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ON HANKEL TRANSFORMABLE SPACES AND A 
CAUCHY PROBLEM 

R. S. PATHAK 

1. Introduction. The classical Hankel transform of a conventional 
function <f> on (0, oo) defined formally by 

/

oo 

0 <Kx)(xy)1'2 J^dx, ^ - 1 / 2 , 

was extended by Zemanian [21-23] to certain generalized functions of one 
dimension. Koh [9, 10] extended the work of [21] to «-dimensions, and 
that of [22] to arbitrary real values of jit. Motivated from the work of 
Gelfand and Shilov [6], Lee [11] introduced spaces of type H and studied 
their Hankel transforms. The results of Lee [11] and Zemanian [21] are 
special cases of recent results obtained by the author and Pandey [14]. The 
aforesaid extensions are accomplished by using the so-called adjoint 
method of extending integral transforms to generalized functions. Dube 
and Pandey [2], Pathak and Pandey [15, 16] applied a more direct method, 
the so-called kernel method, for extending the Hankel and other related 
transforms. 

Recently, Eijndhoven and De Graaf [4] applied a functional analytic 
approach to discover certain spaces of test functions and generalized 
functions which are invariant under Hankel transforms. They could 
discover three such spaces of test functions: Sx^ , r(X, log 4̂ ), r(X, A^). It 
turns out that T(X, log A ) is the same as Zemanian's space Jif [21]. The 
space SXA is related to the Gelfand-Shilov space sY/j [6], and r(X, A J 
also possesses a characterization similar to >S}/|. It is well-known that 
£" and its generalization WM-space [7] are invariant under Fourier 
transformation for certain values of M and £2. This motivated us to 
investigate certain test function spaces of W-type which are suitable for 
Hankel transforms. These spaces are denoted by U Ma, U^h and U^a. 
Here M and Œ are arbitrary convex functions. That is why these spaces are 
able more exactly to discern singularities in the growth or decrease of 
functions at infinity. The space U Ma yields a large class of Hankel 
invariant spaces. 
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In this paper we define the aforesaid three f/ -spaces and study their 
algebraic and topological properties. We discuss their relationships with 
other well-known test function spaces and mention their special cases. We 
study the Hankel transform of test functions in these spaces and define 
generalized Hankel transform of generalized functions belonging to their 
dual spaces. We extend the Hankel transform to negative values of /x. 
Finally, we apply the theory thus developed to study uniqueness and 
existence of the Cauchy problem for the operator 

S p. = d2/dx2 + (1 - 4ju2)/4x2. 

Theorem 5.3 of the present paper extends the inversion theorems 
contained in the papers [21] and [22] in one stroke, whereas Theorem 5.9 is 
one of the most general inversion theorems for the Hankel transform. 

We shall use the notation and terminology of Schwartz as employed in 
[20]. / denotes the open interval (0, oo); x, y, u and / are real 
one-dimensional variables, z = x + iy and s = u H- it denote complex 
variables. The functions of z and s will be restricted to their principal 
branches. We shall use the following linear operators: 

Dk = Dk
z = J/dzk, k = 0,1,2,... 

M, = MMiZ = z " ' , - , / 2 D ^ + 1 / 2 

N» 
= N)lz = ^+1/2^-^-1/2 

N; • =N:} = Z " + 1 / 2 (2 r»-m...dt 
r-'z J oo 

V = S^ = MpNp = D2 + (1 - 4/i
2)/4z2. 

2. The spaces [/ M)fl5 Î/ M and their duals. Let £ be a continuous 
increasing function on [0, oo) such that £(0) = 0 and £(oo) = oo. For 
x ^ 0 define an increasing, convex, continuous function M by 

/ : M(x) = JQ&t)dt, M(-x) = M(x). 

Then M (0) = 0, M (oo) = oo and 

(1) M(xx) 4- M(x2) ^ M(xx + JC2), xh x2 è 0. 

Now, the space U M is defined as the set of all complex-valued 
C°°-functions <f> on I = (0, oo) satisfying 

(2) | (x~]d/dx)qx~lx'l/2<t>(x) | ^ Cq Qxp(-M(ax) ), fi G R, 

for each non-negative integer q, where the positive constants C and a 
depend on <j>. Clearly U^M is a linear space. The space U^M can be 
regarded as the union of countably-normed spaces U^M^a of all 
complex-valued C°°-functions <j>, which for any S > 0 satisfy the 
inequalities 
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(3) I (x~ld/dx)qx~^V2<j>(x) I ^ Cq8 e x p ( - M ( [a - 8]x) ), 

for each q = 0, 1, 2, . . . . The topology over ^ ^ is generated by the 
family of norms 

(4) IWI, = IWI^, 

= sup M (x) | (x~]d/dxfx^^U2<p(x) \ < oo, 
X 

where 

Mp(x) = exp(M[û(l - l/p) ]*), /> = 2, 3 , . . . . 

It is not hard to see that U Ma is sequentially complete [6]. The union 
of the spaces U Ma with a = 1, 1/2,.. . coincides with the space U^M. 
The dual spaces of U^M^a and [/ M are denoted by £ / ^ f l and 
f/̂ M respectively. They are also complete with respect to their weak 
topologies. 

For M(x) = x / a , 0 < a < 1, the space U M, \x e R, coincides with the 
space H considered by Lee [11]. 

