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AN INDEFINITE CONVECTION-DIFFUSION OPERATOR

E. B. DAVIES

Abstract

We give a mathematically rigorous analysis which confirms
the surprising results in a recent paper of Benilov, O’Brien
and Sazonov [J. Fluid Mech. 497 (2003) 201–224] about the
spectrum of a highly singular non-self-adjoint operator that
arises in a problem in fluid mechanics. We also show that the
set of eigenvectors does not form a basis for the operator.

1. Introduction

In a recent paper [4] Benilov, O’Brien and Sazonov have shown that the equation

∂f

∂t
= ε

∂

∂θ

(
sin(θ)

∂f

∂θ

)
+
∂f

∂θ
(1)

approximates the evolution of a liquid film inside a rotating horizontal cylinder.
The variable θ is taken to lie in [−π, π] and one assumes that the solutions f are
sufficiently smooth and satisfy periodic boundary conditions.

The operator H on the RHS of (1) is highly non-self-adjoint (NSA) and it is
not amenable to standard elliptic techniques because the second order coefficient
is indefinite. For θ ∈ (0, π) the second order term has a diffusive effect on the
evolution but for θ ∈ (−π, 0) its effect is anti-diffusive. Many of the calculations
in [4] are based on an asymptotic or WKB analysis for small ε > 0, but this has
dangers because infinite order approximate eigenvalues of NSA operators need not
be close to true eigenvalues. Nor need eigenvalues computed by truncations of a
highly non-self-adjoint operator to large finite-dimensional subspaces by standard
methods be close to the eigenvalues of the original operator. Such issues are best
understood by reference to the notion of pseudospectra (see [5, 10, 19]), as was
made clear in [4].

Our goal in this paper is to re-derive some of the results in [4] for a fixed positive
value of ε by a rigorous and non-asymptotic technique. We also provide strong
numerical evidence that the eigenvectors do not form a basis. Theorem 16 provides
precise information about the local regularity of the eigenfunctions of (2). In our
numerical calculations we take ε = 0.1, as in [4].

Before proceeding we mention that essentially the same operator was discussed in
[19, pp. 124–125, 406–408] and [3]. I also wish to thank D. Pelinovski for informing
me about [6], in which closely related results are obtained for this operator by a
different method.
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an indefinite convection-diffusion operator

2. A reformulation of the problem

We focus attention on the spectral properties of the operator

(Hf)(θ) := ε
∂

∂θ

(
sin(θ)

∂f

∂θ

)
+
∂f

∂θ
(2)

initially defined on all C2 periodic functions f ∈ L2(−π, π); the exact domain will
be described below. We normally assume that 0 < ε < 2 for reasons explained in
Corollary 2. According to the WKB analysis of [4] the eigenvalue equation −iHf =
λf has a sequence of real eigenvalues which converge to the integers as ε→ 0. Our
goal is to prove that there are indeed real eigenvalues λ without depending on WKB
analysis, and to provide a simple and rigorous method for computing them.

Before starting the spectral analysis, we point out that [4] provides two types
of evidence that the Cauchy problem (1) is not well-posed. If (1) were associated
with a one-parameter semigroup, then there would exist positive constants M and
a such that

‖(zI −H)−1‖ � M(Re(z) − a)−1

for all z ∈ C such that Re(z) > a; see [10, Theorem 8.2.1]. The pseudospectral
portrait of H in [4, Figure 6] establishes that no such bound exists, to the extent
that numerical data can. The techniques described in [7, 8] allow one to construct
approximate eigenfunctions for H and can be used to prove rigorously that the
resolvent norms do indeed behave as shown in [4, Figure 6]. Finally, the narrowly
concentrated ‘exploding’ Gaussian wave-packets constructed in [4, Section 4.1] also
show that the Cauchy problem is not well posed.

By expanding f ∈ L2(−π, π) in the form

f(θ) =
1√
2π

∑
n∈Z

vneinθ,

one may rewrite the eigenvalue problem in the form Av = λv, where A = −iH is
given by

(Av)n =
ε

2
n(n− 1)vn−1 − ε

2
n(n+ 1)vn+1 + nvn.

