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ON HANKEL TRANSFORMABLE SPACES AND A
CAUCHY PROBLEM

R. S. PATHAK

1. Introduction. The classical Hankel transform of a conventional
function ¢ on (0, co) defined formally by

HJo] = H, [o(x)]: = f o 9O 0dx, = =12,

was extended by Zemanian [21-23] to certain generalized functions of one
dimension. Koh [9, 10] extended the work of [21] to n-dimensions, and
that of [22] to arbitrary real values of p. Motivated from the work of
Gelfand and Shilov [6], Lee [11] introduced spaces of type H, and studied
their Hankel transforms. The results of Lee [11] and Zemanian [21] are
special cases of recent results obtained by the author and Pandey [14]. The
aforesaid extensions are accomplished by using the so-called adjoint
method of extending integral transforms to generalized functions. Dube
and Pandey [2], Pathak and Pandey [15, 16] applied a more direct method,
the so-called kernel method, for extending the Hankel and other related
transforms.

Recently, Eijndhoven and De Graaf [4] applied a functional analytic
approach to discover certain spaces of test functions and generalized
functions which are invariant under Hankel transforms. They could
discover three such spaces of test functions: SXA , (X, log 4,), 7(X, 4)). It
turns out that 7(X, log A4 W is the same as Zemanian’ s space Qi” [21]. The
space Sy 4, is related to the Gelfand-Shilov space S 1 /2 (6], and (X, 4,)
also possesses a characterlzatlon similar to S /% It is well-known that
S and its generalization WM space [7] are invariant under Fourier
transformatlon for certain values of M and . This motivated us to
investigate certain test function spaces of W-type which are sultable for
Hankel transforms. These spaces are denoted by Up Mo Q and U
Here M and  are arbitrary convex functions. That i 1s why these spaces are
able more exactly to discern singularmes in the growth or decrease of
functions at infinity. The space U MH yields a large class of Hankel
invariant spaces.
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In this paper we define the aforesaid three U,-spaces and study their
algebraic and topological properties. We discuss their relationships with
other well-known test function spaces and mention their special cases. We
study the Hankel transform of test functions in these spaces and define
generalized Hankel transform of generalized functions belonging to their
dual spaces. We extend the Hankel transform to negative values of pu.
Finally, we apply the theory thus developed to study uniqueness and
existence of the Cauchy problem for the operator

S, = d/dx® + (1 — 4p)/4x%,
Theorem 5.3 of the present paper extends the inversion theorems
contained in the papers [21] and [22] in one stroke, whereas Theorem 5.9 is
one of the most general inversion theorems for the Hankel transform.

We shall use the notation and terminology of Schwartz as employed in
[20]. I denotes the open interval (0, o0); x, y, u and ¢ are real
one-dimensional variables. z = x + iy and s = u + it denote complex
variables. The functions of z and s will be restricted to their principal
branches. We shall use the following linear operators:

DF = Df = dvadt k=0,1,2,...

_ e 12y put1/2
M, =M, =: Dz

Np _ Np.z - zp.+l/2Dz-‘u—l/2

4

N =N = z"H/zf TRV

n fes)

2 2 2
S, =S,. = M,N, = D* + (1 — 4u?)/42.

2. The spaces U, , U, and their duals. Let £ be a continuous
increasing function on [0, co) such that £(0) = 0 and §(co) = oo. For

x = 0 define an increasing, convex, continuous function M by

M(x) = fz &t)d, M(—x) = M(x).

Then M(0) = 0, M(co) = oo and

(1) M(Xl) + M(Xz) = M(x] + X2), .xl, XZ é 0.

Now, the space UN‘M is defined as the set of all complex-valued
C°-functions ¢ on I = (0, co) satisfying

) [ ldrdx)x T 2p(x) | = C, exp(—M(ax)), p € R,

for each non-negative integer g, where the positive constants C, and a
depend on ¢. Clearl){» U,m is a linear space. The space U, can be
regarded as the union of countably-normed spaces U, )., of all

complex-valued C®-functions ¢, which for any § > 0 satisfy the
inequalities
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(3) | ldrdxyix M P(x) | = Cpg exp(—M([a — 8]x)),

for each ¢ = 0, 1, 2,.... The topology over U, , is generated by the
family of norms

@ ligll, = ligll,
sup M, (x) | (x " 'drdx)ix 1 2¢(x) | < oo,

q=p
where
M,(x) = exp(M[a(l — 1l/p)Ix), p=12,3,....

It is not hard to see that U, , is sequentially complete [6]. The union
of the spaces U, y, With a = 1, 1/2, ... coincides with the space U, .
The dual spaces of U, , and U,, are denoted by U, ., and
U, m respectively. They are also complete with respect to therr weak
topologies.

For M(x) = x“"‘, 0 < a < 1, the space U“’M, © € R, coincides with the
space H, , considered by Lee [11].

We now list some properties of the spaces U, ., U,
duals.