We now list some properties of the spaces U^Ma, t/ M and their 
duals. 

(i) @{I) the space of C°°-functions of compact supports on / is a 
subspace of U M^a(I\ and the topology of @(I) is stronger than that 
induced on it by U^M^a(I). Hence, the restriction of a n y / e U^Ma(I) to 
@(I) is in @\I), and convergence in U'^Ma(I) implies convergence in 
0 ' ( / ) . 

(ii) For every choice of fi and a > 0, 

U^MM) C ^ ) -
Moreover, it is dense in <f(7) because Si(J) c U Ma(I) and <^(7) is dense 
in (f(7). The topology of U^Ma(I) is stronger than that induced on it by 
<f(7). Hence, < '̂(7) c a n be identified with a subspace of U^M a(I). 

(iii) The Zemanian's space & h, b > 0, consists of all smooth complex 
valued functions <J> on (0, oo) such that <j>(x) = 0 o n Z ? < ; c < o o and 

vifa) = sup | (x~xD)kx~'il~x/2^(x) | < oo, k = 0, 1, 2, . . . . 
0 < x < o o 

The strict inductive limit of â&^b is denoted by <% . Then ^ is a subspace 
of U^M. The topology of ^ is stronger than the topology induced on it by 
U^M. With the induced topology ^ is everywhere dense in U^M. 

(iv) If a > b > 0, then ^ M a c ^ M Z ) and the topology of U^Ma is 
stronger than that induced on it by U^Mb. Hence, the restriction of 
/ G u'iiM,b t o UnM,a i s i n u'>i,M,b a n d convergence in U^Mh implies 
convergence in U^a. 

https://doi.org/10.4153/CJM-1985-008-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1985-008-2


CAUCHY PROBLEM 87 

(v) If q is an even positive integer, then Ull^qMa c U^M^ and the 
topology of U[i+qMa is stronger than that induced on it by U^M^. For, let 
<J> G U^+2,M,ci> ^ e n a ^ t e r a ^ ^ ^ c o m P u t at ion, we have 

(x~lDf x~^l/2cj>(x) = 2k(x~]Df-lx-^5/2^>(x) 

+ x\x~xDfx~^5%(x\ 

Since x2 ^ C exp(<zx/2/?), using convexity of M one can conclude that 

(vi) The operation <̂> —̂  x̂ > is an isomorphism from U Ma onto 

(vii) The operation <f> —> TV <f> is an isomorphism from U Ma onto 
Uii+\,M,a> t h e inverse mapping being <J> -> iV~ V-

(viii) The operation <J> —> M <f> is a continuous linear mapping of 

The proof can be given by using the equality 

(X ~'D)kx . - 2 M - lDx2"+ 2x- f ' - " 3 / 2 . 
4> 

= 20 + Jfc + 1 ) ( J T Wx- -/1-3/2 , 

+ A: ( X ' D ^ + ' J C - " - ~"\ 

The adjoint operator theory [20, pp. 25-29], when applied to (v)-(viii), 
yields the following: 

(ix) If q is an even positive integer, then the restriction of / e U M to 
Up+qM ls i n ]̂LI+<7,M' moreover convergence in U^+q^M implies conver­
gence in U^qM. 

(x) The o p e r a t i o n / ^ x/ is an isomorphism from U' + XM onto U M. 
(xi) The o p e r a t i o n / ^ N fis an isomorphism from £/'+ ljA/ onto U M, 

the inverse mapping being/ —> N " 1 / 
(xii) The o p e r a t i o n / ^ Af y îs a continuous linear mapping of [/' M into 

LEMMA 2.1. U M is a subspace of Zemanian's space J^. The topology of 
U^M is stronger than the topology induced on it by J^. With the induced 
topology U M is everywhere dense in Jtç 

Proof. Clearly U M is a subspace of 3tif. Let <j> e U^M\ then there exists 
a > 0 such that 

max ^(<J>) ê Ml 

for each m, /? = 0, 1, 2 , . . . , where i ^ is a seminorm on Jtf. This implies 
our second assertion. 

Finally, to show that £/ M is everywhere dense in JÇ, let X(x) be 
a smooth function that is equal to 1 on — oo < x < 1 and equal to 0 on 
2 < x < co. Then, 
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\v<t>: = X(x - v) <t> e UpM, v = 1, 2, 3, . . . , 

whenever <f> e jtif This implies that 

< * (* " M>) "" ° as " ^ °°> 
for each m, p = 0, 1 , 2 , . . . . 

As a consequence of the above we have 

LEMMA 2.2. JF' is a subspace of U M. The topology of3fé" is stronger than 
the topology induced on Jlf' by U'^M. With the induced topology, 3%"^ is 
everywhere dense in U M. 

THEOREM 2.3. Let 0(x) be a smooth function on 0 < x < oo such that 

\(x~]D)q0(x) | â Dq exp(M(û,jc) ), 0 < ax < a. 

Then <j> —> 0<f> is a continuous linear mapping from U Ma into U Ma_a . 

Proof We have 

l ( j r 1 z>)* ( j r ' , - , / 2 0*) | 

k 
2 (k\x-xD)»0-(x-lDY 

n = 0 

k 

^ 2 {k„)DnCqs exp(M(fl,x) - M((a- 8). 

^ 2 (îW^exp(-M((fl - fll - 8)x))9 

* ) ) 

from which the result follows. 

