W(Ψ). Choose a chamber C and let S ⊂ W be the set of
reflection along the associated simple affine roots. Then (W,S) is a Coxeter
system by Proposition 1.3.20. Write S = S1 ∪ · · · ∪ Sn such that the Si are
pairwise orthogonal as in Definition 1.3.13 and n is maximal with this property.
LetWi ⊂ W be the subgroup generated by Si , letV⊥i be the subspace ofV

∗ fixed
by ∇Wi , and let Vi be the annihilator of V⊥i in V . According to [Bou02, Chapter
V, §3, no. 7, Proposition 5] and the discussion preceding it, the subgroups Wi

commutewith each other,W = W1×· · ·×Wn, the set of subgroups {W1, . . . ,Wn}
is independent of the choice of chamber C, and V = V1 ⊕ · · · ⊕ Vn. Each Vi is
stable under ∇W .
As discussed in 1.2.16, this leads to the decomposition A = A1 × · · · × An,

where Ai = A/V ′i and V ′i = V1 ⊕ · · · ⊕Vi−1 ⊕ {0} ⊕Vi+1 ⊕ · · · ⊕Vn. Let Ψi ⊂ Ψ
consist of those ψ ∈ Ψ such that �ψ ∈ V∗i . Then Ψi ⊂ A∗i (cf. 1.2.15) and
according to [Bou02, Chapter VI, §1, no. 2, Proposition 5]∇Ψi is an irreducible
root system and ∇Ψ = ∇Ψ1 ⊕ · · · ⊕ ∇Ψn. In particular, Ψ = Ψ1 ∪ · · · ∪ Ψn.
Proposition 1.3.12 applied to both Ψ and Ψi implies that Ψi is an affine root
system in A∗i , and Lemma 1.3.14 shows that it is irreducible. Its Weyl group is
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Wi by construction, and the isomorphism A→ A1 × · · · × An identifies Ψ with
the direct sum Ψ1 ⊕ · · · ⊕ Ψn. �

Proposition 1.3.22 Let C be a chamber and Δ = Ψ(C)0.

(1) The group W(Ψ) is generated by S = {rψ |ψ ∈ Δ}.
(2) W(Ψ) acts simply transitively on the set of bases of Ψ.
(3) Ψnd = W(Ψ) · Δ.
(4) Every ψ ∈ Ψ(C)+ is a non-negative integral linear combination of ele-

ments of Δ.

Assume that Ψ is irreducible.

(5) Δ is a basis of A∗. In particular the combination in (4) is unique.
(6) The vertices {x0, . . . , x�} of C are in bijection with Δ specified by ψi(xj) =

0 if i � j and ψi(xi) > 0.
Proof (1) is [Bou02, Chapter V, §3, no. 1, Lemma 2].
(2) follows from Lemma 1.3.17 and the bijection between bases and cham-

bers.
(3) Let ψ ∈ Ψnd. Choose a chamber C′ that has Hψ as a wall. Choose
w ∈ W(Ψ) such that wC′ = C by (2). Then Hwψ is a wall of C, so wψ ∈ Δ.
Now assume that Ψ is irreducible.
(5), (6) C is a simplex in A as discussed in Remark 1.3.16, therefore Δ is a

basis of A∗. Moreover, a vertex of C is the intersection of all walls of C except
the one opposite to the vertex.
(4)While this point is statedwithout assuming thatΨ is irreducible, it reduces

to this case by Proposition 1.3.21. Let L denote the Z-lattice in A∗ spanned by
Δ. For any ψ ∈ Δ and η ∈ L we have rψ(η) = η− �η( �ψ∨)ψ and AR 3 implies that
this lies in L. Now (1) implies that L is stable underW(Ψ) and (3) implies that
L coincides with the lattice spanned by Ψ. This shows that every ψ ∈ Ψ(C)+ is
an integral linear combination of elements of Δ. To show that it is non-negative,
we evaluate ψ at each vertex of C and apply (6). �

The possible non-uniqueness in Proposition 1.3.22(4) is explained as follows.
Recall from Remark 1.3.16 that whenΨ = Ψ1⊕Ψ2 and chamber C decomposes
as C1 × C2.
Lemma 1.3.23 Let Ψ =

⊕
Ψi and C =

∏
Ci . Then Ψ(C)0 = ⋃

Ψi(Ci)0.
Then

∑
ψ∈Ψ(C)0 nψψ = 0 if and only if there exist c1, . . . , cn ∈ R such that∑

ψ ∈Ψi (Ci )0 nψψ = ci and
∑

ci = 0.

Proof The “if” statement is clear. For the converse, taking the derivative of
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24 Affine Root Systems and Abstract Buildings∑
ψ∈Ψ(C)0 nψψ = 0 and using the direct sum decomposition V∗ =

⊕
V∗i we see∑

ψ ∈Ψi (Ci )0 nψ �ψ = 0, whence the claim. �

Remark 1.3.24 Consider two irreducible affine root systems Ψ1,Ψ2 with
bases Δ1,Δ2. Then the constant functional 1 in A∗i has the unique expressions∑

ψi ∈Δi aψi ψi = 1. Therefore, 1 ∈ (A1 × A2)∗ has the two distinct expressions∑
ψi ∈Δi aψi ψi for i = 1,2 in terms of the basis Δ = Δ1 ∪ Δ2.
In particular, we see that Ψ(C)0 is a basis of the vector space A∗ when Ψ is

irreducible, but when Ψ is not irreducible then Ψ(C)0 is only generating, but
not linearly independent.

Next is the affine analog of [Bou02, Chapter VI, §1, no. 6, Corollary 1].

Proposition 1.3.25 Let C ⊂ A a chamber and α ∈ Ψ(C)0. The affine reflection
rα permutes the elements of Ψ(C)+ which are not proportional to α.

Proof We apply Proposition 1.3.21 and see that we can replace Ψ by the
irreducible factor that contains α, because all other irreducible factors are fixed
by rα. Therefore we may assume that Ψ is irreducible.
For any β ∈ Ψ(C)0, β � α, rα(β) = β − �β( �α∨)α. Now since by Proposition

1.3.22(5), every root in Ψ(C)+ (respectively, Ψ(C)− = −Ψ(C)+) is a unique
non-negative (respectively, non-positive) integral linear combination of roots
in Ψ(C)0, the proposition is obvious. �

Proposition 1.3.26 Let C ⊂ A be a chamber and let Ψ(C)0 ⊂ Ψ be the
corresponding set of simple affine roots. Let S ⊂ W(Ψ) be the set of reflections
along the elements ofΨ(C)0. Denote the length function of (W(Ψ),S) by �. Then

(1) Let w ∈ W(Ψ) and let s ∈ S be the reflection along α ∈ Ψ(C)0. Then
�(sw) > �(w) is equivalent to w−1α ∈ Ψ(C)+.

(2) �(w) = #(wΨ(C)nd,+ ∩ Ψ(C)nd,−) for all w ∈ W(Ψ).
(3) If w = s1 · · · sq is a reduced expression, with si the reflection along
αi ∈ Φ(C)0, then the set of roots of Ψ(C)nd,+ that are mapped onto
negative roots by w is {sq · · · si+1(αi) | i = 1, . . . ,q}.

Proof (1) According to [Bou02, Chapter V, §3, no.2, Theorem 1(ii)] the
condition �(sw) > �(w) is equivalent to the condition that the chambers C and
wC are on the same side of the vanishing hyperplane Hα of α. This condition
is in turn equivalent to the condition that α |wC > 0. Thus �(sw) > �(w) if and
only if w−1α ∈ Ψ(C)+.
(2) We induct on �(w). When �(w) = 1 then w is the reflection along some
α ∈ Ψ(C)0 and the claim follows form Proposition 1.3.25. For �(w) > 1 write
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1.3 Affine Root Systems 25

w = sw ′ with �(w ′) = �(w) − 1 and s ∈ S the reflection along some α ∈ Ψ(C)0.
Proposition 1.3.25 implies

#
(
wΨ(C)nd,+ ∩ Ψ(C)nd,−) = #(w ′Ψ(C)nd,+ ∩ sΨ(C)nd,−)

= #
(
w ′Ψ(C)nd,+ ∩ ({α} ∪ (Ψ(C)nd,− − {−α})))

= #
(
w ′Ψ(C)nd,+ ∩ Ψ(C)nd,−) + 1

where the final equality comes from (1).
(3) is an immediate consequence of (1) and (2). �

The following is the main construction of reduced affine root systems.

Construction 1.3.27 Let Φ be a (possibly non-reduced) finite root system in
V∗. Take A = V and define

ΨΦ = {a + n | a ∈ Φ, n ∈ Ia},
where Ia = Z if a is non-divisible, and Ia = 2Z + 1 if a is divisible. Then Ψ is
an affine root system according to Proposition 1.3.12, reduced by construction.

It is clear that ∇ΨΦ = Φ. In particular, ∇Ψ need not be reduced even if Ψ is
reduced. In other words, the inclusion (∇Ψ)nd ⊂ ∇(Ψnd) above can be proper.
Example 1.3.28 Wenow give an example of a non-reduced affine root system.
Let V = Rn with the standard scalar product. Let {e1, . . . , en} be the standard
basis. IdentifyingV∗ withV via this scalar product we consider the non-reduced
root system BCn. It is the set of elements

Φ = {±ei | i = 1, . . . ,n} ∪ {±2ei | i = 1, . . . ,n} ∪ {±ei ± ej | 1 � i � j � n}.
Let Ψ = {a+ k | a ∈ Φ, k ∈ Z}. Then Ψ is an affine root system by Proposition
1.3.12 and is obviously non-reduced.

The following rather innocuous construction will turn out to be quite useful
when discussing isomorphisms.

Construction 1.3.29 Let Ψ ⊂ A∗ be an affine root system and let s ∈ R×.
Then sΨ ⊂ A∗ defined by sΨ = {sψ | ψ ∈ Ψ} and ∇(sψ)∨ = s−1 �ψ∨, is also an
affine root system. We say that sΨ is obtained from Ψ by rescaling.
Note thatHψ = Hsψ and rψ = rsψ . ThusΨ and sΨ share the same hyperplane

arrangement and the same affine and extended affine Weyl groups.

Construction 1.3.30 Let 〈−,−〉 be a scalar product on V that is invariant
under W(∇Ψ). For example, we can take the canonical one [Bou02, Chapter
VI, §1, no. 1, Proposition 3]. Identifying V with V∗ via this scalar product, we
obtain a symmetric bilinear form on A∗ by 〈ψ,η〉 = 〈 �ψ, �η〉. It is degenerate. A
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26 Affine Root Systems and Abstract Buildings

vector ψ ∈ A∗ is isotropic if and only if it is a constant functional. In particular,
each ψ ∈ Ψ is anisotropic, so we can define ψ∨ = 2ψ/〈ψ,ψ〉. Then ∇(ψ∨) is
equal to the element �ψ∨ of Axiom AR 2. Note that Hψ∨ = Hψ . The reflection
rψ |A is the orthogonal reflection along the hyperplane Hψ .

Proposition 1.3.31 IfΨ is an affine root system, then so isΨ∨ = {ψ∨ |ψ ∈ Ψ},
called the dual affine root system. We have rψ∨ = rψ , hence W(Ψ) = W(Ψ∨),
and also ∇(Ψ∨) = (∇Ψ)∨.
Proof Immediate from Proposition 1.3.12. �

Remark 1.3.32 We alert the reader that (ΨΦ)∨ andΨΦ∨ are distinct affine root
systems when Φ is reduced and not simply laced. More precisely, assuming
that Φ is reduced and irreducible, we have

(ΨΦ∨)∨ = {a + n | a ∈ Φ, n ∈ Ia},
where Ia = Z when a is long, and Ia = �−1Z when a is short, where � is the
integer ratio of the squares of the two different root lengths in Φ.

The definition of Ψ∨ involves a scalar product because it is not clear how to
interpret A∗∗ as the dual of an affine space in a natural way. This is different from
the case of finite root systems. One can canonify Ψ∨ by using the canonical
scalar product of [Bou02, Chapter VI, §1, no. 1, Proposition 3]. If one uses an
arbitrary scalar product, then Ψ∨ is independent of that choice up to rescaling
(Construction 1.3.29) when Ψ is irreducible. When Ψ is reducible, the dual of
each irreducible component would be well-defined up to rescaling. We will see
below that the isomorphism class of Ψ∨ is independent of the choice of scalar
product.

Remark 1.3.33 Consider an affine root system Ψ and its dual Ψ∨. The set of
vanishing hyperplanes forΨ∨ is the same as that for Ψ. In particular, a chamber
C forΨ is also a chamber forΨ∨. IfΨ is reduced andΨ(C)0 is the corresponding
basis, then Ψ∨(C)0 = {ψ∨ | ψ ∈ Ψ(C)0}.
Proposition 1.3.3 gave one way of obtaining a finite root system from an

affine root system, namely by taking the derivative. The following proposition
gives a different way, by looking at a neighborhood of a point in A.

Notation 1.3.34 If Ω and Ω ′ are two subsets of a topological space and Ω is
contained in the closure of Ω ′, we will write Ω ≺ Ω ′.

Proposition 1.3.35 Let x ∈ A. We set Ψx = {ψ ∈ Ψ | ψ(x) = 0}.
(1) Ψx is a finite root system in the subspace of A∗x that it generates.
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(2) The map ∇ restricted to Ψx is injective.
(3) Ψx depends only on the facet F containing x and may thus be denoted
ΨF.

(4) The subset {ψ∨ | ψ ∈ Ψx} ⊂ Ψ∨ is identified with the root system dual to
Ψx .

(5) Let W(Ψ)x be the stabilizer of x in W(Ψ). The action of W(Ψ)x on Ψx

identifies W(Ψ)x with W(Ψx).
(6) If C is a chamber whose closure contains F, then Ψ(C)0 ∩ ΨF is a basis

for ΨF.
(7) The set of chambers C whose closure contains F is in bijection with the

set of Weyl chambers in ΨF, the bijection being given by C �→ ΨF(C)+ =
ΨF ∩ Ψ(C)+.

(8) More generally, the set of facets whose closure contains F is in bijection
with the set of parabolic subsets ofΨF, the bijection being given by F ′ �→
ΨF(F ′)+ = {ψ ∈ ΨF |ψ(F ′) � 0}. IfF1′ ≺ F2

′ thenΨF(F2′)+ ⊂ ΨF(F1′).
It is obvious that if Ψ is reduced then so is Ψx .

Proof (2) If ψ, η ∈ Ψ have equal derivative, then there exists a c ∈ R such
that η = ψ + c. Hence, unless c = 0, that is η = ψ, both of these affine roots
cannot vanish at x. This shows that ∇ restricted to Ψx is injective. As Φ = ∇Ψ
is finite by Proposition 1.3.3, we conclude that Ψx is also finite.
(1) The axioms in the definition of finite root systems for Ψx follow from the

axioms in Definition 1.3.1 for Ψ and the finiteness established in (2).
(3) If ψ ∈ Ψ vanishes on x, it vanishes on F. Thus Ψx only depends on F

and is contained in A∗
F
.