(1) 2(I) the space of C®-functions of compact supports on I is a
subspace of U,y ,(I), and the topology of 2(I) is stronger than that
induced on it by U, 5/ ,(I). Hence, the restriction of any fe Uimd ) to
2() is in 2'(I), and convergence in U, mq(I) implies convergence in
2'().

(1) For every choice of p and a > 0,

U, mad) € &),

Moreover, it is dense in &(I) because Z(I) C U, 5 (1) and Z(I) is dense
in (7). The topology of U, 5 ,(I) is stronger than that induced on it by
&(I). Hence, &’(I) can be identified with a subspace of Uy maD)-

(ii1)) The Zemanian’s space %, p» b > 0, consists of all smooth complex
valued functions ¢ on (0, co) such that ¢(x) = 0 on b < x < co and

y and their

W(9) = sup |(x 'DYxTF T 29(x)| < o0, k=0,1,2,....
0<x<oo
The strict inductive limit of %, , is denoted by %,. Then %, is a subspace
of U, » The topology of %, is stronger than the topology 1nduced on it by
U, p- With the induced topology %, 1s everywhere dense in U,

(1v) If a>b>0,then U, y, c U, Mb and the topology of U#‘Mﬁu is
stronger than that induced on it by wmp- Hence, the restriction of
f € Uyp to Uy, is in U,y and convergence in U,y implies
convergence in Uy,
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(v) If ¢ is an even positive integer, then U, , Ma © Uumq and the
topology of U, | , ,, 18 stronger than that induced on it by U, .. For, let
¢ € U,y um, then after a little computation, we have

(x"'DY x TPV 20(x) = 2k(x'D)T 'xTF T 29(x)
+ X2 IDYIx T 2g(x),
Since x> = C exp(ax/2p), using convexity of M one can conclude that

U,u+ 2,M,a c U,u,M,u

(vi) The operation ¢ — x¢ is an isomorphism from Uyma onto

\a

Uu+ 1. M.a

(vii) The operation ¢ — N u® is an 1somorphlsm from U, s, onto
Uy t1me the inverse mapping bemg ¢ — N ¢

(viii) The operation ¢ — M,¢ is a conunuous linear mapping of
Uy+l,M,a into Up,M,a
The proof can be given by using the equality

(x—lD)kx—Zu—IDx2p+2x—u—3/2¢
2 + k + D(x DY TE 2
+ x (x )k+1 ,.L—3/2¢_

The adjoint operator theory [20, pp. 25-29], when applied to (v)-(viii),
yields the following:

(ix) If ¢ is an even positive integer, then the restriction of f € U, A
Uptgm s in U, Li+q,M> TOTEOVer convergence in U, oM implies conver-
gence in U”Hq’M

(x) The operation f — xfis an isomorphism from U, , », onto U,

(xi) The operation f — N fls an 1som0rphlsm from U W+ 1,1 onto U,’“M,
the inverse mapping being f - N, 'f.

(xii) The operation f — M, fis a contmuous linear mapping of U,, s into

Uit 1.m
LeEMMA 2.1. U, s is a subspace of Zemanian’s space #,. The topology of

U, v is stronger than the topology induced on it by ;. With the induced

topology U, y; is everywhere dense in .
Proof. Clearly U,  is a subspace of 5. Let ¢ € U, ; then there exists
a > 0 such that

max v,(0) = 9]},
0=k=p

foreachm,p = 0, 1, 2, ..., where v’jn’k is a seminorm on L%fl This implies
our second assertion.

Finally, to show that U, ) is everywhere dense in J, let A(x) be
a smooth function that is equal to 1 on —oco < x < 1 and equal to 0 on
2 < x < oo. Then,
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Ao =Ax —v) ¢ € Ums v = 1,2,3,...,
whenever ¢ € . This implies that

(¢ — Ap) >0 asy— oo,

w

Yk

O0=k=p
foreachm,p =0,1,2,....

As a consequence of the above we have

LEMMA 2.2.5¢, is a subspace of U,, . The topology of 5|, is stronger than
the topology induced on ', by U, \. With the induced topology, | is
everywhere dense in U .

THEOREM 2.3. Let 0(x) be a smooth function on 0 < x < oo such that
l(x " 'D)(x) | = D, exp(M(a)x)), 0 <a) <a.
Then ¢ — 0¢ is a continuous linear mapping from Upsa o Uy pry—q-
Proof. We have
LDy g |

k
_ go (ﬁ)(X—ID)nO ST DY T 2
S (k
= 20 (n)D,,CqS exp(M(a;x) — M((a — 8)x))
S (k
= 20 (n)Dnch exp(—M((a — a, — &)x)),

from which the result follows.