THEOREM 2.4. Le/̂  0 be the same as in Theorem 2.3. Then f —> Of is a 
continuous linear mapping from U' Ma_a into U Ma defined by 

<*/,*> : =(f,H), </>e U^a. 

3. The spaces U ' , U and their duals. Let to be a continuous increasing 
function on [0, oo) with w(0) = 0 and to(oo) = oo. For y = 0 define an 
increasing, convex, continuous function £2 by 

fy 
tyy) = l0<»(t)dt, Q(-y) = Q(y). J 0 

Then 12(0) = 0, Q(oo) = oo and 

(5) Q(yx) + Q(^2) ^ Q(yx + j 2 ) , ^ , >>2 è 0. 
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We define the linear space t/" as follows: \p belongs to £/" if and only if 
s_M~ ' \j/(s) is an even entire function of s( = u + it) and for each 
nonnegative integer k, 

(6) l * 2 * - " - 1 ^ ) ! =£ q exp(S2[6y] ), 

where the positive constants Ck and b depend on \p. Or, in other words 
s~li~ ' \p(s) is even, entire and belongs to W -space [7]. 

A sequence {\pv(
s) } e ^ *s s a ^ t o converge to zero if the functions 

\pv(
s) converge uniformly to zero in any bounded domain of the s-plane 

and satisfy the inequalities 

\s2k-^-]/\(s)\ ^ C*exp(B[(ty]), 

where the constants Ck and b do not depend on the index v. 
The space U can be regarded as a union of countably normed spaces 

U ' . The set of all those functions in U which satisfy the inequalities 

(7) \s2k-^l/2xP(s) | ^ Ckp exp(Q[* + p]y), p > 0, 

is denoted by U ' . This is a linear space. The topology over U^ is 
generated by the norms 

(8) \\kp = \m\kPlb 

= sup \s2k~^~l/2xP(s)\ exp(-Q[(6 + p)y]). 

Using the method used in [6] it can be proved that U^b is a complete, 
perfect, countably normed space. 

Evidently, the union of all countably normed spaces U ' with b = 1, 
2, . . . coincides with the space U®. Therefore, a sequence {<j>v} e U 
is convergent to zero in Ï/ if it converges to zero in one of 
the spaces U ,b. U' is also a sequentially complete space. The dual 
of the spaces U^b, U® are denoted by (U^b)' and (£/£)' respectively. 
These are also complete with respect to their weak topologies. 

We now list some properties of these spaces: 
(i) If 0 < b < c, then U®'b c U®'c and the topology generated on 

u®'b by U^c is identical to the topology of ufb. 
The proof can be given by using Phragmen-Lindelof theorem [18, 

p. 177]. 
(ii) If q is an even positive integer, then U®+q c U®;band the topology 

of U®£q is stronger than the topology induced on it by U^ . 
(iii) The operation <J> —» z<j> is an isomorphism from U^b onto U^b

x. 
Again using the theory of adjoint operators, from (ii) and (iii), we 

derive 
(iv) If q is an even positive integer, then the restriction of / G (US)' to 
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Ua+q is in (C/"+ )'; moreover, convergence in (£/,,)' implies convergence 

(v) The operation/—» zf is an isomorphism from (t/^ + i)' onto (U^)'. 
The Zemanian's ^^-space [22] consists of all those \p in C such that 

z - / x _ 1 / i//(z) is entire and 

<*« , ) = s u p k - w ^ - ' i - 1 / 2 ^ ( z ) | < oo. 

Then obviously ^ c f/"'*. 

THEOREM 3.1. For any two positive real numbers b and d, the space 
U "b is dense in U^b+d, and & b is also a dense subspace of U^ . 

Proof. Let ^ ( R 2 ) denote the space of even, smooth functions of rapid 
descent and let Se^(z) be the subspace of the functions zM+1/ f(z), where 
/ e ^ ( C ) . Then, in view of the property (i), we have 

se/z)<= \bc Kh c uf+d c z"+U2 • se(R2y 
The proof is now an immediate consequence of [19, Theorem 15.5, 
p. 160]. 

THEOREM 3.2. For d > 0 let <£ be an even entire function such that 

| * (z ) | ^ C txp(Q[dy])(l + |z|2m), 

where C is a constant and m is a non-negative integer. Then \(/ —» O /̂ is a 
continuous linear mapping from U ' into U' + . 

Proof From the convexity of Œ it follows that 

\m\\kp,d+h s C( U\\kp,h + U\\{k+m)pM). 
This gives the result. 

THEOREM 3.3. Let O be the same as in Theorem 3.2. Then, f -* 0 / is a 
continuous linear mapping of (U' + )' /'«to ([ / ' )'. 

Some additional properties of U^ -spaces are derived after Theorem 
5.9. 

4. The spaces U^a, U^ M and their duals. Let M and 12 be the same 
functions as defined in Sections 2 and 3, and let a, b > 0. We define the 
test function space U^a as follows: \p is a member of t / ^ ) ^ if a n d only if 
s~^ - 1 / \p(s), s = u + /f, is an even entire function and 

(9) U\\8p = sup\s-^l/2^(s)\ 

X exp(M[ (a - S)x] - Q[ (b + p)j>] ) < oo. 
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U^MM is a linear space and the topology over this space is generated by the 
norms || \\8p. It can be seen that this is also a complete, perfect, countably 
normed space. 