(4) is immediate.
(5) follows from Lemma 1.3.17(5).
(6) We will use [Bou02, Chapter VI, §1, no. 7, Corollary 3]. Let Ψx(C)± =
Ψx∩Ψ(C)± andΨx(C)0 = Ψx∩Ψ(C)0. All elements ofΨx(C)0 are indivisible by
construction. By Proposition 1.3.22(4) every element of Ψx(C)+ can be written
as a non-negative integral linear combination

∑
nψψ with ψ ∈ Ψ(C)0. Each

such ψ evaluates non-negatively at x, while the linear combination vanishes at
x. This shows nψ = 0 if ψ(x) � 0. To see that Ψx(C)0 is linearly independent
we use Lemma 1.3.23. Writing C = C1 × · · · × Cn and x = (x1, . . . , xn), a
linear relation among Ψx(C) would imply an affine relation among Ψi,xi (Ci),
but since all members of the latter vanish at xi , that relation is in fact linear,
and by Proposition 1.3.22(5) it must be trivial.
(7) Any other basis of ΨF is obtained by applying an element of W(ΨF) =

W(Ψ)F to Ψx(C)0. Applying this element to C produces another chamber con-
taining F in its closure. Conversely, any other chamber containing F in its
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28 Affine Root Systems and Abstract Buildings

closure is obtained by applying an element w ∈ W(Ψ) to C. Then F, w−1F are
both contained in the closure of C, so Lemma 1.3.17 implies w ∈ W(Ψ)F.
(8) Let now F ′ be a facet whose closure contains F. It is immediate that
ΨF(F ′)+ is a parabolic subset. It is also immediate that if F ′′ ≺ F ′ then
ΨF(F ′)+ ⊂ ΨF(F ′′)+. Conversely let P ⊂ ΨF be a parabolic subset. According
to [Bou02, Chapter VI, §1, no. 7, Proposition 20] and the previous point, there
exists a chamber C and a subset S ⊂ ΨF(C)0 such that P is the union of ΨF(C)+
and the subset of ΨF consisting of linear combinations of elements of S with
non-positive integer coefficients. Then

F ′ :=
⋂
ψ∈S

Hψ ∩ C

is a facet contained in the closure of C. We have

ΨF(F ′)+ = ΨF(C)+ ∪ (ΨF(C)− ∩ ΨF(F ′)+).
An element of ΨF(C)− ∩ ΨF(F ′)+ is a non-negative linear combination of
elements ofΨF(C)0 that vanishes onF ′, thus a non-negative linear combination
of elements of S. We conclude P = ΨF(F ′)+. �

The subset Φx := ∇Ψx of Φ = ∇Ψ is a subsystem and the isomorphism
∇ : A∗x → V∗ identifies Ψx with Φx . The relation ∇(ψ∨) = (∇ψ)∨ implies that
{a∨ ∈ Φ∨ | a ∈ Φx} is the dual of Φx .

Corollary 1.3.36 Let x ∈ A. The subset

Φ
′
x := Φnd ∩ (Φx ∪ 12Φx)

is a reduced root system in V∗ with the same Weyl group as Ψx , where (−)nd
denotes the set of non-divisible roots.

Proof This is immediate from the fact that Ψx is a root system. �

Remark 1.3.37 When Φ is reduced then Φ′x = Φx . In general neither of Φx

and Φ′x is contained in the other.
Both Φx and Φ′x will be relevant for Bruhat–Tits theory. We will see (cf.

Theorem 8.4.10) that Ψx � Φx is the root system of the maximal reductive
quotient of the special fiber of the parahoric group scheme associated to x,
while the root system Φ′x is the set of a ∈ Φnd for which the filtration of the
root subgroup Ua(k) associated to the point x has a break at 0.

Example 1.3.38 LetΦ = {−2a,−a, a, 2a} be the root system of type BC1 and
let

Ψ = {−a,a} × Z ∪ {−2a, 2a} × (2Z + 1)

https://doi.org/10.1017/9781108933049.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108933049.003


1.3 Affine Root Systems 29

as in Construction 1.3.27. Let x, y ∈ A = V = R be determined by a(x) = 0
and a(y) = 1/2. Then Φx = Φ

′
x = Φ

′
y = {−a, a}, while Φy = {−2a, 2a}.

Let Φ be the root system of type BC2 and let

Ψ = {±a,±b,±(a + b),±(a + 2b)} × Z ∪ {±2b,±(2a + 2b)} × (2Z + 1)
be as in Construction 1.3.27. Let {a, b} be a set of simple roots so that the
corresponding positive roots are {a, b, a+b, 2b, a+2b, 2a+2b}. Let x, y ∈ A =
V = R2 be the elements specified by a(x) = b(x) = 0, a(y) = 1/2, b(y) = 0.
Then Φ+x = Φ′+x = {a, b, a + b, a + 2b}, Φ+y = {b, 2a + 2b}, Φ′+y = {b, a + b}.
These examples show that Φx need not be a closed subsystem of Φ. For

further examples we point the reader to Figure 1.3.1, from which one sees
visually that, if x is a vertex, the following cases occur: when Ψ is of type A2,
then Ψx is always of type A2; when Ψ is of type C2, then Ψx is either of type
C2 or A1 × A1; when Ψ is of type G2, then Ψx is of type G2 or A2 or A1 × A1;
if Ψ is of type BC2, then Ψx is of type C2 ⊂ BC2, or B2 ⊂ BC2, or A1 × A1.

We now recall the concept of special points. There are in fact two different
definitions of this notion.

Definition 1.3.39 A point x ∈ A is called

(1) special, if for each ψ ∈ Ψ there exists ψ ′ ∈ Ψx such that Hψ and Hψ′ are
parallel, and

(2) extra special, if there exist ψ1, . . . ,ψ� ∈ Ψx such that { �ψ1, . . . , �ψ�} is a
basis of Φ = ∇Ψ.

Remark 1.3.40 There is some discrepancy in the literature regarding the
concept of a “special” point. We have decided to follow the convention used in
[Bou02], [BT72], and [Tit74]. On the other hand, [Mac72] calls “special” what
we have called here “extra special.”

Remark 1.3.41 The notions of “special” and “extra special” do not change
if we replace Ψ by Ψnd, cf. Remark 1.3.5. Therefore we can always reduce
considerations to the case that Ψ is reduced.
If Ψ = Ψ1 ⊕ Ψ2, then a point x = (x1, x2) is (extra) special if and only if xi

is such for the affine root system Ψi . This allows one to reduce considerations
to the case that Ψ is irreducible.

Lemma 1.3.42 Let x ∈ A. The map ∇ : W(Ψ) → W(Φ) restricts to an
injection W(Ψ)x → W(Φ), which is surjective if and only if x is special,
in which case it realizes W(Ψ) as the semi-direct product of W(Φ) with the
subgroup of W(Ψ) consisting of translations.
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Proof This is [Bou02, Chapter V, §3, no. 10, Proposition 9]. �

Proposition 1.3.43 (1) Extra special points exist.
(2) An extra special point is special.
(3) A (extra) special point is a vertex.
(4) If Φ(= ∇Ψ) is reduced, then a point is special if and only if it is extra

special.
(5) If C is a chamber, then there is a vertex of C which is extra special.
(6) If x is extra special, then ∇ identifies (Ψx)nd with Φnd.
(7) If Ψ is irreducible, a given basis can be enumerated {ψ0, . . . ,ψ�} so that
{ �ψ1, . . . , �ψ�} is a basis of Φ.

Proof (1) Let a1, . . . ,a� be a basis of Φ. Choose ψi ∈ Ψ with �ψi = ai . The
linear independence of �ψis implies that the hyperplanesHψi intersect in a single
point of A. This point is extra special.
(2) Let ψ1, . . . ,ψ� ∈ Ψx be such that { �ψ1, . . . , �ψ�} is a basis of Φ. The map
∇ : W(Ψ) → W(Φ), which is surjective by Proposition 1.3.3, must then remain
surjective when restricted to W(Ψx) ⊂ W(Ψ). From Proposition 1.3.35(5) we
haveW(Ψx) = W(Ψ)x . The claim follows from Lemma 1.3.42.
(3) If the point x ∈ A is special or extra special there exist ψ1, . . . ,ψ� ∈ Ψx

whose derivatives are linearly independent, so x is a vertex.
(4) Assume that Φ is reduced and that x is special. Let Δ ⊂ Φ be a basis. For

each a ∈ Δ there exists ψ ∈ Ψ with �ψ = a. Let ψ ′ ∈ Ψx be such that Hψ and
Hψ′ are parallel. Since Φ is reduced, �ψ ′ = ± �ψ. Since −ψ ′ ∈ Ψx we are done.
(5) From (1) and (3) we know that there exists a chamber C′ that has an extra

special vertex. Since the property of being an extra special vertex is preserved
under the action ofW(Ψ), the claim follows from Lemma 1.3.17.
(6) We have already noted that ∇ is an isomorphism Ψx → Φx . By assump-

tion Φx contains a basis of Φ. Since a basis consists of indivisible roots, it lies
in Φndx and hence comes from (Ψx)nd.
(7) A basis corresponds to a chamber, and this chamber has an extra special

vertex x according to (5). Enumerate the basis as {ψ0, . . . ,ψ�}, with ψ0 corre-
sponding to x. By Proposition 1.3.35(6) {ψ1, . . . ,ψ�} is a basis of Ψx and the
claim follows from (6). �

The following example shows the existence of a point that is special but not
extra special.

Example 1.3.44 Let A = V = R. Let a ∈ A∗ be the identity function and
Φ = {−2a,−a,a,2a} be the root system of type BC1. Let Ψ = ΨΦ. Thus
Ψ = {−2a+2Z+1,−a+Z,a+Z,2a+2Z+1}. The point 0 ∈ A is extra special.
Since Ψ1/2 = {−2a,2a}, the point 1/2 ∈ A is special, but not extra special.
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In type BC2, the difference between special and extra special vertices can be
seen visually in Figure 1.3.1: the extra special vertices are those where 4 solid
lines meet, while the special but not extra special vertices are those where 2
solid and 2 dotted lines meet.

Lemma 1.3.45 Let Ψ be an affine root system and let C be a chamber. For all
ψ,η ∈ Ψ(C)0, ψ � η, we have �ψ( �η∨) � 0.
Proof This is [Bou02, Chapter V, §3, no 4, Proposition 3]. �

Lemma 1.3.46 Let Φ be a finite root system. If a ∈ Φ is divisible in Z[Φ], it
is divisible in Φ.

Proof Assume that a is indivisible in Φ. Then there exists a basis Δ of Φ
containing a. Since Z[Φ] is freely generated by Δ, a cannot be divisible in
Z[Φ]. �

Proposition 1.3.47 Assume that Ψ is irreducible and let Δ be a basis corre-
sponding to a chamber C.

(1) There exists a collection of non-negative integers (nψ)ψ∈Δ without com-
mon denominator such that

c(Ψ) :=
∑
ψ∈Δ

nψψ (1.3.1)

is a constant functional.
(2) This collection is uniquely determined, all integers are positive, and the

constant c(Ψ) is positive.
(3) A vertex x of C is extra special if and only if it is special and the integer

nψ , with ψ ∈ Δ corresponding to the vertex x (cf. Proposition 1.3.22(6)),
is equal to 1.

(4) If a finite integral linear combination of elements of Ψ is a constant, then
this constant is an integral multiple of c(Ψ).

(5) c(Ψ) is independent of C.

Proof (1) Let x be an extra special vertex of C. Enumerate the simple affine
roots Ψ(C)0 = {ψ0, . . . ,ψ�} so that ψ0(x) > 0, cf. Proposition 1.3.22(6). Then,
according to Lemma 1.3.45, − �ψ0 is a positive root in Φ. So there exists a
collection of non-negative integers n0, . . . ,n� without a common denominator
such that − �ψ0 =

∑�
i=1 ni �ψi . Thus c(Ψ) = ψ0 +

∑�
i=1 niψi has zero derivative,

and is therefore constant.
(2) The value of the linear functional c(Ψ) at x equals ψ0(x) > 0, which

shows that c(Ψ) is positive. Evaluating c(Ψ) at every other vertex of C shows
that each ni is positive. Since Ψ(C)0 is a basis of A∗ by Proposition 1.3.22(5)
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and since the constant linear functionals form a 1-dimensional subspace of A∗

we see that the collection (ni) is uniquely determined by the properties that it
consist of positive integers without common denominator.
(3) The construction in (1) had the byproduct that nψ0 = 1 for ψ0 ∈ Δ corre-

sponding to the extra special vertex x that was used to produce the collection
(nψ). The uniqueness statement of (2) shows that the collection (nψ) is inde-
pendent of the choice of x and we conclude that nψ = 1 for ψ corresponding to
any extra special vertex of C.
Conversely, let x be a special vertex of C with nψ = 1, where ψ ∈ Ψ(C)0

is the affine root associated to x. We numerate Ψ(C)0 = {ψ0, . . . ,ψ�} so that
ψ0 = ψ. Then {ψ1, . . . ,ψ�} is a basis of Ψx by Proposition 1.3.35(6). We will
show that { �ψ1, . . . , �ψ�} is a basis of Φ. According to [Bou02, Chapter VI, §1,
no. 7, Corollary 3], it is enough to show that every element of a ∈ Φ can be
expressed as an integral linear combination of { �ψ1, . . . , �ψ�} with the same sign.
Since x is special, there exists b ∈ Φx that is proportional to a, i.e. a = r b
with r ∈ {±1,±2,±1/2}. If b is divisible in Φx , after replacing it with b/2, we
assume that b is not divisible inΦx . It is enough to show that r � ±1/2, i.e. that
b is indivisible in Φ. For this, the fact that a is an integral linear combination
of { �ψ0, . . . , �ψ�} and that nψ0 = 1 shows that a is an integral linear combination
of { �ψ1, . . . , �ψ�}. If r = ±1/2, then bwould be an integral linear combination of
{2 �ψ1, . . . ,2 �ψ�} and would therefore be a divisible element of the root lattice of
Ψx . This is a contradiction to our choice by Lemma 1.3.46.
(4) Assume that c′ is a constant that is a finite integral linear combination of

elements of Ψ. Using Proposition 1.3.22(5) we see that c′ is a unique integral
linear combination of elements of Ψ(C)0. Thus c′ =

∑
n′iψi with n′i ∈ Z, and

we find that n′i/ni = c′/c(Ψ) for all i. Taking i so that the vertex xi is extra
special, we see from (3) that c′/c(Ψ) = n′i ∈ Z.
(5) By (4), c(Ψ) is the smallest positive constant that is an integral linear

combination of elements of Ψ, and hence it does not depend on C. �

Remark 1.3.48 Let Φ be an irreducible reduced finite root system and Ψ =
ΨΦ. If a1, . . . ,a� is a basis for Φ, a0 is the highest root, and we set ψ1 =
a1, . . . ,ψ� = a� , and ψ0 = 1 − a0, then ψ0, . . . ,ψ� is a basis for Ψ. The integers
n0, . . . ,n� of (1.3.1) are specified by n0 = 1 and a0 =

∑�
i=1 niai .

Consider now the dual affine root system Ψ∨. By Remark 1.3.33 we know
that ψ∨0 , . . . ,ψ

∨
� is a basis for Ψ

∨. Thus
∑�

i=0
1
2ni 〈ψi,ψi〉ψ∨i is constant. So the

integers (1.3.1) for Ψ∨ are obtained by taking the sequence

n0〈ψ0,ψ0〉, . . . ,n� 〈ψ�,ψ�〉

and dividing each term in it by the greatest common divisor of the sequence.
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This procedure produces the integers (1.3.1) for all irreducible reduced affine
root systems except BCn, in which case one can compute them by hand. The
results are compiled in Table 1.3.5.