THEOREM 2.4. Let 0 be the same as in Theorem 2.3. Then [ — 6f is a
continuous linear mapping from U, »,, , into U,y , defined by

Of. ¢): = ([, 08). ¢ € Uppa

3. The spaces U i}‘b, U 2 and their duals. Let w be a continuous increasing
function on [0, co) with w(0) = 0 and w(co) = oo. For y = 0 define an
increasing, convex, continuous function £ by

Y
Uy) = fo w(tydt, U—y) = Uy).
Then ©(0) = 0, £(c0) = oo and
(5 Qy) + Uy =y + yy), Y3 =0.
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We define the linear space U as follows: ¢ belongs to U if and only if
s h12 Y(s) is an even entlre function of s(= u + zt) and for each
nonnegative integer k,

6) 1™V s) | = € exp(QUby)),

where the positive constants C, and b depend on . Or, in other words
-2 Y(s) is even, entire and belongs to wé -space [7].
A sequence {{,(s) } € U is said to converge to zero if the functions
{,(s) converge uniformly to zero in any bounded domain of the s-plane
and satisfy the inequalities

KBV () | = Cp exp(Qf (by]),

where the constants C, and b do not depend on the index ».
The space U , can be regarded as a umon of countably normed spaces
UQ b The set of all those functions in U which satisfy the inequalities

(M) ST 2s) | =, exp@b + ply), p >0,

is denoted by U/Sf’b. This is a linear space. The topology over Uﬁ’b is
generated by the norms

@®)  1olle, = lldllyps
= sup sV 2y(s) | exp(— QL (b + p)y]).

Using the method used in [6] it can be proved that Uff’b is a complete,
perfect, countably normed space.

Evidently, the union of all eountably normed spaces U b with b =
2,... coincides with the space U Therefore, a sequence {qb,,} € Uﬂ
is convergent to zero in U M 1f it converges to zero in one Of
the spaces UQ Uff is also a sequentlally complete s ace The dual
of the spaces U ﬁ are denoted by (U by and (U,) respectively.
These are also complete with respect to the1r weak topologles.

We now list some propertles of these spaces:

(1) If 0 < b < ¢, then U c Uffc and the topology generated on
U b by U%¢ is identical to the topology of U

The proof can be given by using Phragmen -Lindeldf theorem [18,
p. 177].

(ii) If ¢ is an even positive integer, then U q - UQ band the topology
of Um’ is stronger than the topology 1nduced on 1t by U

(111) The operation ¢ — z¢ is an isomorphism from Uk u omo Um’

Again using the theory of adjoint operators, from (ii) and (111) we
derive

(iv) If ¢ is an even positive integer, then the restriction of f € (Uff)’ to
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U A is in (U i +¢)'s moreover, convergence in (U Q) implies convergence
in (UY,,).
) The operation f — zf is an isomorphism from (U u+1) onto (U ).
The Zemanian’s ¥, ,-space [22] consists of all those ¢ in C such that
#=120(2) is entire and

oy, (@) = suple VI TETI2y(z)) < oo,

Then obviously %, ;, C UQ”’.

THEOREM 3.1. For any two positive real numbers b and d the space
UQ bis dense in U QHd, and ¥, ,, is also a dense subspace of U

Proof. Let S (R ) denote the space of even, smooth functions of rapid
descent and let S, (z) be the subspace of the functions T12£(2), where
f € S,(C). Then, in view of the property (i), we have

Sel2) € ¥, ¢ UM c UPPH 2SR

The proof is now an immediate consequence of [19, Theorem 15.5,
p. 160].

THEOREM 3.2. For d > 0 let ® be an even entire function such that
(z)| = Cexp(@ldy] )1 + 21,

where C is a constant and m is a non-negative tnteger Then ¢ — ®Y is a
continuous linear mapping from UQb into UQ‘H

Proof. From the convexity of Q it follows that
NP5 = COUWkop + Wk 1 m)p.0)-
This gives the result.

THEOREM 3.3. Let @ be the same as in Theorem 3.2. Then, [ — ®f is a
continuous linear mapping of(Uﬁ’dH’)’ into (Ui}’b)'.

Some additional properties of Uﬁ-spaces are derived after Theorem
5.9.

4. The spaces UQM > Uff » and their duals. Let M and Q be the same
functions as defmed 1n Sections 2 and 3, and let a, b > 0. We define the

test function space U Ma as follows: ¢ is a member of U'?;(},u if and only if
s"“]/le/(s), s =u + it, is an even entire function and

©  Ills, = sxellgls”‘"/le»(s)l

X exp(M[ (a — 8)x] — (b + p)y]) < oo.
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Uﬁ}{}ﬂ is a linear space and the topology over this space is generated by the
norms || HSP. It can be seen that this is also a complete, perfect, countably
normed space.

The union of all countably normed spaces Uf}{}‘a witha = 1,3, ...
and b = 1, 2,... is the space Uﬁ’M whose elements ¢ satisfy the in-
equality
(10) Is™* V()| = Cexp(—M(ax) + Uby)).
s—p—l/Z

Or, in other words Y(s) 1s even, entire and belongs to Ws,frspace

[7].
The convergence and completeness of Uﬁ, u are defined as usual.