The union of all countably normed spaces U^Ma with a = 1, 5 , . . . 
and b = 1, 2 , . . . is the space U®M whose elements 1// satisfy the in­
equality 

(10) \s~^U2xP(s)\ ^ Cexp(-M(ax) + Q(by) ). 

Or, in other words s~^~ ' \p(s) is even, entire and belongs to WM-space 
[7]. 

The convergence and completeness of U^^ are defined as usual. 

Examples (1). The following functions are dual in the sense of Young: 

M(x) = y?lp, Q(y) = yq/q, (x9 y > 0) 

with \/p + \/q = 1. The corresponding spaces are denoted by 

11 — II ll®>b — llq,b ll®'b — llq'b 

(2). Taking M(x) = x1 / a , Q(y) = yv^~^\ (a < 1, fi < 1), we obtain 
the space U M which consists of even entire functions s_M \p(s) 
satisfying 

\s-»-]/2t(s)\ ^ Cexp(-a\x\]/a +6 |^ | 1 / ( 1 " f t ) . 

This growth implies that 

(3). Setting a = A/2, b = B/2, a = /? = 1/2, we see that 

where SXA is the Hankel invariant test function space investigated by 
Eijndhoven and De Graaf [4]. 

(4). Furthermore, if we take M(x) = L/2JC2, 0 < L < 1, then 

Q(y) = \/(2L)y2. 

Hence, from (9), we derive 

| ^ - 1 / 2 ^ ) | ^ Qpexp(-iL(û - 8)2x2 + i lT^é + p)V). 

Now, set b = \la with 0 < a < 1, 

,4 = L(a - Ô)2 and B = L _ 1 ( l / a + p)2. 

So that 0 < 4̂ < 1 and 5 > 1. Then the space U^^a coincides with 
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the Hankel invariant space T(X, A J considered in [4]. 
The following theorems are of great importance to us whose proofs are 

analogous to [7, pp. 15-17]. 

THEOREM 4.1. Differentiation and multiplication by polynomials are 
bounded operators on the U'M a -spaces. 

THEOREM 4.2. Let B(y) be the dual of M(x). Assume that 0 is an entire 
function satisfying the inequality 

| 0 (z) | ^ Cexp(M[a0x] + Q[b0y]). 

ia frnrvi TTQA intn TI^tb0 Then \p —» $>$ is a continuous linear mapping from U 'Ma into t/„'A/,fl-

for a > a0. 

5. Hankel transforms of [/^-spaces. We shall now find the Hankel 
transforms of [/-spaces. In what follows we shall assume that the 
functions M and 12 are dual in the sense of Young, i.e., they satisfy the 
inequality 

(11) xy ^ M(x) + Q(y), x,y ^ 0. 

THEOREM 5.1. Let Q(y) be the dual of M(x). Then for \i ^ - 1/2, 

Proof Let 

/

oo 

0 <i>(x){xu)xnJli{xu)dx, /i ^ - 1 / 2 , 

be the Hankel transform of § e U Ma. Since 

(12) | [x(u + it) r % [ x ( n + it) ] | ^ A^Txt 4- ex% 

we have 

l/; 0 <t>(x)[x(u + it)]mJJix(u + //)]<& 

|<K*)[*(" + it) ] 1 / 2 + 1 | [x(w + it) ] %[JC(W + /7) ] |rfx 

e x p ( - M [ ( a - 8)x])(e~xt + e*') = C o ^ J o 

X |[x(w + it)f+m\dx. 

The last integral is absolutely convergent because A/(x) increases faster 
than any power of x and ju + 1/2 ^ 0. Therefore, we can define 

(13) 4,(11 + it): = Jo <j>(x)[x(u + it)\mJ£x(u + it)]dx. 
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Now, differentiating formally with respect to s = u + it and using the 
inequality (11), we have 

(14) \d/ds[s~ll~U2xP(s)]\ 

l/; 
bo 

0 <Kx)x'i+3,2{-(xs)-lxJli+](xs)]dx 

^ A;C0 \S\ 
/*oo 

J 0 exp(-M[(a- 8)x])x^5/2 

X [e~xt + ext]dx < oo. 

Thus from (13) and (14) it follows that s~(/x+1/2ty(s) is an even entire 
function of s. Furthermore, 

(15) A"" - 1 ' 2 ^) = J 0 J C 2 ^ 2 ^ 1 ! ^ " 1 ^ ) 2 ^ " ' * " 1 7 2 ^ ) ] 

X (xsytiJ[X+2q(xs)dx, 

for each q = 0, 1, 2, . . . . Since <j>(x) e U^Ma, and z~/VJLt+2q(
z) is an entire 

function and hence bounded on every bounded domain of the z-plane; 
therefore for all x and s, 

\e-xM(xs)-^+2q(xs) | â Dqp 

where D is a constant independent of x and 5. Hence 

(16) \s2"~^m^(s)\ 

^ CqBDqil J0 x2"+ 2 f l + 1 exp(xk| - M[(a - ô)x])dx 

/

OO 

0 exp ( -M[ (a - 8)x] + |/| x ) * 2 « + 2 " + W 

Now, using the Young inequality (11), we obtain 

(17) yx(y_ 1 \t\ ) ^ M(yjt) + £2(y_1 |/| ) with y = a - 28. 