The following proposition will be used in the study of isomorphisms (cf.
Definition 1.3.50) as well as the classification of affine root systems.

Proposition 1.3.49 LetΨ be an affine root system. For each ψ ∈ Ψ let uψ ∈ R
be the smallest positive number such that ψ ′ = ψ + uψ ∈ Ψ. Let tψ = rψ′rψ .
Then

(1) For x ∈ A and η ∈ A∗ we have tψ(x) = x−uψ �ψ∨ and tψ(η) = η+uψ �η( �ψ∨).
(2) For any ψ ∈ Ψ and r ∈ R, ψ+r ∈ Ψ if and only if r is an integral multiple

of uψ .
(3) uψ depends only on the Weyl orbit of the derivative of ψ; write ua with

a = �ψ.
(4) uψ is a positive integral multiple of c(Ψ).

Proof (1) is an immediate computation.
(2) Let m ∈ Z and r ∈ R. Then (1) implies tmψ (ψ+ r) = ψ+ r +2uψm. Taking

r = 0 and r = uψ we see ψ +muψ ∈ Ψ for all m ∈ Z. Conversely, if ψ + r ∈ Ψ,
then ψ + r + 2uψm = tmψ (ψ + r) ∈ Ψ for all m ∈ Z. Choosing m appropriately
we obtain an affine root ψ + r ′ with −uψ < r ′ � uψ . It is enough to show
that r ′ = 0 or r ′ = uψ . If that were not the case, then either r ′ ∈ (−uψ,0) or
(0,uψ). In the first case we apply the translation rψrψ+r′ to ψ + r ′ to obtain the
affine root ψ − r ′, which reduces to the second case, namely r ′ ∈ (0,uψ). That
is however a contradiction to the minimality of uψ .
(3) Since the difference of any two affine roots with equal derivative is a

constant, it follows from (2) that uψ depends only on the derivative of ψ. The
surjectivity of W(Ψ) → W(∇Ψ) due to Proposition 1.3.3 reduces to showing
uwψ = uψ with w ∈ W(Ψ). However w(ψ + ua) = wψ + ua and (2) implies
uwψ |uψ . Replacing ψ by wψ and w by w−1 we see the opposite divisibility
relation, hence uwψ = uψ .
(4) This follows from Proposition 1.3.47(4). �

We will now introduce and study the concept of isomorphisms of affine root
systems, as a preparation for the classification of affine root systems.

Definition 1.3.50 Let Ai be an affine space under the R-vector space Vi ,
Ψi ⊂ A∗i an affine root system, for i = 1,2.

(1) A strong isomorphism Ψ1 → Ψ2 is an isomorphism f : A2 → A1 of
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affine spaces such that f ∗ : A∗1 → A∗2 induces a bijection Ψ1 → Ψ2 such
that for η := ( f ∗)−1(ψ), (∇ f )( �ψ∨) = �η∨ for all ψ ∈ Ψ2.

(2) An isomorphism Ψ1 → Ψ2 is a set theoretic bijective map ϕ : Ψ1 → Ψ2
with the following property. If ψ,η ∈ Ψ1 and r, s are integers such that
rψ + sη ∈ Ψ1, then ϕ(rψ + sη) = rϕ(ψ)+ sϕ(η). The analogous property
is required of ϕ−1.

Remark 1.3.51 A strong isomorphism Ψ1 → Ψ2 is uniquely determined by
the bijective map Ψ1 → Ψ2 that it induces, because Ψ1 generates A∗1 and an
affine map A2 → A1 is uniquely determined by its dual A∗1 → A∗2. Therefore,
being a strong isomorphism is a property of a bijection Ψ1 → Ψ2. It is clear
that this property is stronger than the property of being an isomorphism as in
(2) of the above definition.
A strong isomorphism is thus an example of an isomorphism. Another ex-

ample of an isomorphism is the natural bijection Ψ → sΨ for any s ∈ R×,
cf. Example 1.3.55 below.We will show in Proposition 1.3.54 below that a gen-
eral isomorphism Ψ1 → Ψ2 arises as the composition of those two examples
applied to each individual irreducible factor of Ψ1, equivalently Ψ2.

Proposition 1.3.52 Assume that Ψ1,Ψ2 are irreducible affine root systems.
Any isomorphism ϕ : Ψ1 → Ψ2 extends uniquely to a vector space isomorphism
f ∗ : A∗1 → A∗2 that sends the line of constants R ⊂ A∗1 to the line of constants
R ⊂ A∗2 and hence descends to vector space isomorphism V∗1 → V∗2 .

Proof Since Ψ1 generates A∗1, a linear extension A∗1 → A∗2 of ϕ is necessarily
unique. To show that it exists, fix a basis Δ of Ψ1. According to Proposition
1.3.22(5)Δ is also a basis of the vector space A∗1. Let f ∗ : A∗1 → A∗2 be the linear
map extending ϕ|Δ. We will now show that f ∗ extends ϕ. For this purpose, let
Θ be the subset of Ψ1 consisting of ψ ∈ Ψ1 such that f ∗(ψ) = ϕ(ψ). Obviously,
Δ ⊂ Θ. We claim that for all ψ,η ∈ Θ, rψ(η) ∈ Θ. We have the following:

f ∗(rψ(η)) = f ∗(η − �η( �ψ∨)ψ) = f ∗(η) − �η( �ψ∨) f ∗(ψ) = ϕ(η) − �η( �ψ∨)ϕ(ψ)
= ϕ(rψ (η)).

This proves that rψ(η) ∈ Θ.
Now since Δ ⊂ Θ, and the rα, for α ∈ Δ, generate the affine Weyl group

W(Ψ1), we see that Θ is stable under the action ofW(Ψ1). AsW(Ψ1) · Δ = Ψnd1
(Proposition 1.3.22(3)), and for a multipliable root ψ ∈ Ψ1, ϕ(2ψ) = 2ϕ(ψ),
we conclude that Θ = Ψ1, that is, f ∗ indeed extends ϕ.
To see that f ∗ is an isomorphism, we apply the same argument to ϕ−1 and

obtain a linear extension g∗ : A∗2 → A∗1. The compositions f ∗ ◦ g∗ and g∗ ◦ f ∗
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are equal to the identity when restricted to a basis of Ψ2 resp. Ψ1, and hence
are equal to the identity on A∗2 resp. A∗1.
It remains to prove that f ∗(1A1 ) ∈ R · 1A2 . Choose any affine root ψ1 ∈ Ψ1

and let ψ2 = f ∗(ψ1). Consider the sequence ψ1 + nuψ1 ∈ Ψ1 for n = 1, 2, 3, . . .,
cf. Proposition 1.3.49. The image sequence f ∗(ψ1 + nuψ11A1 ) consists of el-
ements of Ψ2. Since according to Proposition 1.3.3, the set of derivatives of
elements of Ψ2 is finite, there exist n1 < n2 such that f ∗(ψ1 + n1uψ11A1) and
f ∗(ψ1 + n2uψ11A1 ) have equal derivative. Hence,

f ∗(ψ1 + n2uψ11A1 ) − f ∗(ψ1 + n1uψ11A1 ) = c1A2,

where c ∈ R. On the other hand,

c1A2 = f ∗((ψ1 + n2uψ11A1 ) − (ψ1 + n1uψ11A1 )) = (n2 − n1)uψ1 f ∗(1A1 ),

so f ∗(1A1 ) = (c/((n2 − n1)uψ1 ))1A2 . �

Lemma 1.3.53 Let ψ,η ∈ Ψ. Assume that their derivatives �ψ and �η are
linearly independent. Let r and s be the largest non-negative integers such that
ψ − rη, ψ + sη ∈ Ψ. Then �ψ( �η∨) = r − s.

Proof Since �ψ and �η have been assumed to be linearly independent, there is a
x ∈ Awhere both ψ and η vanish. So ψ − rη, ψ + sη ∈ Ψx , which is a finite root
system according to the Proposition 1.3.35(1). The claim now follows from
[Bou02, Chapter VI, §1, no. 3, Proposition 9]. �

Proposition 1.3.54 Let Ψ1 and Ψ2 be irreducible affine root systems and
ϕ : Ψ1 → Ψ2 be an isomorphism . Let f ∗ : A∗1 → A∗2 be the extension of ϕ as
in Proposition 1.3.52.

(1) Let α1 ∈ A∗1 and η1 ∈ Ψ1. We denote f ∗(α1) by α2 and ϕ(η1) by η2. Then
�α1 ( �η∨1 ) = �α2 ( �η∨2 ).

(2) There exists an ε ∈ {±1} such that f ∗(c(Ψ1)1A1 ) = εc(Ψ2)1A2 .
(3) If c(Ψ1) = c(Ψ2), and ε = +1, then ϕ is a strong isomorphism.

Proof (1) Since Ψ1 spans A∗1 it is enough to assume α1 ∈ Ψ1. By Proposition
1.3.52, f ∗ descends to an isomorphism V∗1 → V∗2 . Therefore, if �α1 and �η1
are linearly independent, then so are �α2 and �η2, and the claim then follows
from Lemma 1.3.53. If �α1 and �η1 are linearly dependent, then �α1 = c �η1
for some c ∈ R (in fact, c ∈ {±1,±2,± 12 }), and then �α2 = c �η2, implying
�α1 ( �η∨1 ) = 2c = �α2 ( �η∨2 ).
(2) To see that f ∗(c(Ψ1)1A1 ) = ε c(Ψ2)1A2 , let (nψ)ψ∈Δ be positive inte-

gers such that
∑

ψ∈Δ nψψ = c(Ψ1)1A1 . Then according to Proposition 1.3.52,
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f ∗(c(Ψ1)1A1 ) is a constant functional on A2. But

f ∗(c(Ψ1)1A1 ) =
∑
ψ∈Δ

nψϕ(ψ),

hence according to Proposition 1.3.47(4), there exists an integer n2 such that
f ∗(c(Ψ1)1A1 ) = n2c(Ψ2)1A2 .
Applying the same reasoning to ϕ−1, we conclude that there exits an integer

n1 such that ( f ∗)−1(c(Ψ2)1A2 ) = n1c(Ψ1)1A1 . Hence,
c(Ψ1)1A1 = ( f ∗)−1 f ∗(c(Ψ1)1A1 ) = ( f ∗)−1(n2c(Ψ2)1A2 ) = n1n2c(Ψ1)1A1 .
So, n1n2 = 1, implying that n1 = n2 = ±1.
(3) If c(Ψ1) = c(Ψ2), and ε = +1, then (2) implies f ∗(1A1 ) = 1A2 . Now

according to Proposition 1.2.10, f ∗ is the dual of an affine isomorphism
f : A2 → A1. �

Example 1.3.55 Let Ψ ⊂ A∗ be an irreducible affine root system. Let s ∈ R×,
sΨ be the affine root system as in 1.3.29, and Δ be a basis of Ψ. Then |s |Δ :=
{|s |ψ | ψ ∈ Δ} is a basis of sΨ. So c(sΨ) = |s |c(Ψ). Now let ϕ : Ψ → sΨ be
the natural isomorphism ψ �→ sψ, for ψ ∈ Ψ. Then the extended isomorphism
f ∗ (as in Proposition 1.3.52) is clearly the automorphism of A∗ defined by
x �→ s x for x ∈ A∗. Hence,

f ∗(c(Ψ)1A∗ ) = sc(Ψ)1A∗ = εc(sΨ)1A∗,
where, ε = s/|s |. Thus ε = +1 if and only if s is positive.

Proposition 1.3.56 Let ϕ : Ψ→ Ψ′ be an isomorphism of affine root systems.
Then there exists an affine root system Ψ′′ ⊂ A∗ such that

(1) If Ψ = Ψ1 ⊕ · · · ⊕ Ψn is the decomposition of Ψ into irreducible pieces
and A = A1 × · · · × An is the corresponding decomposition of the affine
space A, then Ψ′′ = r1Ψ1 ⊕ · · · ⊕ rnΨn for some r1, . . . , rn ∈ R×.

(2) The composition ϕ′ : Ψ′′ → Ψ′ of ϕ with the obvious bijection Ψ′′ → Ψ
is a strong isomorphism.

Proof Let Ψ′i = ϕ(Ψi) ⊂ Ψ′. As Ψ =
⋃

i Ψi , we see that Ψ′ =
⋃

i Ψ
′
i . Hence,

Ψ
′ = Ψ′1 ⊕ · · · ⊕ Ψ′n.

For each i, ϕ |Ψi : Ψi → Ψ′i is an isomorphism. Let f ∗i : A∗i → A′i
∗ be its

extension and let ri ∈ R such that f ∗i (c(Ψi)1Ai ) = ri c(Ψ′i )1A′i , and let Ψ
′′
i =

riΨi . Then Proposition 1.3.52 shows that the composition of ϕ|Ψi with the
natural bijection Ψ′′i → Ψi is a strong isomorphism. �
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Corollary 1.3.57 Let ϕ : Ψ → Ψ′ be an isomorphism. There exists an iso-
morphism f : A′ → A that identifies the hyperplane arrangement of Ψ′ with
that of Ψ, and in particular is equivariant for the action of the extended affine
Weyl groups.

Proof Using Proposition 1.3.21 decompose Ψ = Ψ1 ⊕ · · · ⊕ Ψn. Let Ψ′′ =
r1Ψ1 ⊕ · · · ⊕ rnΨn as in Proposition 1.3.56(1). The hyperplane arrangement of
Ψ is the same as that of Ψ′′, and that in turn is the same as that of Ψ′ due to
Proposition 1.3.56(2). �

Remark 1.3.58 Our notion of a strict isomorphism is the analog of the notion
of isomorphism introduced in [Mac72, §2]. On the other hand, in [Mac72, §3]
the notion of “similarity” is introduced, according to which Ψ,Ψ′ are called
similar, if there exist irreducible affine root systems Ψ1, . . . ,Ψn and non-zero
real numbers r1, . . . , rn such that

Ψ � Ψ1 ⊕ · · · ⊕ Ψn and Ψ′ � r1Ψ1 ⊕ · · · ⊕ rnΨn.

Corollary 1.3.57 shows that our notion of isomorphism of Definition 1.3.50(2)
recovers Macdonald’s notion of similarity.

We now turn to the problem of classifying affine root systems. We will see
in Proposition 1.3.67 below that every irreducible reduced affine root system is
isomorphic to eitherΨΦ orΨ∨Φ of Construction 1.3.27 for some irreducible (pos-
sibly non-reduced) finite root system Φ. The non-reduced affine root systems
can be easily enumerated separately.
As before, we denote the finite root system ∇Ψ by Φ in what follows.

Lemma 1.3.59 Let Ψ be a reduced affine root system. If ψ ∈ Ψ and r ∈ R
are such that 2ψ + r ∈ Ψ, then r = muψ for an odd integer m. In particular,
u2a = 2ua for a = �ψ.