Examples (1). The following functions are dual in the sense of Young:
M(x) = X/p, Uy) = )y¥/q, (x,y > 0)
with 1/p + 1/¢q = 1. The corresponding spaces are denoted by
Uira = Upoo Ufiz’b = UZ"” Uf}\bﬁa = U?J? .

(2). Taking M(x) = x"/% Q(y) = /0P (a < 1, B < 1), we obtain
the space Uﬁ,M which consists of even entire functions s *~ !/ Y(s)
satisfying

s 2(s) | = C exp(—alx|® by,
This growth implies that
sTE2ys) €SP
(3). Settinga = A/2,b = B/2, a = B = 1/2, we see that
U;SE,M = Sy,

where Sy 4, is the Hankel invariant test function space investigated by
Eijndhoven and De Graaf [4].
(4). Furthermore, if we take M(x) = L/ 2x%,0 < L < 1, then

Qy) = /QLY.
Hence, from (9), we derive

sT* TV 2(s) | = Cpp exp(—L(a — 8)x* + L7 + p)HD).
Now, set b = 1/awith0 < a < 1,

A=1L(a— 8% and B=L"'(1/a + p)-

So that 0 < 4 < 1 and B > 1. Then the space U’?,{;z coincides with
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the Hankel invariant space (X, 4,) considered in [4].
The following theorems are of great importance to us whose proofs are
analogous to [7, pp. 15-17].

THEOREM 4.1. Differentiation and multiplication by polynomials are

bounded operators on the U,f}ﬁ’a -spaces.

THEOREM 4.2. Let Q(y) be the dual of M(x). Assume that @ is an entire
function satisfying the inequality
©(2) | = C exp(M[apx] + Qbyy))-
Then  — ®Y is a continuous linear mapping from Ug }(}‘a into U ﬁ:’,{,,fahﬂ 4
Jor a > a,.
5. Hankel transforms of U,-spaces. We shall now find the Hankel
transforms of U,-spaces. In what follows we shall assume that the

functions M and Q are dual in the sense of Young, i.e., they satisfy the
inequality

(I xy = Mx) + Uy), x,y =0.
THEOREM 5.1. Let Q(y) be the dual of M(x). Then for p = —1/2,
H[U, ) € U
Proof. Let
Y(u): = f;o $()xu) 2T (xuydx, p = —1/2,
be the Hankel transform of ¢ € U, ), Since
(12) e + i) ] M [x@ + it) ]| = A e + ),

we have

fzo S()x(u + it) V2T [x(u + it) |dx

= f;o lQ)x (u + ity 17271 | [e(u + i) 174 [x(u + it) ] |dx
= Gy, fzo exp(—M[(a — &)x] e * + &)

X | [x(u + it) PV ?dx.

The last integral is absolutely convergent because M(x) increases faster
than any power of x and p + 1/2 = 0. Therefore, we can define

(13) Y(u + it): = f:o $Q)x(u + it) 2T [x(u + it) Jdx.
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Now, differentiating formally with respect to s = u + it and using the
inequality (11), we have

(14) |d/ds[s ™" 2y(s) 1|

f o OO —(xs) My (xs) Jdx
= 4,C, Isl fzo exp(—M[ (a — 8)x])x* 132

X [e7 + e¥]dx < co.
Thus from (13) and (14) it follows that s*(“+1/2)4x(s) is an even entire
function of s. Furthermore,

(15) s2q*u~l/2¢(s) _ f;o x2q+2p+l[ (x—le)qu<p,—l/2¢(x)]

X (x8) M g 5 (x8)dx,

foreachq = 0,1,2,....Since ¢(x) € U, p,, and z_”J#Hq(z) is an entire
function and hence bounded on every bounded domain of the z-plane;
therefore for all x and s,

le ™ (xs) TH, 4 5 (x5) | = D,
where D, is a constant independent of x and s. Hence

(16) |27 P12 y(s) |

= CyuDy, fo xH T exp(xlt] — M[(a — 8)x])dx

= Cls /ZO exp(—M[ (a — &x] + || x)x¥ T gx.
Now, using the Young inequality (11), we obtain
A7) yx(y ') = MGyx) + Qv ' |1]) withy = a — 26.
Then the exponent in (16) is transformed into
~M[(a = &x] + M(yx) + Q' ).
Thus, we derive the estimate
|71 2y(s) | = Chs exp@[y " 1)

X fo exp(—M([a — 8]x)
+ M(la — 28]x) x> dx
= Chs exp(@[ (1/a + p)Il])

(0]
X _[0 exp(—8x)x>9 12 gy,
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where p > 0. Since the last integral is convergent, we have
|27+ 25 | = Chs exp(Q(17a + p) ] 1)
This completes the proof.

THEOREM 5.2. Let the functions M and Q be the same as in Theorem 5.1.
Then for p = —1/2,

Q2
H[U, "l c UMb
Proof. Let y € Uﬁ’b. Then we can define Hankel transform of ¢ by

o(u): = /0 yb(x)(xu)l/zjn(xu)dx, u=0.
Differentiating formally under the integral sign we get

(=1 "D,y 2g(u)

= fo x2‘7+“+]/zxp(x)(xu)*”*q.f”w (xu)dx.