Then the exponent in (16) is transformed into 

-M[(a - 8)x] + M(yx) + S(y _ 1 |/| ). 

Thus, we derive the estimate 

| ^ - " - , / 2 ^ ) | ë C ^ e x p ^ y - ' k l ] ) 
/*oo 

X J o exp ( -M( [a - Ô]x) 

+ M([a - 2S]x))x2"+2,l+idx 

ë C^exp(f i [ ( l /a + p)\t\]) 

X J 0 exp(-Sx)x2{,+2li+ldx, 
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where p > 0. Since the last integral is convergent, we have 

| ^ - " - 1 / 2 ^ ) | s e g ' exp(fi[ (1/a + p) ] \t\ ). 

This completes the proof. 

THEOREM 5.2. Let the functions M and fl be the same as in Theorem 5.1. 
Then for /x = —1/2, 

iVoo/. Let ^ G [ 7 ^ . Then we can define Hankel transform of ^ by 

</>(w): = J 0 ^(X)(JCW)1/2/M(XW)^X, w â 0. 

Differentiating formally under the integral sign we get 

(-i»-1z>„)*«-"- , /2*<«) 
foo 

= Jo x^+li+m^x){xuy^%+q{xu)dx. 

In view of the definition of the function ^ and boundedness of 
(xu)~*i~qJfJL+ixu) it follows that the last integral converges uniformly on 
0 < u < oo. By induction on q it can be easily seen that <f> is smooth. 
Furthermore, 

^ sup | (1 + x V + f l + l / 2 > K * ) I sup | v - " - % + > ) | 
0 < . x < o o v 

/*oo 
x J o ( 1 + x2y]dx 

^ Aq sup I (1 + X V < 7 + 2 M + 1 * " / 1 ~ 1 / 2 ^(X) I, 
0 < x < o o 

where v4 is a constant. Let r be a positive integer such that r ^ g 4- JU, -f 
1/2 ^ 0. Then for z = x + /y, 

(18) | (n - , Z) l < )^ - ' l - 1 / 2 *( i i ) | 

^ ^ sup I (1 + x2Y^]x-^~l/2xP(x) I 
0 < J C < O O 

^ ^ sup \ e ^ \ \ + z2)r+1z"^1/2^(z) | 

^ ^ 2 I r
 w )Cnp exp(fi[ (6 + P) j] - u\y\ ). 

Now, replacing;; by (b + p) |j>| and x by u/(b + p) in Young's inequality 
(11), we get 
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u\y\ = M(u/(b + P)) + Q((b + P)\y\). 

Then the exponent in (18) becomes 

-u\y\ + Q((b + p)y) = -M(u/(b + p)). 

Next, replacing (b + p)~ by Mb — 8, where 8 is arbitrarily small, we 
obtain 

| («- 1Z>H)««- ' ,- , / 2#!i) | â CqSexp(-M[l/b - S\u). 

Thus-tfu) G C/MA/1/fc. 
Combining Theorems 5.1 and 5.2 and using the fact that 

H;\H^) = *, 

we obtain 

THEOREM 5.3. Let 11 ^ - 1 / 2 and let tt(y) be the dual of M(x). Then 

and hence 

and for JU, ^ — 1/2, H is a topological mapping. 

Using Theorem 5.3 and Lemma 2.1 we obtain 

THEOREM 5.4. U is a subspace ofJF. The topology of U is stronger than 
the topology induced on it by JF. With the induced topology U is everywhere 
dense in J%,. 

r 

The proofs of the following lemmas are similar to those of Lemmas 5.10 
and 5.11 given later. 

LEMMA 5.5. For /x i^ — 1/2, <J> —> N <j> is an isomorphism from [/ ' onto 
t/^+i, the inverse mapping being <j> —> N~ <j>. 

LEMMA 5.6. For jui^ —1/2, <£ —> M <j> is a continuous linear mapping of 
Uftx into U^. 

Applying the theory of adjoint operators to Lemmas 5.5, 5.6 we 
derive 

LEMMA 5.7. For /x ^ —1/2,/—» N f is an isomorphism from (£/ J^)' 
onto (U ' )', the inverse mapping being f—^ N~ f 

LEMMA 5.8. For it i^ — 1/2,/—> M f is a continuous linear mapping of 
(I/J'*)' into (£#?,)'. 

THEOREM 5.9. Let Slx(y)y Mx(x) be duals of M(x) and &(y) respectively. 
Then for /x ^ —1/2, 
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n\A{JliM,a\ — u n,Mx,\/b9 

hence 

and H is a linear topological mapping. 

Proof. Let 

/*oo 

m = J0 <t>(x)(xuf\(xu)dx, ( u ^ 0) 

where <J> e U^a. Since z~^_1/2<|>(z), 2 = x + z>, is an entire analytic 
function of z e C, we can proceed as in the proof of Theorem 5.1 and 
write 

/*oo 

MM + /o = J 0 <K* + '»( (* + <»(" + *0)1 / 2 

X J((x + /»(« + it))dx. 