Proof Let μ ∈ R be the smallest non-negative number such that 2ψ + μ ∈ Ψ.
We claim that μ = ua. Since Ψ is reduced we know μ > 0. We have r2ψ+μ(ψ) =
−(ψ + μ), thus ψ + μ ∈ Ψ, so Proposition 1.3.49(2) implies μ = rua with some
positive integer r . If r = 2 then both ψ+ua and 2ψ+2ua are affine roots, which
contradicts the assumption that Ψ is reduced. If r � 3 there exists an integer
r/4 � r ′ < r/2. Then

−rψ+r′ua (2ψ + rua) = 2ψ + (4r ′ − r)ua ∈ Ψ.
But then 0 < (4r ′ − r)ua < rua = μ contradicts the minimality of μ. Therefore
r = 1 is the only possibility, confirming μ = ua.
From the definition of μ it follows that there is no affine root between 2ψ

https://doi.org/10.1017/9781108933049.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781108933049.003


38 Affine Root Systems and Abstract Buildings

and 2ψ + μ. But −rψ(2ψ + μ) = 2ψ − μ ∈ Ψ and we see that there is no affine
root between 2ψ − μ and 2ψ. Thus there is no affine root between 2ψ − μ and
2ψ + μ and Proposition 1.3.49(2) shows that u2a = 2μ = 2ua. �

Proposition 1.3.60 Let Ψ = {u−1a a | a ∈ Φ}. Then Ψ is a root system in V∗

with the same Weyl group as Φ and its dual is {uaa∨ | a ∈ Φ} ⊂ V . If Ψ is
reduced, then Ψ = {u−1a a | a ∈ Φnd}, so Ψ is also reduced.

Proof We verify [Bou02, Chapter VI, §1, no. 1, Definition 1]. By construction
Ψ is finite, does not contain 0, and spans V∗, hence (RSI). It is stable under
W(Φ) according to Proposition 1.3.49(3). The reflection associated to the vector
u−1a a and the covector uaa∨ is the same as the reflection associated to a and a∨,
which is ra, hence (RSII). Finally u−1a a(ubb∨) = u−1a uba(b∨). Choose α, β ∈ Ψ
with gradients a, b respectively. By Proposition 1.3.49(1) we have

Ψ � tβ (α) = α + ub �α( �β∨) = α + uba(b∨)
and Proposition 1.3.49(2) implies uba(b∨) ∈ uaZ, hence (RSIII).
Assume now that Ψ is reduced. IfΦ is also reduced the statement is immedi-

ate. Otherwise Lemma 1.3.59 shows that u2a = 2ua, hence 2u−12aa = u−1a a. �

Proposition 1.3.61 Assume that Φ is reduced. Then the translation subgroup
in W(Ψ) is given by the lattice in V spanned by Ψ

∨
.

Proof Let T ⊂ V be the translation subgroup ofW(Ψ) and let T ′ be the lattice
spanned by Ψ

∨
.

Let ψ ∈ Ψ and let a = �ψ. Then tψ = −uaa∨ by Proposition 1.3.49(1), hence
T ′ ⊂ T . Conversely, fix a special vertex x and apply Lemma 1.3.42 to write
W(Ψ) = T � W(Φ). Since T ′ is stable under W(Φ) we can form the subgroup
W(Ψ)′ := T ′ � W(Φ) of W(Ψ). It is enough to show W(Ψ)′ = W(Ψ). In turn,
it is enough to show rψ ∈ W(Ψ)′ for all ψ ∈ Ψ.
By Proposition 1.3.43 we have the isomorphism ∇ : Ψx → Φ, so there exists
ψ ′ ∈ Ψx with �ψ ′ = a. By Proposition 1.3.49 we have ψ = ψ ′+ nua with n ∈ Z.
Then rψ = t−nua a∨ rψ′ , where t−nua a∨ is the translation by the vector −nuaa∨.
Therefore rψ ∈ W(Ψ)′ as claimed. �

Lemma 1.3.62 Ψ
∨
= Ψ.

Proof Let ψ ∈ Ψ and n ∈ Z. Write a = �ψ. Then
(ψ + nua)∨ = ψ∨ + 2nua〈a,a〉−1; hence, ua∨ = 2ua 〈a,a〉−1.

Therefore,

Ψ
∨
= {u−1a∨ a∨ | a∨ ∈ Φ∨} = {u−1a a | a ∈ Φ} = Ψ.
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�

Theorem 1.3.63 Let Ψ be an irreducible reduced affine root system. Then it
is isomorphic to a system obtained from Construction 1.3.27, or to its dual.

Proof We distinguish the following cases.
(1) The function a �→ ua is constant on Φnd: Up to rescaling Ψ we can

assume ua = 1 for all a ∈ Φnd. Let x ∈ A be an extra special vertex. Then
Proposition 1.3.49 and Lemma 1.3.59 show that every ψ ∈ Ψ is of the form
ψx + n for some ψx ∈ Ψx = Φ

nd and n ∈ Z, or to 2ψx + 2n + 1. Thus Ψ is
obtained by applying Construction 1.3.27 to the finite root system Φ.
(2)Φ is reduced and there are at least two different values of ua for a ∈ Φ: By

Proposition 1.3.49(3) theremust exist exactly two root lengths inΦ. Let us again
rescale Ψ to acheive ua = 1 when a ∈ Φ is short. When a ∈ Φ is long, then
ua � 1, so u−1a a has a different length from a. In order for Ψ = {u−1a a | a ∈ Φ}
to be a root system, a short a ∈ Φ must become a long a ∈ Ψ and a long
a ∈ Φ must become a short u−1a a ∈ Ψ. This implies ua = 〈a,a〉 when a ∈ Φ
is long, where 〈−,−〉 is rescaled so that 〈a,a〉 = 1 when a ∈ Φ is short. A
simple computation shows that ua∨ = 2ua/〈a,a〉 for all a ∈ Φ. Therefore the
dual system Ψ∨ falls under case (1) and we see that it is obtained by applying
Construction 1.3.27 to the finite root system Φ∨.
(3) Φ is non-reduced and there are at least two different values of ua for

a ∈ Φnd: In this case, Φ must be of type BCn with n � 1. As in (2) we rescale
Ψ so that ua = 1 when a ∈ Φnd is short and conclude that ua = 2 when a ∈ Φnd
is long. Choose an extra special vertex x ∈ A. Then ∇ : Ψndx → Φnd is an
isomorphism by Proposition 1.3.43(6). Let a, b ∈ Φnd be orthogonal short roots
so that a ± b,2a,2b ∈ Φ. Let α, β ∈ Ψndx have gradients a, b respectively. Then
α± β ∈ Ψx . By Lemma 1.3.59 also 2β+1 ∈ Ψ. Then r2β+1(α+ β) = α− β+1,
showing ua−b � 1. But ua−b = 2 as a − b ∈ Φnd is long. Thus case (3) cannot
exist. �

Construction 1.3.64 Let Ψ be an irreducible affine root system. One can
associate to it an affine Dynkin diagram D̃ as follows. Let C be a chamber
and let Ψ(C)0 be the corresponding basis as in Definition 1.3.19. The nodes
of the affine Dynkin diagram are the elements of Ψ(C)0, and the bonds and
arrows are inserted according to the same rules as for finite root systems:
two ψ,η ∈ Ψ(C)0, such that �ψ is not divisible in Φ, are joined by a bond with
multiplicity f (ψ,η) := �ψ( �η∨)· �η( �ψ∨). Hence the only possible values for f (ψ,η)
are 0, 1, 2, 3, 4 according to [Bou02, Chapter VI,§1, no. 3]. This is just like for
finite root systems, except for the possibility of the value 4, which according
to loc. cit. occurs if either �ψ = ± �η or �ψ = ±2, �η. Both of these possibilities do
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occur, the first for ΨΦ with Φ of type A1, and the second with Φ of type BC1.
The value 0 indicates the absence of a bond. An arrow is placed on the bond if
and only if �η( �ψ∨) � �ψ( �η∨). In that case one of these two numbers has absolute
value 1, say without loss of generality �η( �ψ∨), and the arrow points towards η.
One can interpret most of this recipe also in terms of a Weyl group invariant

scalar product (−,−) on V∗. If the bond between η and ψ has an arrow on it,
then the arrow points towards the shorter root (i.e. the root whose norm in
terms of the scalar product is smaller), and the multiplicity of the bond equals
(ψ,ψ)/(η,η), assuming η is the shorter root. This however does not apply to
bonds of multiplicity 4 without an arrow, because then (ψ,ψ)/(η,η) is equal to
1, rather than 4.
Note that if Ψ is not reduced, the affine Dynkin diagram is the same as for

the reduced subsystem Ψnd = {ψ ∈ Ψ | ψ/2 � Ψ}, because Ψ(C)0 ⊂ Ψnd.

Fact 1.3.65 The affine Dynkin diagram of the dual system Ψ∨ is obtained
from the affine Dynkin diagram of Ψ by inverting all arrows.

Fact 1.3.66 Let Ψ be an irreducible reduced affine root system, C a chamber,
and F a facet contained in its closure. The Dynkin diagram of ΨF is obtained
from the Dynkin diagram of Ψ by removing all vertices of the facet F and all
edges emanating from them.

Proposition 1.3.67 Let Ψ be an irreducible reduced affine root system.
(1) The Dynkin diagram of Ψ is among those given in Table 1.3.4, and each

diagram in this table is the diagram of some Ψ.
(2) The isomorphism class of Ψ is determined by its affine Dynkin diagram.

The label of the diagram is called the type of Ψ.

Proof (1) Theorem 1.3.63 shows that either Ψ or Ψ∨ is produced by Con-
struction 1.3.27. Computing the resulting Dynkin diagram is a simple exercise
left to the reader.
(2) Removing a node from the Dynkin diagram of Ψ produces the Dynkin

diagram of the finite root system Ψx , where x is the vertex of the chamber C
corresponding to the removed node, cf. Fact 1.3.66. Since Ψx is determined by
its Dynkin diagram up to isomorphism, the same is true for Ψ. �

Remark 1.3.68 Another way to classify the possible affine Dynkin diagrams
is as follows. Let S be the set of simple reflections corresponding to the basis
Ψ(C)0 of Ψ and letW = W(Ψ). Since (W,S) is a Coxeter system by Proposition
1.3.20, one can appeal to the classification of Coxeter graphs in [Bou02, Chapter
VI, §4, no. 3, Theorem 4]. One has to only replace a bond with label 4 with a
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double edge with orientation, and a bond with label 6 with a triple edge with
orientation.

Theorem 1.3.69 Let Ψ be an irreducible non-reduced affine root system.
Consider the reduced subsystems Ψnd and Ψnm. The pair consisting of their
types determines the isomorphism class of Ψ. The possibilities are given in
Table 1.3.3.

Proof The finite root systemΦ = ∇Ψ is irreducible and non-reduced, hence of
type BCn. ThusΦnd andΦnd are the subsystems of type Bn andCn, respectively.
Moreover, we have Φnd ⊂ ∇(Ψnd) ⊂ Φ and Φnm ⊂ ∇(Ψnm) ⊂ Φ. Therefore
∇(Ψnd) is of type Bn or BCn, showing that Ψnd is of type Bn, C∨n , or BCn. In
the same way, ∇(Ψnm) is of type Cn or BCn, showing that Ψnm is of type B∨n ,
Cn, or BCn. But since the Weyl groups of Ψnd and Ψnm agree, the only possible
options are those listed in Table 1.3.3. �

Table 1.3.3 The affine Dynkin diagrams of the non-reduced irreducible affine
root systems

Label Diagrams

(BCn,Cn) (n � 1) , , , . . . ,

(C∨n ,BCn) (n � 1) , , , . . . ,

(Bn,B∨n ) (n � 2) , , , . . . ,

(C∨n ,Cn) (n � 1) , , , . . . ,

Remark 1.3.70 In Table 1.3.3 we have listed the types of the non-reduced
irreducible affine root systems as discussed in Theorem 1.3.69. Thus the type
is a pair (X,Y ), with X the Dynkin type of Ψnd and Y the Dynkin type of
Ψnm. Since the affine Dynkin diagram is the same as that for Ψnd, and the
special and extra special vertices are also the same, instead of recording those,
we have recorded in Table 1.3.3 the information about which simple root is
multipliable: the non-multipliable simple roots are labeled by a solid node ( ),
while the multipliable simple roots are labeled by a solid node with a circle
around it.
In Table 1.3.4 we have recorded the special and extra special vertices as

follows. According to Proposition 1.3.22(6) the vertices of a chamber are in
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bijection with the corresponding set of simple roots. We have labeled by an
empty node ( ) those simple roots that correspond to extra special vertices.
We have labeled by a crossed node ( ) those simple roots that correspond
to vertices that are special, but not extra special. By Proposition 1.3.43 such
vertices exist only if the derivative root system Φ is non-reduced. The simple
roots that correspond to non-special vertices are labeled by a solid node ( ).

Table 1.3.4 The affine Dynkin diagrams of the reduced irreducible affine root
systems

Label Diagrams

An (n � 1) , , . . . ,

Bn (n � 3) , , . . . ,

B∨n (n � 3) , , . . . ,

Cn (n � 2) , , . . . ,

C∨n (n � 2) , , . . . ,

BCn (n � 1) , , , . . . ,

Dn (n � 4) , , . . . ,

E6

E7

E8

F4

F∨4

G2

G∨2
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Table 1.3.5 The integers (1.3.1) for the reduced irreducible affine root systems

Label Diagram

An (n � 1)
1

1 1 1 1

Bn (n � 3)
1

1

2 2 2 2 2 2

B∨n (n � 3)
1

1

2 2 2 2 2 1

Cn (n � 2)
1 2 2 2 2 1

C∨n (n � 2)
1 1 1 1 1 1

BCn (n � 1)
1 2 2 2 2 2 2

Dn (n � 4)
1

1

2 2 2 2 2

1

1

E6

1

1

2

2 3 2 1

E7 1 2

2

3 4 3 2 1

E8 2

3

4 6 5 4 3 2 1

F4 1 2 3 4 2

F∨4 1 2 3 2 1

G2 1 2 3

G∨2 1 2 1
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Definition 1.3.71 The extended affine Weyl group of Ψ is the groupW(Ψ)ext
consisting of those automorphisms of the affine space A that preserve Ψ and
whose derivative is an element ofW(Φ).

1.3.72 If C ⊂ A is any chamber and ΞC is the stabilizer of C inW(Ψ)ext, then
Lemma 1.3.17 impliesW(Ψ)ext = W(Ψ)� ΞC.
Remark 1.3.73 Consider an irreducible affine root system Ψ. It is clear from
Table 1.3.5 that the set of vertices, the information whether or not two vertices
are linked, and the sequence of integers (1.3.1), completely determines the
affine Dynkin diagram of the reduced subsystem Ψnd. Table 1.3.3 shows that, if
one adds to this the information about which affine simple root is multipliable,
then this completely determines both Ψnd and Ψnm, hence also Ψ.

Lemma 1.3.74 Assume that Ψ is reduced.

(1) The translation subgroup W(Ψ)ext ∩ V is the lattice

{v ∈ V | 〈v,a〉 ∈ uaZ for all a ∈ Φnd}.
(2) The translation subgroup W(Ψ)aff ∩ V is the lattice generated by the
(ua/δa)a∨ for a ∈ Φnd, where δa = 1 if a is non-multipliable, and δa = 2
if a is multipliable.