In view of the definition of the function ¢ and boundedness of
(xu) *74 u+q(xu) it follows that the last integral converges uniformly on
0 < u < oo. By induction on ¢ it can be easily seen that ¢ is smooth.
Furthermore,

| (™ "'D,You ™" 2(u) |

= sup [(1+ AP 200 [ sup pTFTY L 00) |
0<x<oo v

[e o)
X fo (1 + xH ldx

=4, sup [(1+ P T2 gy ),
0<x<oo

where 4 is a constant. Let r be a positive integer such that r = g + p +
1/2 = 0. Then for z = x + iy,

(18) [ 'D)7u " 2p(u) |

=4, sup |(1+ DTV 2yx) |
0<x<oco

1.ec

=4, Eo(r t I)Cnp exp(Q[ (b + p)y] — ulyl).

Now, replacing y by (b + p) |y| and x by u/(b + p) in Young’s inequality
(11), we get
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ulyl = Mu/(b + p)) + Qb + p)|yl).
Then the exponent in (18) becomes
—ulyl + Qb + py) = —Mu/(b + p)).

Next, replacing (b + p)-l by 1/b — 8, where § is arbitrarily small, we
obtain

| (™ 'D)u™ " 2e(u) | = Cpg exp(—M[1/b — 8u).
Thus ¢(u) € UIL‘MJ/,,.
Combining Theorems 5.1 and 5.2 and using the fact that

. (H$) = o,

we obtam
THEOREM 5.3. Let p = —1/2 and let U y) be the dual of M(x). Then

Q,1 Q.b
Hu[Up,M,a] = U[l. /a’ Hp[Up, ] = U[.L,M,l/b’

and hence

Q Q
HIUm = Uy, HJU,] = Upp

and for p = —1/2, H,, is a topological mapping.
Using Theorem 5.3 and Lemma 2.1 we obtain

THEOREM 5.4, U is a subspace of . The topology of U lS stronger than
the topology mduced on it by . With the induced topology U is everywhere
dense in .

The proofs of the following lemmas are similar to those of Lemmas 5.10
and 5.11 given later.

LEMMA 5.5. Forp = —1/2, ¢ = N,¢ is an isomorphism from U b onto

Uﬁzﬂ, the inverse mapping being ¢ — N lqb

LEMMA 5.6. For p. = —1/2, ¢ = M, ¢ is a continuous linear mapping of
USZ,b . Uﬂ,b
w1 into U,

Applying the theory of adjoint operators to Lemmas 5.5, 5.6 we
derive

LEMMA 5.7. For p = —1/2, f = N, fis an lsomorphlsm Jrom (U, 1)’
onto (UQ by, the inverse mapping bemgf—> N, Lf

LEMMA 5.8. For p= —1/2,f— M, fis a continuous linear mapping of
(URY into (UL

THEOREM 5.9. Let Q(y), M(x) be duals of M(x) and Q(y) respectively.
Then for p = —1/2,
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Qb Q.,l/a .
HH[U,u,M,a] = Un,IMl,(f/b’
hence
Q Q
HU, ml = Uphss
and H, is a linear topological mapping.
Proof. Let
[ee)
Wu) = f (x)(xw)' 2, (auydx,  (u = 0)

where ¢ € UQMa Since z ™ *~ 1/2<1>(z) z = x + iy, is an entire analytic
function of z € C, we can proceed as in the proof of Theorem 5.1 and
write

St iy = [ o+ )G+ ) + i)

X JP( (x + iy)u + it) )dx.

It is now easily seen that s~ “*1/2 Y(s) is an even entire function of

s = u + it. Moreover, using the asymptotic properties of Bessel functions
and the Young inequality, we have

s 7F 1 2y(s) |

= f;o IZZIH-I[ZVF—I/?_ ¢(z)](ZS)_” JM(ZS) dx
=Car Dy fzo exp(—Ml(a — &)x] + QG + pp] + il x + |yl w)
X (x2 + yz)p+1/2dx

CSprf 2( ) 2(n— r) 2r

X exp(—M[(a — &)x] + Qb + p)y] + |t x + [y| u)dx,
where n is a positive integer such that n = pu + 1/2. Thus

s TF 7V 2y(s) |

= ¢, Z(")ent exp@lb + ply) + @ + 1)
r=0\"

oo
X _/0 XX exp(—M[ (a — 8)x] + || x)dx.