It is now easily seen that s~^ ' ^ \p(s) is an even entire function of 
s = u + it. Moreover, using the asymptotic properties of Bessel functions 
and the Young inequality, we have 

| * - " - 1 / 2 « K * ) l 
/*oo 

â J0 | z 2 " + 1 [ z ^ - 1 / 2 < K z ) ] ( z , ) - > % ( z , ) | ^ 

/*oo 

â Q p !)„ J 0 exp(-M[(a - 8)x] + Q[ (6 + p)y] + |?U + |j>| 11) 

s<V>,£s(;),*-V 
X e x p ( - M [ 0 - 8)x] + S2[(Z> + p)y] + |f| JC + | j / | W)JJC, 

where n is a positive integer such that n ^ JU + 1/2. Thus 

! ( ; ) < 
^<$p2*\„ )(2r)\ exp(Q( [ft + P]y) + (« + 1) \y\ ) 

r = 0 

foo 

X J o x2("~ r ) e x p ( - M [ ( a - S)x] + kl jc>fc. 

Using the Young inequality this yields 
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l^- ' / 2^)l 
^ Ct exp(fi( [b + p]y) + M([u+ l]/p) + (p\y\ ) ) 

" foo 

2 / » *2'"~ 0 exp( — M( [û — S]x) 

+ M(yjc) + (y _ 1 \t\))dx, 

where n ^ r and y = 0 — 28. Therefore 

\s-»-]/2t(s)\ 

^ Cg" sup e~Myl exp(£2( [ft + p]y) + M( [w + l]/p) 

+ Û ( P M ) + ( y - ^ l ) ) , 

where fi > 0 is arbitrary. 
Now, choosing 7 > 0 and invoking the Young inequality again, we 

have 

-Puy + Q([b + P ] j ) + 8(pj0 + M([n + l]/p) + (y~]\t\) 

^ -fiuy + 8([è + 2p]j) + C + M([ l + \/p]u) + S2(y_1kl ) 

= C - M(/3u/(b + 2p)) + M([ l + \/p]u) + (y _ 1 | / | ) 

^ C - M([j8/(ft + 2p) - 1 - l/p]w) + Q ( [ 1 / Û + p]r), P > 0. 

Choosing /? = 1 + (1 + l/p)(è + 2p) we see that the last term is bounded 
by 

C - M{ [l/b - S]u) + B( [1/a + p]f), P > 0, 8 > 0. 

Thus 

\(u + ity^l/2x^(u + z/)| 
ë C^expC-M^I l / f t - d]u) + Q^Il/fl + p]t)l 

where Mj is the Young-dual of Q^ Hence 

and i / is a topological mapping. 
Similarly, 

The proof of the theorem is now completed using the uniqueness property 
of the Hankel transform. 

LEMMA 5.10. For /x ^ —1/2, the operation \p —> N \p is an isomorphism 
from U^a onto U^\M,a. 
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Proof. Let 

Ku) = H^x)], where <f> e U^a. 

Then using analytic continuation and differentiating under the integral 
sign, which is a valid procedure, we have 

/

oo 

0 <Kz)zU2Ds(s-^(zs))dx 

/*oo 

= - J0 <Kz)zll+U2Jll+](zs)/(zsrdx. 

Hence, 
Ax) 

NHJKS) = J0 (-z4>)(zsy%+,(zs)dx = H^i-ztiz)). 

Therefore by Theorems 4.1 and 5.9, N^ is an isomorphism from U^MM onto 
J T&ib 

LEMMA 5.11. For /x i^ —1/2, the operation \p —» M \p is a continuous 
linear mapping from U^lMa into U^a. 

Proof Let 

y&u) = H^Wx)] where <t> e U$lM^ 

Then, again using analytic continuation and differentiating under the 
integral sign, we have 

/

oo 

o «Z)z1 / 2D,[y+ 1y / l + 1(z5)]<& 

/

oo 

0 <Kz)zV2sii+lJll(sz)dx. 

Hence, 

M ^ ) = H„Jzm )• 
Now, invoking Theorems 4.1 and 5.9, we arrive at the result. 

Again, the adjoint considerations lead to the following 

LEMMA 5.12. For \i i^ —1/2, the operation f ^ N^fis an isomorphism 
from (U^h

UMJ onto (U^J. 

LEMMA 5.13. For fi ^ — 1/2, the operation f—> M fis a continuous linear 
mapping from (U$,J into (U^\MJ. 

6. Hankel transforms of arbitrary order. Let m be a non-negative integer 
such that ju + m i ^ —1/2 for any fixed real number /x. Define the Hankel 
transform H for <j> e U M by 
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(19) My): =Hilj4>{x)] 

Then the inverse Hankel transform if"^ is defined for \p e t / ^ by 

(20) «j>(x): = ff^wo) i = (- i rV^V+i • • • ^ « - i t / 1 ^(J) ]• 
Our fundamental result of this section is the following: 

THEOREM 6.1. For any real number \x, the extended Hankel transform 
H as defined by (19) is an isomorphism from U Ma onto U ' a. Its in­
verse is defined by (20). For ju = —1/2, H coincides with H as an 
isomorphism from U^Monto U . 

Proof. From Section 2, property (vii) it follows that 

is an isomorphism from U Ma onto U +mMa. From Theorem 5.3, 

is an isomorphism from UyL+mMa onto t / J ^ for ii + m ^ - 1 / 2 . Also, 
from Section 3, property (hi), it follows that 

if, -> z~"V 

is an isomorphism from U +m onto L ^ . All these combined together 
prove the first part of the theorem. 