The (unbounded) tridiagonal matrix A is of the form

A =


 A− 0 0

0 0 0
0 0 A+




where A− acts in l2(Z−), the central 0 acts in C and A+ acts in l2(Z+). The matrix
of A+ is of the form

A+ =




1 −ε
ε 2 −3ε

3ε 3 −6ε
6ε 4 −10ε

10ε 5
. . .

. . . . . .



. (3)

289https://doi.org/10.1112/S1461157000001418 Published online by Cambridge University Press

https://doi.org/10.1112/S1461157000001418


an indefinite convection-diffusion operator

It is similar to matrices called twisted Toeplitz matrices in [18, 19], and to an
infinite matrix of Lenferink and Spijker [14] whose pseudospectra were analyzed
in [17]. Its analysis is made technically harder by the fact that although the first
few off-diagonal elements may be very small, they increase more rapidly than the
diagonal elements as n→ ∞.

The coefficient map n → −n induces a unitary equivalence between A− and
−A+, so we only need to study the spectrum of A+. Since A∗

+ = DA+D
−1 where

Dr,s = δr,s(−1)r, A+ and A∗
+ have the same spectrum. We assume that A+ has its

natural maximal domain

D = {v ∈ l2(Z+) : A+v ∈ l2(Z+)}
and observe that A+ is continuous with respect to the topology of pointwise conver-
gence. This implies that it is closed as follows: if ‖fn−f‖ → 0 and ‖A+fn−g‖ → 0,
then fn → f pointwise so A+fn → A+f pointwise; since norm convergence implies
pointwise convergence A+f = g. We will see that the eigenvectors of A+ decrease
more rapidly as n → +∞ the smaller ε > 0 is. We will prove that the spectrum is
discrete; that is, that it consists only of isolated eigenvalues of finite multiplicity,
in Section 3. We give a different description of the domain of A+ in Lemma 12 and
Theorem 13.

Benilov et al. correctly state in [4] that one obtains very poor numerical results
if one simply truncates A to produce a finite matrix whose eigenvalues are then
computed. We study the matrix A+ in a completely different manner.

The eigenvalue equation for A+ may be written in the form

n(n− 1)vn−1 − n(n+ 1)vn+1 + 2
n− λ

ε
vn = 0. (4)

We will assume familiarity with the theory of difference equations as developed,
for example, in [15]. The reality of the coefficients of (4) implies that if λ is an
eigenvalue then so is λ. Although this does not imply that all the eigenvalues are
real, [3, 4, 6] provide substantial numerical and asymptotic evidence that this is
the case. However, if ε = 0.1 and λ is significantly bigger than 10, the eigenvalues
are so ill conditioned that one must be cautious about relying on such results as a
guide to the actual spectral behaviour of A+. Without making any commitment on
this issue, we focus attention on the real eigenvalues.

Although it is only applicable in finite dimensions, the following example shows
that one should expect matrices such as (3) to have complex eigenvalues; if they do
not, then a positive reason needs to be found.

Example. If n is even and a1, a2, ..., an, b1, ..., bn are generic real constants and
Mt is the real n× n matrix

Mt,r,s =




ar if r = s,
tbr if s = r + 1 mod(n),

−tbr−1 if s = r + 1 mod(n),

then the eigenvalues of Mt are all real for small enough real t and they are all
complex for large enough real t. At certain critical values of t two real eigenvalues
collide and are converted into a complex conjugate pair of complex eigenvalues.

The particular case ar = r/n, br = 1 and t = 1 is sometimes called the Scottish
flag matrix, and is described in detail in [19, pp. 80–81]. For this choice of ar and
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an indefinite convection-diffusion operator

br and all real t the eigenvalues lie very close to one of five (or fewer for certain
critical t) straight-line segments, four of which are at an angle of 45 degrees to the
horizontal axis.

Highly NSA operators with real spectra are not common but include the PT-
symmetric Hamiltonian

(Hf)(x) = −f ′′(x) + ix3f(x)

acting in L2(R), which has been intensively studied because of its possible impor-
tance in physics [1, 2, 12]. A very complete and rigorous analysis of PT-symmetric
Hamiltonians with polynomial potentials is given in [16]. This includes a descrip-
tion of some cases in which the spectrum is real, and others in which there are
complex eigenvalues. A new perspective on these examples may be found in [13].