Proof (1) follows from Proposition 1.3.49 and Lemma 1.3.59.
(2) follows from Proposition 1.3.61 when Φ is reduced. Since the statement

respects direct sums, the only remaining case to check is that of type BCn,
which can be checked by hand. �

Lemma 1.3.75 Let Ψ be an irreducible affine root system. Assume that it is
either reduced, or as in Example 1.3.28. Let C be a chamber. Then Aut(C) ⊂
W(Ψ)ext acts simply transitively on the set of extra special vertices of C.

Proof When Φ is reduced this is [Bou02, Chapter VI, §2, no. 3, Proposition
6], where 0 in loc. cit. is by construction a special, hence also extra special,
vertex. When Φ is not reduced one checks directly that there is a unique extra
special vertex. At the same timeW(Ψ)aff = W(Ψ)ext, so Aut(C) = {1}. �

Remark 1.3.76 Consider an irreducible affine root system Ψ ⊂ A∗ and a
chamber C ⊂ A. Recall the stabilizer Ξ = ΞC of C inW(Ψ)ext. The action of Ξ
on C is faithful, because the action ofW(Ψ)ext on A is faithful by definition of
W(Ψ)ext as a subgroup of affine transformations of A. Since there is a bijection
between the set of vertices of C and the set of simple affine roots (cf. Proposition
1.3.22(6)), hence the set of vertices of the affine Dynkin diagram, one obtains
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a faithful action of Ξ on the affine Dynkin diagram. With respect to this action,
Ξ is realized as a normal subgroup of the full symmetry group of the affine
Dynkin diagram, which we shall call Aut(D̃). Let us describe the two groups
Ξ ⊂ Aut(D̃). It is enough to assume that Ψ is reduced, since in the non-reduced
cases we have Ξ = Aut(D̃). More generally, if the irreducible root system Φ
contains roots of two different lengths or if it is of type A1, E7 or E8, then it
does not admit a non-trivial automorphism that preserves a basis, and in these
cases we have Ξ = Aut(D̃) (see (1.3.2)).
(1) If Ψ is of type A1, then Ξ = Aut(D̃) = Z/2Z.
(2) IfΨ is of type An, n > 1, thenAut(D̃) = Z/(n+1)Z�Z/2Z is the dihedral

group of order 2(n+ 1), and Ξ is the subgroup of index 2 consisting of all
rotations.

(3) If Ψ is of type Bn, B∨n , Cn, C∨n , then Ξ = Aut(D̃) = Z/2Z.
(4) If Ψ is of type BCn then Ξ = Aut(D̃) = {1}.
(5) If Ψ is of type D4, then Aut(D̃) = S4, and Ξ is the unique Sylow-2

subgroup of A4, hence isomorphic to (Z/2Z)2. One can represent two of
its generators as follows:

(6) If Ψ is of type D2n with n > 2, then Aut(D̃) = (Z/2Z)2 � Z/2Z is
generated by the following three automorphisms of order 2: switch the
two left nodes and fix all others, switch the two right nodes and fix all
others, switch the left and right branches. In fact, there are two distinct
automorphisms of order 2 that switch the left and right branches; they
commute and their product is the unique central element in the symmetry
group of the affine Dynkin diagram. These two automorphisms generate
the subgroupΞ, which is hence isomorphic to (Z/2Z)2. One can represent
two of its generators as follows:

(7) If Ψ is of type D2n−1, n > 2, then again Aut(D̃) = (Z/2Z)2 � Z/2Z with
the same description as for D2n. The subgroup Ξ is the unique subgroup
isomorphic to Z/4Z. One can represent a generator of it as follows:
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(8) If Ψ is of type E6, then Aut(D̃) = S3 = (Z/3Z) � Z/2Z is the dihedral
group of order 6 and Ξ is the unique subgroup Z/3Z. One can represent
a generator of it as follows:

(9) If Ψ is of type E7, then Ξ = Aut(D̃) = Z/2Z.
(10) If Ψ is of type E8, F4, F∨4 , G2, G

∨
2 , then Ξ = Aut(D̃) = {1}.

More information about Ξ can be found in [Ree10, §3.6] and [Bou02, Chapter
VI, §2, no. 3]. Note in particular that, when Ψ = ΨΦ for an irreducible reduced
finite root system Φ, and x is a special node in the affine Dynkin diagram, then
the map sending ω ∈ Ξ to ωx is a bijection between the group Ξ and the set
of special nodes. Removing from D̃ the node x and all edges emanating from
x we obtain the Dynkin diagram D of Φ. If Aut(D̃)x is the stabilizer of x in
Aut(D̃), then Aut(D) = Aut(D̃)x and Aut(D̃) = Ξ� Aut(D̃)x . The extension

1→ Ξ→ Aut(D̃) → Aut(D) → 1 (1.3.2)

obtained in thisway does not depend on the choice of x, and the choice of x gives
a splitting of this extension. Another description of themapAut(D̃) → Aut(D),
which does not involve the choice of x, can be given as follows. The group
Aut(D̃) is the quotient of the automorphism group of Ψ by the affine Weyl
group W(Ψ); the group Aut(D) is the quotient of the automorphism group of
Φ = ∇Ψ by the finite Weyl groupW(Φ); the derivative map Aut(Ψ) → Aut(Φ)
induces the homomorphism Aut(D̃) → Aut(D).
Recall from [Bou02, Chapter VI, §1, no. 7, Definition 4] the notions of a

closed, parabolic, and symmetric subset X of a root system Φ: it is symmetric
if −X = X; closed if a, b ∈ X and a + b ∈ Φ implies a + b ∈ X; and parabolic
if it is closed and X ∪ −X = Φ. A closed symmetric subset is the same as a
closed subroot system; cf. [Bou02, Chapter VI, §1, no. 7, Proposition 23].

Lemma 1.3.77 Let A be an affine space over V ,Ψ ⊂ A∗ an affine root system,
andΦ′ ⊂ Φ a closed symmetric subset. Let W ⊂ V be the subspace annihilated
by Φ′. Then Ψ′ = {ψ ∈ Ψ | �ψ ∈ Φ′} is an affine root system in (A/W)∗. It is
reduced if Ψ is.

Proof Since Ψ′ ⊂ Ψ we know that Ψ′ does not contain 0. The subspace of
V∗ generated by Φ′ isW⊥ = (V/W)∗. For each a ∈ Φ the set {ψ ∈ Ψ | �ψ = a}
is a free abelian group of rank 1 (cf. [Mac72, Proposition 6.9]), therefore Ψ′
generates (A/W)∗, hence satisfies Axiom AR 1. For ψ ∈ Ψ′ the reflection r �ψ
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preserves Φ′, therefore Axiom AR 2 for Ψ′ follows from Axiom AR 2 for Ψ.
The remaining axioms for Ψ′ follow immediately from those for Ψ. �

1.4 Tits Systems

In this section we review the notion of a Tits systems and some of its properties.
Tits systems are very closely related to Tits buildings, a notion reviewed in the
next section.

Definition 1.4.1 A Tits system is a tuple (G,B,N,S) consisting of a group
G, two subgroups B and N of G, and a subset S of N/(B ∩ N), subject to the
following axioms.

TS 1 The set B ∪ N generates G and B ∩ N is a normal subgroup of N .
TS 2 The set S generates the groupW = N/(B ∩ N) and consists of elements

of order 2.
For w ∈ W and n any lift of w in N , we define wB := nB and Bw := Bn.

These are well-defined cosets of B in G.
TS 3 Given s ∈ S and w ∈ W one has sBw ⊂ BwB ∪ BswB.
TS 4 Given s ∈ S one has sBs � B.

The system is called saturated, if in addition the following axiom holds.

TS 5
⋂

n∈N nBn−1 = B ∩ N .

Remark 1.4.2 Set T = B ∩ N . The groupW = N/T is called theWeyl group
of the Tits system. According to [Bou02, Chapter IV,§2,no. 5, Corollary] the
set S consists precisely of those non-trivial elements of W for which the set
B ∪ BwB is a subgroup of G. Since G will usually be fixed, we may also refer
to the pair (B,N) as a Tits system. Sometimes this pair is called a BN-pair, but
this can cause confusion when its members are not called B and N .

Example 1.4.3 If G is a connected reductive group over a field k, P is a
minimal parabolic k-subgroup, and N the normalizer of a maximal k-split
torus S contained in P, then (P(k),N(k)) is a Tits system in G(k) with finite
Weyl group; see [Bor91, Theorem 21.15]. The role ofT is then played byM(k),
where M is the centralizer of S in P, equivalently in G; it is a Levi k-subgroup
of P. This is usually called the standard Tits system of G(k). We may call it
the spherical Tits system; see Example 1.5.11. Remarkably, when k is infinite,
any Tits system in G(k) with finite Weyl group that satisfies a mild natural
condition is the spherical Tits system for some choice of P and N; see [Pra14,
Theorem B].
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In this book we will be primarily concerned with another fundamental ex-
ample of a Tits system. For this the abstract group G will be a certain subgroup
G(k)0 of the group G(k) of k-points of a connected reductive group G over a
discretely valued Henselian field k, and the role of B will be played by a certain
bounded subgroup of G(k)0, called an Iwahori subgroup. The Weyl group of
this Tits system will be infinite.

Definition 1.4.4 Let (G,B,N,S) be a Tits system.
(1) For any subset X ⊂ S let WX ⊂ W be the subgroup generated by X and

letGX = BWXB. The groupGX is called a standard parabolic subgroup.
(2) Any subgroup of G containing a conjugate of B is called a parabolic

subgroup.

We have the following properties of Tits systems; see [Bou02, Chapter IV,
§2] and the summary in [Tit74, §3.2].

Proposition 1.4.5
(1) (Bruhat Decomposition) The map w �→ BwB is a bijection from the Weyl

group W to the set of B-double cosets in G. In particular, G = BW B.
(2) Any parabolic subgroup is conjugate to a unique standard parabolic

subgroup.
(3) Each parabolic subgroup is equal to its normalizer.
(4) Let Q be a subgroup of G that contains two parabolic subgroups Q1 and

Q2 of G. Then any g ∈ G such that gQ1g−1 = Q2 belongs to Q.

Definition 1.4.6 Let P ⊂ G be a parabolic subgroup. The subset X ⊂ S such
that P is conjugate to GX = BWXB is called the type of P.

According to [Bou02, Chapter IV, §2, no. 4, Theorem 2], the tuple (W,S) is
a Coxeter system in the sense of [Bou02, Chapter IV, §1, no. 3, Definition 3].
Recall from the end of [Bou02, Chapter IV, §1] that a Coxeter system (W,S) is
called irreducible if one cannot write S as a disjoint union S = S1 ∪ S2 of two
non-empty subsets such that each element of S1 commutes with each element
of S2; equivalently the Coxeter graph of (W,S) is connected and non-empty. We
call (G,B,N,S) irreducible if its Coxeter system is irreducible. More generally
we will be interested in Tits systems for which (W,S) may not be irreducible,
but S is finite. There exists a unique smallest disjoint union decomposition
S = S1 ∪ · · · ∪ Sn such that for i � j each element of Si commutes with each
element of Sj . ThenW =

∏
i Wi , whereWi is the subgroup ofW generated by Si;

see [Bou02, Chapter IV, §1, no. 9, Proposition 8]. Each (Wi,Si) is an irreducible
Coxeter system, and the graphs of (Wi,Si) are the irreducible components of
the graph of (W,S). The groupsG, B, and N , need not have an analogous direct
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product decomposition. However, the set of parabolic subgroups of (G,B,N,S)
does have such a decomposition, as we will now discuss.
Let (G,B,N,S) be a Tits system and let S = S1 ∪ S2 be a disjoint union such

that each element of S1 commutes with each element of S2. Write Ni for the
preimage ofWi in N . Then N1 and N2 normalize each other, their intersection
is T , and their product is N .

Lemma 1.4.7 GSi ∩ N = Ni .

Proof By construction GSi = BNiB, so Ni ⊂ GSi ∩ N . At the same time,
GS1 ∩ N = GS1 ∩ (N1 · N2) = N1 · (GS1 ∩ N2) ⊂ N1 · (GS1 ∩ GS2 ∩ N) =
N1 · (B ∩ N) = N1 and analogously GS2 ∩ N ⊂ N2. �

Lemma 1.4.8 (G,GS1,N,S2) is a Tits system with Weyl group W2.

Proof Since B ∪ N generates G, so does GS1 ∪ N . The group GS1 ∩ N equals
N1 by Lemma 1.4.7 and is thus normal in N . The quotient N/N1 is isomorphic
to N2/(N1 ∩ N2) = N2/T = W2. To verify Axiom TS 3 we first claim that for
any w ∈ W we haveW1Bw ⊂ BW1wB. Since S1 generatesW1 this is equivalent
to s(1)1 · · · s

(n)
1 Bw ⊂ W1wB for s(1)1 , . . . , s

(n)
1 ∈ S1. We work by induction on n

starting with the trivial case n = 0. For the induction step we compute using
Axiom TS 3 for the system (G,B,N,S) and the induction hypothesis that

s(1)1 · · · s
(n)
1 Bw ⊂ (s(1)1 · · · s

(n−1)
1 BwB) ∪ (s(1)1 · · · s

(n−1)
1 Bs(n)1 wB)

⊂ BW1wB ∪ BW1s
(n)
1 wB

= BW1wB.

The claim is proved. We now check Axiom TS 3 for (G,GS1,N,S2) by taking
s2 ∈ S2, w2 ∈ W2, and computing

s2GS1w2 = s2BW1Bw2 ⊂ s2BW1w2B

= s2Bw2W1B ⊂ Bw2W1B ∪ Bs2w2W1B

⊂ GS1w2GS1 ∪ GS1 s2w2GS1 .

Finally let s ∈ S and let n ∈ N be a lift. If nGS1n
−1 = GS1 then Proposition

1.4.5 and Lemma 1.4.7 imply n ∈ N1. Thus if s ∈ S2 then sGS1 s � GS1 , hence
Axiom TS 4 holds for (G,GS1,N,S2). �

Let Sc
i = S − Si . Of course we have Sc

1 = S2 and Sc
2 = S1. Let P be the set

of parabolic subgroups of the Tits system (G,B,N,S) and let Pi be the set of
parabolic subgroups of the Tits system (G,GSc

i
,N,Si). There is a tautological

order-preserving G-equivariant inclusion ιi : Pi → P, defined by ιi(Pi) = Pi .
We have typeP(ιi(Pi)) = typePi

(Pi) ∪ Sc
i ,
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Lemma 1.4.9 Let P ∈ P. Then
⋂

P⊂Pi ∈Pi
Pi is an element of Pi , which

we shall call πi(P). If P = GX with X ⊂ S then πi(P) = GX∪Sc
i
. In par-

ticular, typePi
(πi(P)) = typeP(P) ∩ Si . The map πi is an order-preserving

G-equivariant map P→ Pi that is a section of the inclusion ιi : Pi → P.

Proof To each P ∈ Pwe can assign the set of all elements ofPi that contain P.
The assignment of this set to P is equivariant for the action ofG by conjugation
on P and Pi , respectively. Therefore we may assume that P is standard, say
P = GX for some X ⊂ S. We claim that any Pi ∈ Pi containing GX must also
contain GX∪Sc

i
. Indeed, Pi ∈ Pi is equivalent to the existence of g ∈ G such

that gGSc
i
g−1 ⊂ Pi . Therefore gBg−1 ⊂ Pi . At the same time B ⊂ GX ⊂ Pi .