To prove that H~^ is given by (20) we again use the above mentioned 
properties and Theorem 5.3, and see that for /x + m ^ —1/2, 

Now, let <j>(x) G VnMa. Then we can write 

-z- ' ( / / ,+ xN^)(z) 

/

OO 

0 xli+V2[Dx~li'xn^(x) }{zx)x/1J^x{zx)dx. 

Integrating by parts and using the estimates of <j>(x) we see that the limit 
terms vanish and 

(H^)(z) = -z-\H^xN^){zy 

Finally, by induction we arrive at 

(H^iz) = ( - l)mz-m(Hll+mNll+m_l ... N^NpMz) 

= iH^){z). 

COROLLARY 6.2. For any real number [i, H is an isomorphism from 
U M onto U For ju ^ —1/2, H coincides with H as an isomorphism 

from U M onto U%. 
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Using Theorems 5.3, 6.1 and 3.1, we obtain 

THEOREM 6.3. For any real number /x and any two positive real numbers a 
and b the space U^ Ma is dense in UliMa + h. 

7. Non-triviality of the t/^-spaces. We know that U^M(I) is a non-trivial 
space because it contains the Schwartz test function space @(I). Since 

K = H^M) forju^ - 1 / 2 , 

it is also non-trivial. 
From [7] the space U^M is trivial if 

lim [&(bx) — M(ax)] = — oo 
jt—»oo 

for arbitrary a and b. This space is non-trivial when 

M(x) = Q(x) = l(x)xp, 

where p > 0 and / is a slow function [7]. From [7] we also conclude that all 
the [/^-spaces are non-trivial for 1 < p < oo. All non-trivial [/^-spaces 
are sufficiently rich in functions. 

8. Hankel invariant spaces. We have already seen in Section 4 that the 
Hankel invariant test function spaces Sx^ and r(X, A^) discussed in [4] 
are special cases of U^ ^spaces . Theorem 5.9 provides us a large class of 
Hankel invariant spaces. 

Let the function M be self-dual in the sense of Young. Then for 
li ^ - 1 / 2 , 

and 

TT TjjM,\/a] jjM,\/a 

^ / X [ ^ / I , M ] — ^ \i,M' 

9. The generalized Hankel transform. Using the theory of adjoint 
operators [20] we can define the generalized Hankel transform H' of 
each of the dual spaces (U^MJ, (U^b)' and (U^J as follows: 

where $ = H^, F = H'J <j> belongs to U^9 U^b or uj* a n d / 
belongs to the corresponding dual space. Since H = H^^ for jit ^ 
- 1/2, from Theorems 5.3, 5.9 and [20, Theorem 1.10-2, p. 29] we have the 
following: 

THEOREM 9.1. For jit ^ — 1/2, the generalized Hankel transform H' is an 
isomorphism from 

(i/?,1/fly, (tww. (^KV 
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onto 

respectively. 

From Theorems 5.1 and 9.1 it follows that 

THEOREM 9.2. 3tf" is a subspace of (U„)'. The topology of Jtf" is stronger 
than the topology induced on it by (U ) ' . With the induced topology 3tf is 
everywhere dense in (U ) ' . 

Let / and <f> belong to the spaces (U^]/ay and U^M^a respectively. 
Then the generalized Hankel transform H' for any real number /x is 
defined by 

(H'J, <?>>: = (f, H^), 

where m is a non-negative integer such that \i + m ^ —1/2. We have 

THEOREM 9.3. For any real number jii, the generalized Hankel transform 
H' is an isomorphism from (U ' a)' onto (U^M^a)'. 

10. An operation-transform formula. The generalized Hankel transform 
H' can be used to transform a differential equation of the form 

ns^u = g, 
where P is a polynomial, u and g possess generalized Hankel transforms 
and 

S^; =~- d2/dx2 +(1 - 4/x2)/4x2, 

into an algebraic equation of the form 

P(-y2)U= G, 

where U = H'u and G = H'g. 

THEOREM 10.1. For each k = 0, 1, 2, . . . , / * ! ? —1/2 and/belonging to 
one of the spaces (U^J, (UQ/)' or (U^J, 

H'tâj) = -fH'J. 
Proof. Let 

f^(U^aï and 0 G U*lft/b. 

Then, since S = M N , we have 

(H'^Jl «#»> = ((M^N/f, H^) 
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= (-i)Y*</.ff„*> 
= (-l)Y*</y,*>. 

The above steps can be justified by using Theorem 6.4 and Lemmas 
6.5-6.8. The cases of other spaces can similarly be disposed of. 

Theorem 10.1 can be applied to solve a Dirichlet problem in cylindrical 
co-ordinates with generalized boundary values belonging to one of the 
above generalized function spaces, in a manner similar to [20, pp. 
154-157]. 

11. Uniqueness of a Cauchy problem. In this section we apply the theory 
of Hankel transform developed in the preceding sections to establish a 
uniqueness theorem for the abstract Cauchy problem: 

(21) du(x, t)/dt = PiS^uix, t) 

(22) u(x, 0) = u0(x) 

where S is the Bessel differential operator studied in the preceding 
section and w(x, t) is an m X 1 column vector, and P is an m X m 
polynomial matrix with constant coefficients. A similar problem has been 
investigated by Gelfand and Shilov [7] and Friedman [5] for the operator 
P(id/dx). 