Using the Young inequality this yields
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s ) |
Ch exp@([b + ply) + M([u + 11/p) + (plyl))

lIA

X > . X2 exp(—M([a — 8]x)
r=0

+ M(yx) + (v 1) )dx,
where n = r and y = a — 26. Therefore
s H T 2y(s) |
= Cf, sup e M exp(@([b + ply) + M([u + 11/p)

+ Qlyl) + (v ),

where B > 0 is arbitrary.
Now, choosing y > 0 and invoking the Young inequality again, we
have

—Buy + Q[b + ply) + Qpy) + M([u + 11/p) + (v~ ')
—Buy + Q([b + 2p]y) + C + M([1 + 1/plu) + Q7 ")
= C — M(Bu/(b + 2p)) + M([1 + 1/plu) + (v 'li])

=C— M([B/(b+ 20) — 1 — 1/pJu) + Q([1/a + p]t), p > 0.

Choosing 8 =1 + (1 + 1/p)(b + 2p) we see that the last term is bounded
by

lIA

C — M([1/b — 8lu) + Q[1/a + plt), p > 0,8 > 0.
Thus

(u + it) P V2 + ir) |

= Gy, exp(—M([1/b — 8lu) + Qy([1/a + p])),
where M, is the Young-dual of £,. Hence

¥ € Uﬁ‘}i},/,‘f/b
angi nlfl 'i alrs] ; topological mapping.

Q) 1/a Qb
H,L[Up,ll\/li/l,l/b] - UM,M,a‘

The proof of the theorem is now completed using the uniqueness property
of the Hankel transform.

LEMMA 5.10. For p = —1/2, the operation  — Ny is an isomorphism

g Q.b Qb
fr()m U,Ll,M,(l onto U[.L“‘],M,a'
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Proof. Let

Wu) = HJo(x)], where € UL .

Then using analytic continuation and differentiating under the integral
sign, which is a valid procedure, we have

Ds FV2ys) = f;o ¢(z)z'/2Ds(s_”J#(ZS))dx

- f ;,o o(2)2" V2 (25)/(25)dx.

Hence,

Ny ls) = f o (—20)(E9) " (zs)dx = Hyyy (—26(2) ).

Therefore by Theorems 4.1 and 5.9, N, is an isomorphism from U;?}\I/)I,u onto

Qb
Uu+ I.M,a*

LEmMMA 5.11. For p = —1/2, the operation y — M} is a continuous

linear mapping from U,?jrbl’M’a into U,f}{}’a.

Proof. Let
Yu) = Hyi[6(x)] where ¢ € U1y,
Then, again using analytic continuation and differentiating under the

integral sign, we have

Dssp+1/2¢(s) _ _[ZO ¢(Z)Zl/2DS[S#+lJ#+1(ZS)]dx

= /ZO ()23 2T lJu(sz)dx.
Hence,
M, Us) = H, (26(2) ).
Now, invoking Theorems 4.1 and 5.9, we arrive at the result.
Again, the adjoint considerations lead to the following

LEMMS/ZA[)S.IZ. For p 29— 1/2, the operation f — N, f is an isomorphism
from (UK pr) onto (U, )

LEMMA 5.13. Fgr p= — 1/2,che operation f — M, fis a continuous linear
mapping from (UM‘}\I}’H)’ into (qurb,‘M,a)'.

6. Hankel transforms of arbitrary order. Let m be a non-negative integer
such that p + m = —1/2 for any fixed real number . Define the Hankel
transform H, ,, for ¢ € U, ) by
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(19) ¥y): = H, ,[¢(x)]
= (=D " ,L+mNM+m—1 ,,L+1 [¢(x)]
Then the inverse Hankel transform H o 15 defined for € UQ b by
(20) ¢(x): = Hy,l0(»)] = (- 1)’"N“N,L+] Nytm " 90 1
Our fundamental result of this section is the following:
THEOREM 6.1. For any real number p, the extended Hankel transform

H,,, as defined by (19) is an isomorphism from U, y; , onto U '“ Its in-

verse is defined by (20). For p = —1/2, H,, coznczdes wzth H, as an
isomorphism from U, \, onto U,,.

Proof. From Section 2, property (vii) it follows that

&> Nyip1--- Ny No
is an isomorphism from U, s, onto U, ., »,- From Theorem 5.3,
(i) - H'u+m¢

is an isomorphism from U, , ,, 5/, onto UQ 1/” forp + m = —1/2. Also,
from Section 3, property (111), it follows that

Y=z ™Y
is an isomorphism from U} uhm onto Uff’h‘ All these combined together
prove the first part of the theorem

To prove that H, ,, is given by (20) we again use the above mentioned
properties and Theorem 5.3, and see that forp + m = —1/2,

Hyy 2™z = H 12" ] € Uit

Now, let ¢(x) € U, p,- Then we can write
=27 (Hy Ny9)2)
[o¢]
= —z! /0 2 Dx TR 2¢(x) ](zx)]/zJMH(zx)dx.

Integrating by parts and using the estimates of ¢(x) we see that the limit
terms vanish and

(Ho)z) = —z~ (H, \N,9)2).