Thus B is contained in both Pi and g−1Pig. Proposition 1.4.5 implies g ∈ Pi .
Therefore PSc

i
⊂ Pi and GX ⊂ Pi , from which the claim follows. But the

claim immediately implies that GX∪Sc
i
is the intersection of all elements of Pi

containing GX . �

Proposition 1.4.10 The map π : P → P1 × P2 sending P to (π1(P), π2(P))
is an order-preserving G-equivariant bijection. It satisfies typeP1 (π1(P)) ∪
typeP2 (π2(P)) = typeP(P). Its inverse is given by (P1,P2) �→ P1 ∩ P2.

Proof The G-equivariance is clear. Using it, injectivity is reduced to the
claim GX = GX∪Sc

1
∩ GX∪Sc

2
. But for any two subsets X1,X2 ⊂ X we have

GX1 ∩ GX2 = GX1∩X2 , and the claim is immediate.
To prove surjectivity and the claim about the inverse, consider a pair (P1,P2).

We claim that P1 ∩ P2 ∈ P. Again by G-equivariance we are free to conjugate
both P1 and P2 by the same element of G. Since both P1,P2 are parabolic
subgroups of (G,B,N,S) we may assume, after conjugating both by an element
of G, that at least P1 contains B, therefore P1 = GX1 for some Sc

1 ⊂ X1 ⊂ S.
Let g ∈ G be such that gP2g−1 contains B and thus equals GX2 for some Sc

2 ⊂
X2 ⊂ S. Using Proposition 1.4.5 write g = b1nb2 with b1, b2 ∈ B and n ∈ N .
Write n = n1n2 with ni ∈ Ni . Then P2 = g−1GX2 g = b−12 n−12 GX2 n2b2 contains
b−12 n−12 Bn2b2. Since n2, b2 ∈ GX1 , the latter also contains b−12 n−12 Bn2b2. We
conclude that P1 ∩ P2 contains a conjugate of B and therefore lies in P, and the
claim is proved.
Let now P = P1 ∩ P2. We want to show Pi = πi(P). Again by G-conjugation

we may assume that P, hence also P1 and P2, contain B. Thus Pi = GXi with
Sc
i ⊂ Xi ⊂ S and then P = GX1∩X2 , while πi(P) = G(X1∩X2)∪Sc

i
. We want to

show (X1 ∩ X2) ∪ Sc
i = Xi . The case i = 2 is shown by (X1 ∩ X2) ∪ S1 ⊂ X2 =

S1 ∪ (S2 ∩ X2) ⊂ S1 ∪ (X1 ∩ X2) and the case i = 1 is entirely analogous. �

Example 1.4.11 Let (Gi,Bi,Ni,Si) for i = 1,2 be two Tits systems. Let P′i be
the corresponding sets of parabolic subgroups. Set G = G1 ×G2, B = B1 × B2,
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N = N1 × N2, S = S1 ∪ S2. Then (G,B,N,S) is also a Tits system. The set P of
parabolic subgroups of that Tits system is {P1 × P2 |Pi ∈ P′i} � P′1 × P′2.
The Tits system (G,GS1,N,S2) of Lemma 1.4.8 is given by

(G1 × G2,G1 × B2,N1 × N2,S2).
As above let P2 be the set of parabolic subgroups of that Tits system. The
map P2 �→ G1 × P2 is an order-preserving bijection ψ2 : P′2 → P2. The map
π2 : P → P2 of Lemma 1.4.9 sends P1 × P2 to G1 × P2. Thus ψ2 ◦ π2 : P =
P′1 × P′2 → P′2 is the natural projection.
The bijection π : P → P1 × P2 of Proposition 1.4.10 sends P = P1 × P2 to
(P1 × G2,G1 × P2). Therefore the composition (ψ1,ψ2) ◦ π : P → P′1 × P′2 is
the identity map.

Next we will discuss ways to modify a Tits systemwhile preserving the set of
parabolic subgroups. Our guiding example is that of the spherical Tits system
for a connected reductive group G and the maps G → Gad and Gsc → G,
where Gad is the adjoint group of G and Gsc is the simply connected cover of
the derived subgroup of G.

Lemma 1.4.12 Let (G,B,N,S) be a Tits system.

(1) Let Z ⊂ T be a subgroup that is normal in G. Set G ′ = G/Z , B′ = B/Z ,
N ′ = N/Z . Then (G ′,B′,N ′,S) is a Tits system with the same Weyl group
as (G,B,N,S). It is saturated if (G,B,N,S) is.

(2) Let G → G ′ be an inclusion with normal image, T ′ ⊂ G ′ a subgroup
normalizing B and N and normalized by N such that G ′ = GT ′ and
T ′ ∩ G = T . Set B′ = BT ′ and N ′ = NT ′. Then (G ′,B′,N ′,S) is a
Tits system with the same Weyl group as (G,B,N,S). It is saturated if
(G,B,N,S) is.

Proof Consider (1). It is immediate that B/Z and N/Z generate G/Z and
that B/Z ∩ N/Z = T/Z is normal in N/Z . We have (N/Z)/(B/Z ∩ N/Z) =
(N/Z)/(T/Z) = N/T . The inclusion

s(B/Z)w ⊂ (B/Z)w(B/Z) ∪ (B/Z)sw(B/Z)
is also immediate. If we assume s(B/Z)s = B/Z , then taking preimage in G
we obtain sBs = B, a contradiction. Assume (G,B,N,S) is saturated. Since⋂

n n(B/Z)n−1 is the image of ⋂n nBn−1 under G → G/Z , it equals (B ∩
N)/Z = T/Z = B/Z ∩ N/Z .
Consider (2). It is immediate that B′ and N ′ generate G ′. Using G ∩ T ′ =

T we see that for any collection (Ai)i of subgroups T ⊂ Ai ⊂ G we have⋂
i(AiT ′) = (

⋂
i Ai)T ′. Indeed, an element of the left-hand side is given by a

collection ai ∈ Ai and t ′i ∈ T ′ such that ait ′i = aj t ′j for all i, j. Fix one index i.
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For each index j we have ait ′i = aj t ′j , thus a−1j ai = t ′j t
′−1
i ∈ G ∩ T ′ = T , so we

can write t ′j = tj t ′i with tj ∈ T , and hence aj t ′j = (aj tj)t ′i . Replacing each aj by
aj tj we obtain ai = aj for all j, thus an element of the right-hand side.
In particular B′ ∩ N ′ = (B ∩ N)T ′ = TT ′ = T ′, normal in N ′. We have

N ′/(B′ ∩ N ′) = NT ′/T ′ = N/(N ∩ T ′) = N/T = W . We have sB′w =
sBT ′w = sBwT ′ ⊂ BwBT ′ ∪ BswBT ′ ⊂ B′wB′ ∪ B′swB′. If sB′s = B′,
then sBsT ′ = BT ′. Intersecting with G and using G ∩ T ′ = G we obtain
sBs = B, a contradiction.Assume (G,B,N,S) is saturated.Wehave⋂ nB′n−1 =
(⋂n nBn)T ′ = TT ′ = T ′. �

Lemma 1.4.13 Let (G,B,N,S) and (G ′,B′,N ′,S ′) be Tits systems. Assume
that (G,B,N,S) is saturated. Let f : G → G ′ be a group homomorphism
mapping B to B′ and N to N ′. Assume that

(1) ker( f ) is contained in T ,
(2) f (G) is normal in G ′ and G ′/ f (G) is abelian,
(3) T ′ normalizes f (B),
(4) B′ = f (B) · T ′, N ′ = f (N) · T ′.

Then

(1) G ′ = T ′ f (G) = f (G)T ′,
(2) f −1(T ′) = T ,
(3) T ′ normalizes f (BwB) for any w ∈ W ,
(4) the map W → W ′ induced by f is an isomorphism that carries S bijec-

tively onto S ′.

Proof Since B′ = f (B)T ′ and N ′ = f (N)T ′ generate G ′, so do T ′ and f (G).
Moreover, since f (G) is normal in G ′, this reduces to G ′ = T ′ f (G) = f (G)T ′.
We claim that f −1(T ′) ⊂ B. Let g ∈ G be such that f (g) ∈ T ′. Since T ′

normalizes f (B) we have f (B) = f (gBg−1). Since the kernel of f is contained
in B and is normal in G, it is contained in both B and gBg−1, hence we have
B = gBg−1, which implies g ∈ B and the claim is proved. Together with B′ =
f (B)T ′ this implies f −1(B′) = B. We can apply this argument to the Tits system
(G,nBn−1,N,nSn−1) for any n ∈ N and conclude f −1(T ′) ⊂ ⋂

n∈N nBn−1. In
particular, if (G,B,N,S) is saturated, then f −1(T ′) = T .
The surjectivity of the map W → W ′ induced by f is immediate from the

assumption N ′ = f (N)·T ′, while its injectivity is immediate from f −1(T ′) = T .
Next we claim that for any w ∈ W the subset f (BwB) of G ′ is normal-

ized by T ′. Indeed, letting n′ ∈ N ′ represent f (w) and taking t ′ ∈ T ′ we
see t ′ f (B)n′ f (B)t ′−1 = f (B)(t ′n′t ′−1n′−1)n′ f (B), using that t ′ normalizes
f (B). The commutator t ′n′t ′−1n′−1 vanishes in G ′/ f (G) since that quotient is
assumed abelian, and hence lies in T ′ ∩ f (G) = f (T), and the claim is proved.
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Next we show that the isomorphism W → W ′ maps S bijectively to S ′.
Given s ∈ S we know that B ∪ BsB is a subgroup of G. Let s′ = f (s). Then
f (B ∪ BsB) = f (B) ∪ f (BsB) is a subgroup of G ′. Since T ′ normalizes both
f (B) and f (BsB), we have that

T ′( f (B) ∪ f (BsB)) = T ′ f (B) ∪ T ′ f (B)s′ f (B) = B′ ∪ B′s′B′

is a subgroup of G ′, hence s′ ∈ S ′.
Conversely, letw ∈ W be such that its image inW ′ lies in S ′. Thus B′∪B′w ′B′

is a subgroup of G ′ and by the above equation equals T ′( f (B) ∪ f (BwB)). The
following two elementary facts, valid for any homomorphism f : G → G ′ of
groups, imply that B ∪ BwB is a subgroup of G, hence w ∈ S.
Fact 1: If a subset X ⊂ G is stable under left multiplication by ker( f ) and

f (X) is a subgroup of G ′, then X is a subgroup of G.
Fact 2: If a subset X ′ ⊂ f (G) is normalized by a subgroup T ′ ⊂ G ′ and

stable under left multiplication by T ′ ∩ f (G), and if T ′ · X ′ is a subgroup of
G ′, then X ′ is a subgroup of G ′.
The proofs of these facts are immediate and left to the reader. �

Lemma1.4.14 Let (G,B,N,S) and (G ′,B′,N ′,S ′)be Tits systems. Let f : G→
G ′ be a group homomorphism satisfying the assumptions of Lemma 1.4.13. If
P ⊂ G is a parabolic subgroup, then so is P ′ = NG ′ ( f (P)) = f (P) · T ′. The
maps

P �→ f (P) · T ′, P ′ �→ f −1(P ′)
are type-preserving, order-preserving, f -equivariant, mutually inverse bijec-
tions between the sets of parabolic subgroups.

Proof First we prove that the two maps P �→ T ′ f (P) and P ′ �→ f −1(P ′)
induce mutually inverse type-preserving bijections between the sets of standard
parabolic subgroups. In fact, the bijection S → S ′ induced by f as in Lemma
1.4.13 already establishes such a bijection, under which the standard parabolic
subgroups BWXB of G and B′W ′X′B

′ of G ′ correspond, when X ⊂ S and
X ′ ⊂ S ′ correspond to each other. So we just need to check that the above
maps recover the two directions of this bijection, which is immediate from
T ′ f (BWXB) = T ′ f (B)W ′X′ f (B) = B′W ′X′B

′ and f −1(T ′ f (P)) = f −1(T ′)P =
TP = P, the latter by Lemma 1.4.13. That these bijections are order reversing
is then also clear.
Let us now check that T ′ f (P) = NG ′ ( f (P)). Lemma 1.4.13 states that G ′ =

T ′ f (G) and that T ′ normalizes f (P), which in turn implies that NG ′ ( f (P)) =
NT ′ f (G)( f (P)) = T ′Nf (G)( f (P)). Now f (P) is a parabolic subgroup for the
Tits system ( f (G), f (B), f (N),S), hence Nf (G)( f (P)) = f (P), and we conclude
NG ′ ( f (P)) = T ′ f (P) as desired.
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Finally, since B′ and N ′ generate G ′, the assumptions B′ = f (B)T ′ and
N ′ = f (N)T ′ imply that T ′ and f (G) generate G ′, which by the normality of
f (G) in G ′ implies G ′ = f (G)T ′. Therefore any G ′-conjugate of B′ is also an
f (G)-conjugate of B′. Since the two maps P �→ NG ′ ( f (P)) and P ′ �→ f −1(P ′)
are equivariant under conjugation by G and f (G), respectively, the proof is
complete. �

1.5 Abstract Buildings

In this section we review the notion of a Tits building, which will be essential
for our construction of the Bruhat–Tits building of a reductive group defined
over a discretely valued Henselian field. Tits buildings are very closely related
to Tits systems. This relationship is explored in [Tit74, §3.2], [BT72, §2], and
the exercises to Chapter IV in [Bou02]. We give here just a brief summary.
We alert the reader that for a given Tits system one can define two buildings.

They are closely related, but often distinct. The usual building, introduced by
Tits, is reviewed here in Proposition 1.5.6. It is always a simplicial complex,
even when the Tits system is not irreducible. A slight variant of it, which we
call the “restricted building,” is given in Proposition 1.5.18. The two buildings
coincide when the Tits system is irreducible, but not otherwise. The restricted
building of a Tits system that is not irreducible is a polysimplicial complex.
The Bruhat–Tits building of a reductive group will be the restricted building
associated to a particular Tits system.

Definition 1.5.1 (1) A simplicial complex is a pair (V,B) consisting of a
non-empty set V and a non-empty set B of non-empty finite subsets of
V . We call V the set of vertices. We require {x} ∈ B for all x ∈ V , and
further that ∅ � A ⊂ B ∈ B implies A ∈ B. Abusing notation, we will
refer to B as the simplicial complex, and to V as the underlying set of
vertices; see Remark 1.5.4.

(2) A polysimplicial complex B is a tuple (B1, . . . ,Bn) of simplicial com-
plexes. We setV = V1×· · ·×Vn andB = B1×· · ·×Bn. Abusing notation,
we refer to B as the polysimplicial complex.

Let B be a simplicial or polysimplical complex.

(3) An element of B is called a facet. If B is a simplicial complex, it is also
called a simplex.

(4) If A,B ∈ B and A ⊂ B, then A is called a face of B.
(5) If A is a face of B, we define codim(A,B) to be the largest n for which

there exists a chain A = A0 � A1 ⊂ · · · � An = B and Ai ∈ B.
(6) For B ∈ B we define dim(B) to be sup{codim(A,B) |A ∈ B, A ⊂ B}.
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(7) A subcomplex of B is a subset B′ ⊂ B such that if A ∈ B′, B ⊂ A, and
B ∈ B, then B ∈ B′.