We confine attention to the solutions of (4) with support in Z
+, and regard the

n = 1 case, namely εv2 = (1 − λ)v1, as an initial condition; equivalently, one may
impose the initial condition v0 = 0. Since it is a second-order recurrence equation,
the solution space of (4) is two-dimensional. We will see that one solution, often
called the subordinate solution, lies in l2(Z+), but no others do so if 0 < ε < 2. It
follows that λ > 0 is an eigenvalue of A+ if and only if the subordinate solution of
the recurrence equation satisfies the initial condition.

If one assumes that (4) has a solution of the form vn = na(1 + b/n+O(1/n2)),
then one finds that a = −1+1/ε and b = λ/ε. This motivates our next two lemmas.
In the following calculations we introduce constants N (i)

λ,ε, and will use the fact that
they can always be increased without affecting the results.

Lemma 1. If λ � 0, there exists N = N
(1)
λ,ε such that if vn is a solution of (4)

satisfying 0 � vN−i � (N − i)a(1 − 1/(N − i)) for i = 1, 2 where a = −1 + 1/ε,
then 0 � vn � na(1 − 1/n) for all n � N .

Proof. Suppose that n � λ+ 3 and 0 < vn−i � (n− i)a(1− 1/(n− i)) for i = 1, 2.
Then

n−avn = n−a

(
n− 2
n

vn−2 + 2
n− 1 − λ

εn(n− 1)
vn−1

)

�
(

1 − 2
n

)a+1(
1 − 1

n− 2

)
+ 2

n− 1 − λ

εn(n− 1)

(
1 − 1

n

)a(
1 − 1

n− 1

)

= 1 − 1
n
−
(

2 +
2λ
ε

)
1
n2

+O(n−3)

� 1 − 1
n

for all n � N = N
(1)
λ,ε , where we also assume that N (1)

λ,ε � λ + 3. The first line of
the above equation also shows that vn � 0. It follows inductively that 0 � vn �
na(1 − 1/n) for all n � N .

Corollary 2. If λ � 0 and ε > 2 then every solution of (4) lies in l2(Z+). In
particular, every such λ is an eigenvalue of A+.

Proof. Let N = N
(1)
λ,ε . Let u be the solution of (4) such that uN−2 = 0 and

uN−1 = (N − 1)a(1 − 1/(N − 1)), and let v be the solution such that vN−2 =
(N − 2)a(1 − 1/(N − 2)) and vN−1 = 0. Since a < −1/2, Lemma 1 implies that
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both lie in l2(Z+). The space of all solutions is two-dimensional, so every solution
lies in l2(Z+), and this applies in particular to the solution that satisfies the initial
condition.

It is possible that one could avoid the above conclusion by imposing boundary
conditions at +∞ if ε > 2, that is, by reducing the domain of A+. We do not pursue
this idea.

Lemma 3. For every λ ∈ R there exists N = N
(2)
λ,ε such that if vn is a solution of

(4) satisfying

vn �
(

1 +
k

n

)
na (5)

for n = N − 1 and n = N − 2, where a = −1 + 1/ε and k = 1 + λ/ε, then the same
inequality holds for all n � N .

Proof. Suppose that n � λ+ 3, and that

vn−i �
(

1 +
k

n− i

)
(n− i)a

for i = 1, 2. Then

n−avn = n−a

(
n− 2
n

vn−2 + 2
n− 1 − λ

εn(n− 1)
vn−1

)

�
(

1 +
k

n− 2

)(
1 − 2

n

)a+1

+ 2
n− 1 − λ

εn(n− 1)

(
1 +

k

n− 1

)(
1 − 1

n

)a

= 1 +
k

n
+

2
n2

+O(n−3)

� 1 +
k

n
,

provided that n � N = N
(2)
λ,ε . It follows inductively that (5) holds for all n � N .

Theorem 4. If 0 < ε < 2 and λ is a real eigenvalue of A+, then λ > 1.