Finally, by induction we arrive at
Hyp)z) = (=12 "(Hyy Nyt -1 - - - Ny 1 N,9)(2)
= ( m(b)(z)‘

COROLLARY 6.2. For any real number p, H, ,, is an isomorphism from
U, um onto U“ For p = —1/2, H,,, coincides wzth H, as an isomorphism
Sfrom U, onto U
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Using Theorems 5.3, 6.1 and 3.1, we obtain

THECREM 6.3. For any real number p and any two positive real numbers a
and b the space U, y; , is dense in Uy, r ;-

7. Non-triviality of the U -spaces. We know that U, (/) is a non-trivial
space because it contains the Schwartz test function space (/). Since

Up = H[U, ] forp = —1/2,

it 1s also non-trivial.
From [7] the space Uff’M is trivial if
lim [Q(bx) —M(ax)] = —o©

for arbitrary a and b. This space is non-trivial when
M(x) = Qx) = I(x)x?,
where p > 0 and / is a slow function [7]. From [7] we also conclude that all

the Uﬁ’p-spaces are non-trivial for 1 < p < oco. All non-trivial U,-spaces
are sufficiently rich in functions.

8. Hankel invariant spaces. We have already seen in Section 4 that the
Hankel invariant test functlon spaces Sy A, and (X, 4,) discussed in [4]
are special cases of U m-spaces. Theorem 5.9 provides us a large class of
Hankel invariant spaces

Let the function M be self-dual in the sense of Young. Then for
p= —1/2,

M]1/a M\/a
[U'L Ma] = U;L,M,a

and

9. The generalized Hankel transform. Using the theory of adjoint
operators [20] we can define the generahzed Hankel transform Hj, of
each of the dual spaces (U, )", (U by and ( ”Mu)’ as follows:

(F, ®): =</, ¢)

where @ = H,¢, F = H,f, ¢ belongs to U, y, Uﬁ’b or U#Ma, and f
belongs to the corresponding dual space. Since H, = H, I for p =
—1/2, from Theorems 5.3, 5.9 and [20, Theorem 1.10-2, p. 29] we have the
following:

THEOREM 9.1. For p = —1/2, the generalized Hankel transform H), is an
isomorphism from

Q,1/ Q,,1/
(U’u (l)/, (UI,L,M,I/b),’ (U Mlllz/b),
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onto
’ Q.bys Qb
(UM,M,u) s (U” )’ (UM,M,a)
respectively.
From Theorems 5.1 and 9.1 it follows that

THEOREM 9.2. ), is a subspace of %U 3)’. The topology of A, is stronger
than the topology induced on it by (U,). With the induced topology | is
everywhere dense in (Uﬁ)’.

Let f and ¢ belong to the spaces (U ff'““)' and U, y, respectively.

Then the generalized Hankel transform H) for any real number p is
defined by

(HLf. ) = (. Hy9),
where m is a non-negative integer such that p + m = —1/2. We have
THEOREM 9.3. For any real number p, the generalized Hankel transform

. . . Q1/u
H,; is an isomorphism from (U i ) onto (U, Ma)

10. An operation-transform formula. The generalized Hankel transform
H, can be used to transform a differential equation of the form

P(S,)u = g,
where P is a polynomial, u and g possess generalized Hankel transforms
and
. 2, 1.2 2 2
S = d7/dx” +(1 — 4p°)/4x7,

into an algebraic equation of the form

P(—y))U = G,
where U = Hyu and G = Hg.
THEOREM 10.1. For each k = 0, 1,2,..., u = —1/2 and f belonging to

one of the spaces (Upmad)> (Uff’b)’ or (U,f}(,’,,a)’,
ok 2
H,;,(Sp,xf) - Y Hp,f
Proof. Let

Qb Q,1/
fe (Ume) and ¢ € U”,M,“,/b.

Then, since Su = MMNM, we have

(H(SE.S), ¢y = (M,N,)f, H)
= (f. (M,N,)*H,$)
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= (=Y Hye)
= (=DYHLf 9.
The above steps can be justified by using Theorem 6.4 and Lemmas

6.5-6.8. The cases of other spaces can similarly be disposed of.

Theorem 10.1 can be applied to solve a Dirichlet problem in cylindrical
co-ordinates with generalized boundary values belonging to one of the
above generalized function spaces, in a manner similar to [20, pp.
154-157].

11. Uniqueness of a Cauchy problem. In this section we apply the theory
of Hankel transform developed in the preceding sections to establish a
uniqueness theorem for the abstract Cauchy problem:

(21)  Qu(x, 1)/3t = P(S, Ju(x, 1)

(22)  u(x, 0) = uy(x)

where S, . is the Bessel differential operator studied in the preceding
section and u(x, t) is an m X 1 column vector, and P is an m X m
polynomial matrix with constant coefficients. A similar problem has been

investigated by Gelfand and Shilov [7] and Friedman [5] for the operator
P(id/9x).