THEOREM 11.1. Let /x ^ —1/2. Then the Cauchy problem (21)-(22) 
possesses a unique solution u(x, t) in the space 

(UfJ^l))' , q' = (2Po - l)/(2p0), 

for the interval 

0 ^ t ^ T, T < (4cp0y\d/2)2p°, d < a, 

and for any initial function u0(x) belonging to the same space, where p0 is the 
reduced order of the system (21)-(22) with S replaced by i(d/dx) and c is a 
constant depending on P. Moreover for each t, 

\u(x, t) | ^ A exp08|xK), j8 > 0, 

almost everywhere, where A is a positive constant independent of t. 

Proof. According to the fundamental result [5, p. 177], the Cauchy 
problem (21)-(22) will have a solution in the space €>j for 0 < / ^ T if 
there exists a solution of the adjoint problem 

(23) 3<K*, t)/dt = PiS^Mx, 0, 

(24) ««je, t0) = <f>0(x) e $ 

in the space Oj for 0 = / ^ t0, where t0 is any point in the interval 
0 < t ^ 7, and P is the adjoint of P. 
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Applying the Hankel transform H , jix è —1/2, to (23)-(24), we get 

(25) d^(y, 0/9/ = P(-y2My, t) 

(26) My, tQ) = M J O 

where 

« j , 0 = H^x, t). 

A formal solution of (25)-(26) is given by 

i/O, t) = exp[(f - t0)P(-y2)WQ(y). 

Let us write 

Q(s, t0, t) = exp[ (t - t0)P(-s2) ], where s = u + /v. 

Then Q{s, t0, t) is an even and entire function of s. Let/?0 be the reduced 
order of the system (21)-(22) with S replaced by i(d/dx). Then using the 
inequality 

l ^ o g 22p%\u\2p* + \v\2p% 

from [7, p. 53] we obtain 

110(5, f0, 0 || ^ C exp[ (2^ 0 ) - 1 ^o( |w|2^o + |v|^o) 

under the assumptions 

t0^ t ^ t0 + T and 22p^xcT < (2poy
]d2p*. 

If we set 

M(u) = K^/(2p0), Q(v) = v2pV(2P()), 

then 

Ile(j, /0, /) II ^ C exp[M(</K) + B(rfv) ]. 

Now, let us assume that 

Ux) e * s !/£#/» 
where l/# ' + l/q = 1 and g = 2p0. Then 

My) = ̂ W*> G t̂-
By Theorem 4.2, *// —» Q(s, t0, t)\p is a continuous linear mapping from 
the space Uq^b

qa into Uq^a-d provided d < a. This can be achieved by 
taking T sufficiently small. Thus the Cauchy problem (25)-(26) has a 
unique solution in U^b^d. Since from Theorem 5.9, 

TT-\rTrq,b + d i _ ^ _ jjq',\/{a-d) 
n \ i lUiL,q,a-dl — ^1 — u

 M\\/(b + dy 

the Cauchy problem (23)-(24) has a unique solution in U^q/y^+dy 
Now, define the space E as the space of all measurable functions <j> 

having a finite norm 
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Uoo "\ Mr 

0 expire) \g(x)\rdx) , 1 â 

r < oo, 

where /? = €/(#'(* + d)q\ for some € < 1. Then $ c O, c £ Since 0 is 
sufficiently rich in functions, (see Section 7), it follows that <E> is dense in 
E. The proof can now be completed by using [5, Theorem 6, p. 177]. 

12. Existence of generalized solutions. Now we are going to show that 
for any polynomial P there exists a generalized solution of the Cauchy 
problem (21)-(22) for 0 ^ t â T. 

THEOREM 12.1. For any u0 e (U^Jj^+^y, where q' and d have the 
same meaning as in Theorem 11.1, there exists a generalized solution 

u(x, t) e (uf}%hy 

of (2\)-(22) for 0 ^ t ^ Z provided d < a. 

Proof Applying formally the Hankel transform of order /x i^ —1/2 to 
(21)-(22), we get 

(27) dp(y, t)/dt = P(-y2)v(y, t) 

(28) v(y, 0) = v0(.y) 

where v0(y) = H^[u0(x) ]. A formal solution of (27)-(28) is 

Hy, 0 = Q(y, 0My)> 

where 

Q(y,t) = cxp[tP(-y2)]. 

Here again we take 

We also have 

Hô(j, 0 || ë C exp[M(dw) + Q(dv) ] 

for 0 < t < T, 2p°+]cT < (2p0)~
]d2p°, where 

M(u) = M
2/V(2/>0), Q(v) = v2p°/(2p0). 

A A 

Then v0(y)—* Q(y, t)v0(y) is a continuous linear mapping from <ï> into Oj. 
Therefore, by [20, Theorem 1.10-1, p. 20], it is also a continuous linear 
mapping from <î>| into <3>r. Thus 

v(y, t) G ê ' if u0(x) e ê^. 
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Now, following [5, pp. 184-185] it can be shown that if u e <b\ then 
v(y, t) is a solution of (27)-(28) in the sense of <&'. Finally, taking the 
inverse Hankel transform of (27)-(28) we get 

u(x, t) = H;\v(y, 0 ] 

as a generalized solution of (21)-(22). 

Remark 12.2. Uniqueness and existence theorems for solutions in 
(U MaY can also be similarly established; and using Theorem 6.1 the 
result may be proved for all real values of JU. 
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