(8) The (open) star of A ∈ B is the complex consisting of all facets of B that
contain A. It need not be a subcomplex.

(9) A chamber complex is a polysimplicial complex in which every element
is contained in a maximal element, and given twomaximal elementsC,C ′

there exists a sequence C = C1, . . . ,Cn = C ′ such that Ci ∩Ci+1 ∈ B and
codim(Ci ∩Ci+1,Ci) = codim(Ci ∩Ci+1,Ci+1) = 1 for all i = 1, . . . ,n− 1.

(10) The maximal elements in a chamber complex are called chambers, and a
sequence C = C1, . . . ,Cn = C ′ as above is called a gallery joining C and
C ′.

(11) A chamber complex is called thick, if each facet of codimension 1 is
the face of at least three chambers. It is called thin, if each facet of
codimension 1 is the face of exactly two chambers.

(12) An isomorphism (V1,B1) → (V2,B2) of simplicial complexes is a bijection
f : V1 → V2 such that f (A1) ∈ B2 for all A1 ∈ B1 and f −1(A2) ∈ B1 for
all A2 ∈ B2.

(13) An isomorphism (B1, . . . ,Bn) → (B′1, . . . ,B′n) of polysimplicial com-
plexes is a tuple (σ, f1, . . . , fn), where σ is a permutation of {1, . . . ,n}
and fi : Bi → B′

σ(i) is an isomorphism of simplicial complexes.
(14) An isomorphism of chamber complexes is an isomorphism of (poly) sim-

plicial complexes that maps chambers to chambers.

Remark 1.5.2 If B is a simplicial complex then dim(A) = #A − 1 and
codim(A,B) = #B − #A.

Remark 1.5.3 We have specifically required that the empty subset of V not
be an element of a simplicial complex. This is not always done in the literature.
This choice is more convenient for our purposes.

Remark 1.5.4 Let (V,B) be a (poly)simplicial complex. Then the inclusion
of subsets of V endows the set B with an order. One can recover V from the set
B and that order relation: if we identify v ∈ V with the singleton set {v} then
V is the subset of minimal elements in B. This gives another way to think of a
(poly)simplicial complex, as an ordered set subject to certain axioms, namely
those translated from the axioms imposed on the pair (V,B) above.
Definition 1.5.5 A building is a chamber complex B equipped with a collec-
tion of subcomplexes, called apartments, satisfying the following axioms.

BL 1 B is a thick chamber complex.
BL 2 Each apartment is a thin chamber complex.
BL 3 Any two chambers belong to an apartment.
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BL 4 Given two apartments A1,A2 and two facets F1,F2 ∈ A1 ∩ A2, there
exists an isomorphism A1 → A2 that leaves invariant F1, F2, and all of
their faces.

Note that in Axiom BL 4 it is not assumed that the isomorphism A1 → A2
is the restriction of an automorphism of B. This will however be the case for
the buildings coming from Tits systems, cf. Proposition 1.5.13.
The relationship between Tits systems and buildings is expressed in the

following two propositions (1.5.6 and 1.5.28) due to Tits, see [Tit74, Theorem
3.2.6, Proposition 3.11].

Proposition 1.5.6 Let (G,B,N,S) be a Tits system with S finite. Let V be the
set of all maximal proper parabolic subgroups of the Tits system. Let B the
set of those finite sets {P0, . . . ,Pn} of maximal proper parabolic subgroups
such that

⋂n
i=0 Pi is itself a parabolic subgroup. Endow B with the action of

G defined by g{P0, . . . ,Pn} = {gP0g−1, . . . ,gPng
−1}. Let C ⊂ B consist of all

subsets of the set of standard maximal proper parabolic subgroups. Let A ⊂ B

be the union of all N-conjugates of C.

(1) The pair (V,B) is a simplicial complex.
(2) Given a facet F = {P0, . . . ,Pn} ∈ B, let PF =

⋂n
i=0 Pi . The map F �→ PF

is a G-equivariant bijection from the set of facets of B to the set of proper
parabolic subgroups, which translates the face relation between facets
to the opposite of the inclusion relation between parabolic subgroups.
Thus the maximal facets (called chambers) correspond to the minimal
parabolic subgroups of G. These minimal parabolic subgroups are gBg−1,
for g ∈ G.

(3) The subset C is a chamber, called the standard chamber.
(4) If g ∈ G stabilizes a facet, then it fixes each of its vertices.
(5) Given two faces F and F ′ of the standard chamber C and elements n ∈ N

and g ∈ G, if gA contains F and nF ′ , then there is an element of G that
carries A to gA and fixes every vertex of F and nF ′ (note that F and
nF ′ are contained in A).

(6) The complex B is a building whose set of apartments is {gA | g ∈ G}. It
is called the Tits building of the Tits system. The subset A is called the
standard apartment.

(7) The group G acts transitively on the set of pairs consisting of an apartment
and a chamber contained in it.

Note that the building B depends only on the G-conjugacy class of the pair
(B,N). The standard chamber C depends on B, and the standard apartment
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A depends on T = B ∩ N . It is often, but not always, true that the standard
apartment consists of those proper parabolic subgroups that contain T .

Proof (1) The fact that any subgroup of G that contains a parabolic subgroup
is itself a parabolic subgroup implies (1).
(2) Since PF is a parabolic subgroup, it contains a conjugate, say gBg−1

of B. So g−1Pig contains B, hence it is the standard parabolic GXi , for a
maximal proper subset Xi of S. Let X =

⋂n
i=0 Xi . Then

⋂
GXi = GX . Therefore,

PF = gGXg
−1. Conversely, given a g ∈ G, and a proper subset X of S, let Xi

for 0 � i � n be the proper maximal subsets of S that contain X and let
Pi = gGXi ng

−1. Then F = {P0, . . . , Pn} is the unique facet ofB corresponding
to the parabolic subgroup gGXg

−1. It is obvious that the maximal facets of
B correspond to the minimal parabolic subgroups gBg−1, for g ∈ G, since
G∅ = B. The maximal facets are called chambers of B. As every facet of B is
clearly a face of a chamber, B is a chamber complex.
(3) Let P0, . . . ,Pr−1, r = #S, be the standard maximal proper parabolic

subgroups. Then
⋂r−1

i=0 Pi = B, hence C := {P0, . . . ,Pr−1} is a maximal facet.
(4) Suppose F is a facet that is stable under the action of g ∈ G. Then the

corresponding parabolic subgroup P is normalized by g. As the normalizer
of P is itself, g lies in P, and therefore it normalizes all the subgroups of G
containing P. This implies that every face of F, so in particular every vertex of
F, is fixed by g.
(5) We will now establish the assertion (5). Let P = GX and P ′ = GX ′ , with

X, X ′ ⊂ S, be the standard parabolic subgroups corresponding to the facets
F and F ′ respectively. Let Y and Y ′ be the subgroups of W generated by X
and X ′ respectively. Then P = GX = BY B and P ′ = GX ′ = BY ′B. Since
F ⊂ gA, using Proposition 1.4.5(2) we see that P = gn0Pn−10 g−1 for some
n0 ∈ N . We replace g with gn0 to assume that P = gPg−1. As P is equal to its
own normalizer in G, g ∈ P. Again using Proposition 1.4.5(2), we see that the
condition nF ′ ⊂ gA implies that nP ′n−1 = gn′P ′n′−1g−1 for some n′ ∈ N .
So n′−1g−1n normalizes P ′ and hence it belongs to P ′. As g ∈ P, we infer that
n ∈ Pn′P ′. Let w,w ′ be the images of n,n′ inW . From the fact that n ∈ Pn′P ′,
using Axiom TS 3 of Definition 1.4.1 we see that w ∈ Yw ′Y ′. Let w1 ∈ Y
be such that w ∈ w1w ′Y ′, and let n1 be a representative of w−11 in N . Then
n1 is in P and n1n ∈ n′P ′. Therefore, gn1 ∈ P, gn1nP ′ = gn′P ′ = nP ′ and
gn1A = gA, so the left multiplication by gn1 is the desired isomorphism. Thus
we have shown that (5) holds.
(6) Now we will show that B is a building by verifying the axioms listed in

Definition 1.5.5. Axiom BL 4 is just (5).
To prove that the apartments are thin, it is enough to show thatA is thin. For
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this, it suffices to show that given a face P of C of codimension 1 (such faces are
called panels), there is a unique chamber C ′ � C in A that shares P. The faces
of codimension 1 of C correspond to the parabolic subgroups G{s} for s ∈ S.
Hence, chambers in A that share the panel corresponding to G{s} = B ∪ BsB
are the chambers corresponding to nBn−1, for n ∈ N , such that nBn−1 ⊂ G{s}.
But the minimal parabolic subgroups B and nBn−1 (� B) that are contained in
G{s} are conjugate to each other under G{s}. Thus, if nBn−1 � B, there is a
b ∈ B such that nBn−1 = bsBs−1b−1. Then n ∈ BsB and hence, by the Bruhat
decomposition, n ∈ s(B ∩ N). This implies that the only chambers in A that
share the panel corresponding to the parabolic subgroupG{s} are the chambers
C (which corresponds to B) and the chamber sC (which corresponds to the
parabolic subgroup sBs−1 = sBs). Thus A is thin.
We will now show that B is thick by determining all the chambers in it that

share the panel corresponding to G{s}. The set of such chambers is in natural
bijective correspondence with the set of conjugates of B in G{s} = B ∪ BsB.
As we saw in the preceding paragraph, besides B itself, its other conjugates
in G{s} are bsBs−1b−1, with b ∈ B. Moreover, bsBs−1b−1 = b′sBs−1b′−1 for
b, b′ ∈ B, if and only if b−1b′ ∈ sBs−1 = sBs. Therefore, for any b ∈ B − sBs,
the conjugates sBs and bsBs−1b−1 are different. This shows that B is thick.
We will now show that given two chambers C1 and C2, there is an apart-

ment that contains both of them. Let giC = Ci , for gi ∈ G. By the Bruhat
decomposition, g−11 g2 = b1nb2, with bi ∈ B and n ∈ N . Then

(C1,C2) = g1(C,g−11 g2C) = g1(C, b1nb2C) = g1b1(C,nC).

Thus C1 and C2 are contained in the apartment g1b1A.
We will now show that given any two chambers, there is a gallery in B

joining them. In view of the result in the preceding paragraph, it is enough to
show that for any n ∈ N , the chambers C and nC can be joined by a gallery.
We denote by w, the image of n in W , and let w = s1s2 · · · sn, with si ∈ S
for i � n. Let w0 = 1, and for j > 0, let wj = s1 · · · sj and C j = wjC. Then
C = C0,C1, . . . ,Cn = wC is a gallery in A joining C to wC. Thus we have
verified all the axioms in the definition of buildings for B, and the apartments
gA, g ∈ G. Hence B is a building.
(7) Observe that, given a pair (A′,C ′) consisting of an apartment A′ = gA

and a chamber C ′ in it, there is an element h ∈ G such that h(A,C) = (A ′,C ′).
As g−1C ′ is a chamber of A, we see that g−1C ′ = nC for an n ∈ N . Hence,
C ′ = gnC. So the given pair (A′,C′) is (gA,gnC) = gn(A,C). Setting h = gn,
we see that the pair (A′,C ′) = h(A,C) with h ∈ G. This implies (7). �

Remark 1.5.7 Using the bijection F → PF one can identify the simplices
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of B with the proper parabolic subgroups of G. Under this identification, the
face relation becomes the opposite of the inclusion relation between proper
parabolic subgroups.
In fact, following Remark 1.5.4, we can also interpret B as the set of all

parabolic subgroups of the Tits system together with the opposite of the inclu-
sion order.

Definition 1.5.8 A Tits system (G,B,N,S) is called
(1) spherical, if each apartment is the triangulation of a sphere;
(2) affine, if each apartment is the triangulation of a Euclidean space.

Remark 1.5.9 It can be shown that a Tits system is spherical if and only if its
Weyl groupW = N/(B ∩ N) is finite.
Example 1.5.10 The simplest example of an affine building is a tree (cf.
[Ser03]), provided each vertex has at least three edges emanating from it. An
apartment is an infinite path through the tree, thus a simplicial subcomplex
whose geometric realization is a line. The chambers are the edges of the tree.
Figure 1.5.1 illustrates the case of a 3-regular tree.Wewill see in §3.1 that this is
the (affine) Bruhat–Tits building associated to the group SL2/Q2. Non-regular
trees also occur as (affine) Bruhat–Tits buildings of reductive groups over local
fields. This is the case with the group SU3/Qp associated to an unramified
quadratic extension of Qp , cf. §3.2.

Figure 1.5.1 The 3-regular tree.
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Example 1.5.11 Consider the Tits system of Example 1.4.3. The building
associated to it by Proposition 1.5.6 is called the spherical building of G. Its
facets are in 1–1 correspondence with the proper parabolic k-subgroups of G;
see [Tit74, Theorem 5.2].

Example 1.5.12 Let k be any field. The simplest examples of a spherical
building is the set P1(k), seen as a 0-dimensional simplicial complex. The
vertices, which are also the chambers, are the elements of that set. Every pair
of points is an apartment. This building arises as the spherical building of the
spherical Tits system of the reductive group SL2/k.
Proposition 1.5.13 Let (G,B,N,S) be a Tits system and B the building of
Proposition 1.5.6.

(1) Given two apartments A1,A2, both containing a facet F of B, there exists
a g ∈ G that transports A1 to A2 and fixes all the vertices of F.

(2) Given a facet F ∈ B, its stabilizer {g ∈ G | gF = F} is equal to the
parabolic subgroup PF.

(3) The fixed point set of PF in B is the set of faces of F (including F itself).
(4) IfF1,F2 are two facets of the same chamber and g ∈ G satisfies gF1 = F2,

then F1 = F2 and g ∈ PF1 .
(5) Two facets F1,F2 ∈ A are conjugate under G if and only if they are

conjugate under N .

Proof (1) For i = 1, 2, let Ci be a chamber in Ai such that F is a face of Ci .
We fix an apartment A that contains both C1 and C2. Then Ci is contained in
both A and Ai . Now Proposition 1.5.6 (7),(4) imply, for i = 1, 2, that there is a
gi ∈ G that transports A to Ai and fixes every vertex of the chamber Ci . Then
g := g2g

−1
1 (∈ G) transports A1 to A2 and fixes every vertex of F.

(2) Since proper parabolic subgroups of G and facets of B are the same,
the second assertion is equivalent to the statement that each proper parabolic
subgroup is equal to its own normalizer, which is part of Proposition 1.4.5.
(3) The third assertion follows from the order-reversing bijective correspon-

dence between the facets of B and the parabolic subgroups of G and the fact
that each parabolic subgroup equals its own normalizer in G.
(4) To prove the fourth assertion, we consider the parabolic subgroups P1 :=

PF1 and P2 := PF2 . Both are standard with respect to the chamber of which
F1 and F2 are assumed to be faces. Then gP1g−1 = P2 implies via Proposition
1.4.5 that P1 = P2 and g ∈ P1.
(5) To prove the fifth assertion, choose a chamber C inA of whichF1 is a face

and n ∈ N so that n−1F2 is also a face of C. Let g ∈ G be such that gF1 = F2.
Then (4) implies that F1 = n−1F2 and n−1g ∈ PF1 . Thus nF1 = gF1 = F2. �
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Proposition 1.5.14 Let F1,F2 ∈ B be two facets.