THEOREM 11.1. Let w = —1/2. Then the Cauchy problem (21)-(22)
possesses a unique solution u(x, t) in the space

WMDY . = @po — D/(2py).
for the interval
0=t =T,T< (4epy) '@/, d < a,

and for any initial function uy(x) belonging to the same space, where py, is the
reduced order of the system (21)-(22) with S wx Feplaced by i(9/9x) and ¢ is a
constant depending on P. Moreover for each 1,

lux, 1) | = A exp(BlxI), B >0,
almost everywhere, where A is a positive constant independent of t.

Proof. According to the fundamental result [5, p. 177], the Cauchy
problem (21)-(22) will have a solution in the space @} for 0 < ¢ = T if
there exists a solution of the adjoint problem

(23)  3d(x, 1)/3t = P(S, Jo(x, 1),
(24) ¢(X, tO) = ¢~0(x) e ¢

in the space ®; for 0 = ¢ = 1, where ¢, is any point in the interval
0 <t = T, and P is the adjoint of P.
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Applying the Hankel transform H,, p = —1/2, to (23)-(24), we get
(25) 3y, 1)/dt = P(=y)(y. 1)
(26) (¥, 19) = Yo(y)
where
Wy, 1) = Ho(x, 1).
A formal solution of (25)-(26) is given by
Wy, 1) = expl (1 = 1)P(—y*) Wo(»).
Let us write
O(s, 1y, 1) = exp[ (1 — 1))P(—s>)], wheres = u + iv.
Then Q(s, t,, t) is an even and entire function of 5. Let p, be the reduced
order of the system (21)-(22) with S, , replaced by i(9/9x). Then using the
inequality
|s|%0 = 2%0( |u[¥0 + |p|P0),
from [7, p. 53] we obtain
19Gs. 19, )1 = C expl 2pg) ' dPo(Jul™o + [y0)
under the assumptions
hw=t=1+ T and 27T < (2py) " 'd¥o.
If we set
M(u) = w/(2pg), Uv) = v/ (2py),
then
1O(s, 1y, ) Il = C exp[M(du) + Q(dv)].
Now, let us assume that
oox) € ® = ULy
where 1/q¢" + 1/q = 1 and ¢ = 2p,. Then
Y(y) = Hylx) € U

By Theorem 4 2, ¢y = QC(s, ty, t)Y is a continuous linear mapping from
the space Uﬂqa into UqZ::dd provided d < a. This can be achieved by
taking 7 sufficiently small. Thus the Cauchy problem (25)-(26) has a
unique solution in U, qu 2 2 Since from Theorem 5.9,
1, UG = @ = ULotay

the Cauchy problem (23)-(24) has a unique solution in U Zi’(}‘/l(j‘(;i)d).

Now, define the space E as the space of all measurable functions ¢
having a finite norm
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(o) i ) 1/r
llgll, = {,/0 exp(rBx?) |g(x) l'dx} , 1= r < oo,

where B = €/(¢'(b + d)7), for some € < 1. Then ® C ®, C E. Since @ is
sufficiently rich in functions, (see Section 7), it follows that ® is dense in
E. The proof can now be completed by using [S, Theorem 6, p. 177].

12. Existence of generalized solutions. Now we are going to show that
for any polynomial P there exists a generalized solution of the Cauchy
problem (21)-(22) for 0 = ¢t = T.

THEOREM 12.1. For any u, € (UZ:;}ffj’@ﬁ)d))’, where ¢’ and d have the
same meaning as in Theorem 11.1, there exists a generalized solution

u(x, 1) € (UL,
of 21)-(22) for 0 = t = T, provided d < a.

Proof. Applying formally the Hankel transform of order p = —1/2 to
(21)-(22), we get

Q@7) dw(y, )/ = P(=y (y, 1)

(28)  v(y, 0) = vo(»)

where vo(y) = H,[uy(x) ]. A formal solution of (27)-(28) is
vy, 1) = Q(y, vg(y),

where
Q(y, 1) = expltP(—y%)].

Here again we take

_ q.1/a _ g 1/(a—d)
¢ = U}L,q',l/h’ o, = Uy i/ov+ay

O — H[®] — UL, ® = HJ®] = Uil
We also have

NQ(s, 1) | = C exp[M(du) + Udv)]
for 0 <t < T, 20" eT < (2py)~ 'd*, where

M) = u?9/(2py), Qv) = v/ (2py).

Then vy(y) = Q(y, t)vy(») is a continuous linear mapping from ® into <i>|.
Therefore, by [;0, The(A)rem 1.10-1, p. 20], it is also a continuous linear
mapping from ®} into ®’. Thus

v(y, t) € o if ug(x) € é’l
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Now, following [5, pp. 184-185] it can be shown that if u € @) then

v(y, t) is a solution of (27)-(28) in the sense of ®’. Finally, taking the
inverse Hankel transform of (27)-(28) we get

u(x, 1) = H, 'v(y, )]

as a generalized solution of (21)-(22).

U

Remark 12.2. Uniqueness and existence theorems for solutions in
Mo can also be similarly established; and using Theorem 6.1 the

result may be proved for all real values of p.
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