(1) There exists an apartment A containing both F1 and F2.
(2) Assuming A is the standard apartment, the mixed Bruhat decomposition

G = PF1 ·W · PF2 holds.

Proof Without loss of generality we may replace Fi with a chamber Ci con-
taining Fi in its closure and we may further assume that C1 is the standard
chamber. Let g ∈ G be such that C2 = gC1. Write g = bnb′ ∈ BW B according
to the Bruhat decomposition, Proposition 1.4.5. Thus both C2 = bnC1 and
C1 = bC1 are contained in the apartment bA.
Assuming now that bA = A, we have PC1 = B and PC2 = nBn−1 and the

Bruhat decomposition implies G = BNB = PC1NPC2n, hence G = PC1NPC2 .
�

Remark 1.5.15 WithB as in Proposition 1.5.13, using the bijection F→ PF

between facets and parabolic subgroups, we can associate via Definition 1.4.6
to each facet of B a subset of S, called its type. Thus the type of F is the subset
X ⊂ S such that PF is conjugate to GX = BWXB.

Remark 1.5.16 We have made a very minor change in the definition of the
building of a Tits system as compared to [Tit74] and other sources, by consid-
ering only proper parabolic subgroups, that is, excludingG from consideration.
This corresponds to excluding the empty subset of V from the definition of a
simplicial complex.
We will find it useful to make a further change. Namely, consider the basic

example where G is (the set of k-points of) a connected linear algebraic group
defined over an algebraically closed field k, B is a Borel subgroup, and N is
the normalizer of a maximal torus. As defined so far, the building is the set of
all proper parabolic subgroups. It is a simplicial complex. Consider now the
situation where G = G1 ×G2 for two connected algebraic groups G1 and G2. If
P1 ⊂ G1 is a proper parabolic subgroup, then P = P1×G2 is a proper parabolic
subgroup of G. For our future purposes we would like to have a variant of
the building that excludes such parabolic subgroups from consideration, and
instead only contains parabolic subgroups of the form P1 × P2, where Pi ⊂ Gi

is a proper parabolic subgroup.

Definition 1.5.17 Let (G,B,N,S) be a Tits systemwith S finite and non-empty.
Write S = S1 ∪ · · · ∪ Sn with Si pairwise commuting and irreducible.

(1) A subset X ⊂ S is called admissible if Si ∩ X is a proper subset of Si for
all i.
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(2) A facet (respectively a parabolic subgroup) is called admissible if its type
is admissible.

Proposition 1.5.18 Let (G,B,N,S) be a Tits system with S finite and non-
empty. Let B be its Tits building of Proposition 1.5.6.

(1) The subset B′ of B consisting of all admissible facets forms itself a
building, where the apartments are given by A′ = B′ ∩A for apartments
A ⊂ B.

(2) Every chamber in B is admissible and hence lies in B′.
(3) B′ is a polysimplicial complex, invariant under the action of G.
(4) B′ = B if and only if S is irreducible.

Proof Using Remark 1.5.7 we interpret B as the set of parabolic subgroups
of (G,B,N,S) with the opposite inclusion order. Write S = S1 ∪ · · · ∪ Sn as
a disjoint union of mutually commuting subsets, with each Si irreducible. Let
Sc
i = S − Si . Then Proposition 1.4.10 gives a bijection B′ →

∏
i Bi , where Bi

is the building of the Tits system (G,PSc
i
,N,Si). This is a bijection of sets that

preserves the order relation, hence endows the ordered set B with the structure
of a polysimplicial complex. The remaining claims are immediate. �

Remark 1.5.19 The vertices in B′ are the facets of B of type X1 ∪ · · · ∪ Xn,
where Xi ⊂ Si is a maximal proper subset. On the other hand, the vertices in
B are the facets of B of type X1 ∪ · · · ∪ Xn, where for some i0 � n, Xi0 is
a maximal proper subset of Si0 and for all i � i0, Xi = Si . Thus, unless S is
irreducible, the vertices in B do not lie in B′, and the vertices of B′ are facets
of B whose dimension is greater than 1.

Definition 1.5.20 We will call the building B′ of Proposition 1.5.18 the
restricted building.

Remark 1.5.21 Except for not necessarily being a simplicial complex, all
properties of B stated in Proposition 1.5.6 and Proposition 1.5.13 immediately
carry over to B′.

Definition 1.5.22 A panel is face of codimension 1 of a chamber of B. Two
chambers are said to be adjacent if they share a common panel. Given two facets
F and F ′ in B, a gallery of length n joining them is a sequence C0,C1, . . . ,Cn

of chambers of B such that for i < n, Ci is adjacent to Ci+1 and F is a face of
C0 and F ′ is a face of Cn. A gallery of length n joining F and F ′ is said to be
minimal if there is no gallery of length smaller than n joining F and F ′.
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Lemma 1.5.23 Let A be an apartment of B and C a chamber in A. If f is an
automorphism of A that keeps every vertex of C fixed, then f is trivial.

Proof Let C ′ be a chamber inA and let C = C0,C1, . . . ,Cn = C ′ be a gallery in
A joining C to C ′ such that for all i < n, Ci � Ci+1. We will prove by induction
that the vertices of Ci , for i � n, are fixed under f . This will prove the lemma.
Let us assume that for some j < n, every vertex of Cj is fixed under f and let P
be the panel shared by Cj and Cj+1. Then as Cj and Cj+1 are the only chambers
in A that have P as a face, and as f fixes Cj , we infer that it fixes Cj+1 also.
Since the vertices of P are fixed under f , the remaining vertex of Cj+1 is also
fixed under f . Now by induction, we see that for all i � n, every vertex of Ci

is fixed under f . �

Proposition 1.5.24 Let A ⊂ B be an apartment and C ⊂ A a chamber. There
exists a unique polysimplicial map ρ = ρA,C : B → A with the following
properties.

(1) ρ |A is the identity.
(2) For every apartment A′ that contains C, the map ρ |A′ : A′ → A is a

polysimplicial isomorphism.
(3) For any vertex x of C, ρ−1(x) = {x}.

Proof Consider an arbitrary facet F ofB. Choose an apartmentA′ containing
F and C; such an apartment exists by Definition 1.5.5. By BL 4 of Definition
1.5.5 and Lemma 1.5.23 there exists a unique isomorphism σA′ : A′ → A that
fixes every vertex of C. Define ρ(F) = σA′ (F). We claim that ρ(F) does not
depend on the choice of A′. Let A′′ be another apartment containing F and
C. By BL 4 of Definition 1.5.5, there exists an isomorphism τ : A′′ → A′ that
fixes every vertex of F and C. It is obvious that σA′′ : A′′ → A is just σA′ ◦ τ.
This implies that ρ(F) is independent of the choice of A′.
Consider now a vertex y of B such that x := ρ(y) is a vertex of C, and

let A′ be an apartment containing y and C. Then since ρ |A′ : A′ → A is an
isomorphism, that maps x, y to x, we conclude that y = x. �

Definition 1.5.25 The polysimplicial map ρA,C : B→ A constructed in the
preceding proposition is called the retraction of B onto A with center C.

Example 1.5.26 In Example 1.5.10, whereB is a 3-regular tree, the retraction
to an apartment centered at a fixed edge is depicted in Figure 1.5.2. An intuitive
way to describe it may be to imagine holding the tree with your hand at the fixed
edge and shaking it until all branches collapse onto a single line (the apartment
onto which the building is being retracted).
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Figure 1.5.2 The retraction of a 3-regular tree.

Corollary 1.5.27 Let A be an apartment of B, C ′ a chamber in A and F a
facet in A. Let G := C0,C1, . . . ,Cn = C ′ be a minimal gallery joining F to C ′.
Then all the chambers Ci are contained in A.

Proof Assume, if possible, that not all chambers in G are contained inA. Let
j < n be the largest integer such that the chamber Cj is not contained in A.
Let P be the common panel of Cj and Cj+1 and C be the unique chamber in
A different from Cj+1 that has P as a face. According to the last assertion of
Proposition 1.5.24, the retraction ρ := ρA,C does not map Cj onto C. Hence,
ρ(Cj) = Cj+1. Therefore, the gallery ρ(G ) := ρ(C0), ρ(C1), · · · , ρ(Cn) = C ′ is a
gallery joining F and C ′ contained in A and as ρ(Cj) = Cj+1 = ρ(Cj+1) since
Cj+1 is contained in A, the gallery G is not minimal. A contradiction. �

The following proposition is a converse of Proposition 1.5.6.

Proposition 1.5.28 Let G be a group that operates on B by simplicial auto-
morphisms. We assume that this action has the following two properties:

(1) Given two pairs (A′,C ′) and (A′′,C ′′) consisting of an apartment of B
and a chamber in it, there exists an element g ∈ G that carries the first
pair onto the second pair, and fixes every vertex common to C ′ and C ′′.

(2) If an element of G fixes a chamber, then it fixes all its vertices.

We choose a pair (A,C) and let B be the subgroup consisting of all elements
of G that keep C stable, and N be the subgroup consisting of all elements of G
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which keep A stable. Then (B,N) is a saturated Tits system (Definition 1.4.1)
in G. The Weyl group of this Tits system is N/B ∩ N .

A simplicial automorphism of B, or A, which has the property that if it
stabilizes a chamber, then it fixes all its vertices, will be called a special
automorphism.

Proof From conditions (1) and (2) it is obvious that the subgroup N acts
transitively on the set of chambers in A and it maps onto the group W of all
special automorphisms ofA. Using Lemma 1.5.23 we see that the kernel of the
homomorphism N → W is T := B ∩ N , so T (= B ∩ N) is a normal subgroup
of N and N/T � W . On the other hand, in view of (2), an element of G acts
trivially on A if and only if it keeps every chamber in A stable, thus the kernel
of N → W is

⋂
n∈N nBn−1. Hence, T =

⋂
n∈N nBn−1.

Now let g ∈ G and C ′ := gC. Let A′ be an apartment that contains both C
and C ′. Then there is an element b ∈ B that carries the pair (A′,C) to the pair
(A,C). In particular, bgC is a chamber in A. Hence there is n ∈ N such that
bgC = nC, which implies that n−1bg ∈ B, and so g ∈ BNB. Thus we have
shown that G = BNB and condition TS 1 of 1.4.1 has been verified.
Given a panel of C, let C ′ be the other chamber in A that shares this panel.

Then there is an element in N that carries C to C ′. Let s be its image in W .
Then it is clear that s carries C ′ back to C; condition (2) and Lemma 1.5.23
imply that s2 = 1, that is, s is a reflection. By considering all the panels of
C we obtain a set S of reflections. We will now show that S generates W . For
w ∈ W , we define its length �(w) to be the length of a minimal gallery joining
C to wC. Let C = C0,C1, . . . ,Cm = wC be a minimal gallery (so �(w) = m).
Let P be the panel shared by C = C0 and C1 and s be the reflection in P.
Then sC1 = C, hence applying s to the gallery C1, . . . ,Cm (= wC), we obtain
the gallery C, . . . , sCn = swC of length m − 1 joining C to swC, therefore,
�(sw) � n−1. So by induction on length, we conclude that sw lies in the group
generated by S, and hence so does w. This proves that S generates W and we
have verified condition TS 2 of Definition 1.4.1.
We will now verify TS 3. Let w ∈ W , s ∈ S and b ∈ B. We fix n ∈ N that

maps onto w. The chambers C, sC, and bsC share a panelP. Hence, nC, nsC and
nbsC share the panel nP. Let C = C0,C1, . . . ,Cm be a minimal gallery joining C
to nP, andA′ be an apartment containing C and nbsC. Let b′ ∈ B be an element
that carries the pair (A′,C) to the pair (A,C). Since A′ contains nP, according
to Corollary 1.5.27 this apartment contains C0,C1, . . . ,Cm. By induction on j
we see that b′ leaves invariant Cj for all j � m. It follows that b′nP = nP.
Therefore , the chamber b′nbsC contains the panel nP and so it is either nC or
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nsC. Hence, b′nbsB = nB or nsB, which implies that nBsB ⊂ BnB ∪ BnsB.
This completes the verification of TS 3.
To verify TS 4, let s ∈ S and P be the panel shared by C and sC. As the

buildingB is thick, there is a chamber C ′ different from C and sC, which shares
the panel P. Let A′ be an apartment that contains C and C ′. Then an element
of G that carries (A,C) to (A′,C) belongs to B but not to sBs since it does not
fix the chamber sC (in fact, b′sC = C ′). �

Lemma 1.5.29 In the setting of Proposition 1.5.28, let A be an apartment of
B and C a chamber of A, and let ρ : B → A be the retraction with center C.
For each apartment A′ containing C there exists g ∈ G such that ρ(x) = gx for
all x ∈ A′. In particular, for a facet F ⊂ A and g ∈ GC one has ρ(gF) = F.

Proof By Proposition 1.5.28 there exists an element g ∈ G that fixes C and
maps A′ to A. The composition of the action of g−1 with ρ is a polysimplicial
automorphism of A that fixes C pointwise. By Lemma 1.5.23, this automor-
phism is trivial. We conclude that ρ|A′ : A′ → A coincides with the action of
g. To prove the second statement, take A′ = gA. �

1.6 The Monoid R̃

This section does not belong to the discussion of affine root systems and abstract
buildings; it introduces useful notation that will be applied throughout the book.
Consider a group X equipped with a descending filtration Xr indexed by real

numbers r ∈ R. It is oftentimes useful to consider the group Xr+ =
⋃

s>r Xs ,
which is contained in Xr and could be a proper subgroup. We can think of r+
as a number that is infinitesimally larger than r; it is larger than r , but smaller
than any real number that is larger than r . Moreover, we can set X∞ =

⋂
r Xr .

The filtration is called separated if X∞ = {1}.
This leads us to introduce the set R̃ = (R × {0,1}) ∪ {∞}. We will write

r in place of (r,0) and r+ in place of (r,1), and we think of r+ as a number
infinitesimally larger than r .
The set R̃ is made into a totally ordered commutative monoid that contains

R as an ordered submonoid via the following rules.

(1) r + (s+) = (r+) + s = (r+) + (s+) = (r + s)+.
(2) r +∞ = (r+) +∞ = ∞.
(3) ∞ > r+ > r for any r ∈ R.
(4) r+ > s+ if r > s.
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We define an operation r̃ �→ r̃+ on R̃ by setting (r+)+ = r+ and∞+ = ∞.
Another way to think about the monoid R̃ is as the monoid of intervals of

R of the form [r,∞) or (r,∞) for −∞ < r � ∞. Then r ∈ R corresponds
to [r,∞), r+ corresponds to (r,∞), and ∞ corresponds to the empty interval.
Addition corresponds to pointwise addition of intervals. The operation r̃ → r̃+
corresponds to taking the interior. The order is the opposite of the inclusion
order.
A descending filtration Xr of a group X indexed by R extends, as was just

discussed, to a descending filtration indexed by R̃ in a natural way. A filtration
indexed by R�0 can be extended in the same way to R̃�0.
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