Proof. Suppose that A+v = λv where λ � 1 and v1 = 1. The initial condition
εv2 = (1 − λ)v1 implies that v2 � 0, and it then follows from the signs of the
coefficients in (4) that vn > 0 for all n � 3. Choosing N as in Lemma 3, the
positivity of vN−1 and vN−1 imply that there exists a constant c > 0 such that

vn/c �
(

1 +
k

n

)
na

for n = N − 1 and n = N − 2. Lemma 3 now implies that

vn/c �
(

1 +
k

n

)
na

for all n � N
(2)
λ,ε . The lower bound a > −1/2 implies that v /∈ l2(Z+), and hence

that λ is not an eigenvalue of A+.

Hypothesis. From this point onwards we assume that 0 < ε < 2 and λ � 0.
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Theorem 5. For every δ > 0 there exist N = Nλ,ε,δ and a solution v of (4) such
that

na � vn � (1 + δ)na

for all n � N , where a = −1 + 1/ε.

Proof. Put

N = Nλ,ε,δ = max
{
N

(1)
λ,ε , N

(2)
λ,ε , 2 + k/δ

}
where k = 1 + λ/ε,

and let v be the solution of (4) such that vN−i = (1 + δ)(N − i)a for i = 1, 2.
Lemma 1 implies that 0 < vn � (1 + δ)na for all n � N . Since

vn �
(

1 +
k

n

)
na

for n = N − 1 and n = N − 2, we deduce by Lemma 3 that vn � (1 + k/n)na � na

for all n � N .

We will show that, up to a multiplicative constant, there is exactly one
‘subordinate’ solution v of (4) such that limn→+∞ vn = 0. We identify this
solution by solving the recurrence relation backwards from n = M and then letting
M → +∞.

Lemma 6. There exists N = N
(3)
λ,ε such that if M > N and vn = (−1)nwn is a

solution of (4) satisfying 0 < wM+i � (M + i)−c for i = 1, 2 where c = 1 + 1/ε,
then 0 < wn � n−c for all n satisfying N � n � M .

Proof. The sequence wn satisfies the recurrence relation

wn =
n+ 2
n

wn+2 +
2(n+ 1 − λ)
εn(n+ 1)

wn+1. (6)

This has positive coefficients for n � λ so the solution is positive if λ < n � M .
Suppose inductively that 0 < wn+2 � (n+2)−c and 0 < wn+1 � (n+1)−c for such
an n. Then

ncwn �
(

1 +
2
n

)1−c

+
2(n+ 1 − λ)
εn(n+ 1)

(
1 +

1
n

)−c

= 1 − 2λ
εn2

+O(n−3)

� 1

for all large enough n. By induction there exists N = Nλ,ε such that 0 < wn � n−c

provided that N � n � M .

Lemma 7. There exists N = N
(4)
λ,ε such that if M > N and vn = (−1)nwn is a

solution of (4) such that

wn �
(

1 − h

n

)
n−c (7)

for n = M + 1 and n = M + 2, where c = 1 + 1/ε and h = 1 + λ/ε, then (7) holds
for all n satisfying N � n � M .
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Proof. Suppose that max{h, λ} � n � M and (7) holds when n is replaced by n+1
or n+ 2. Then

ncwn �
(

1 − h

n+ 2

)(
1 +

2
n

)1−c

+ 2
n+ 1 − λ

εn(n+ 1)

(
1 − h

n+ 1

)(
1 +

1
n

)−c

= 1 − h

n
+

2
n2

+O(n−3)

� 1 − h

n
,

provided that n is large enough. An induction now implies that there exists N =
N

(4)
λ,ε such that (7) holds for all n such that N � n � M .

Theorem 8. There exist N = N
(5)
λ,ε and a unique solution vn = (−1)nwn of (4)

such that (
1 − h

n

)
n−c � wn � n−c

for all n � N , where c = 1 + 1/ε and h = 1 + λ/ε. Hence

lim
n→+∞wnn

c = 1. (8)

Proof. Let

M > N = N
(5)
λ,ε = max

{
N

(3)
λ,ε , N

(4)
λ,ε

}

and let w(M) denote the solution of (6) such that w(M)
n = n−c for n = M + 1 and

n = M + 2. Lemmas 6 and 7 imply that(
1 − h

n

)
n−c � w(M)

n � n−c

for all n such that N � n � M . By choosing a sequence Mr → +∞ such that
w

(Mr)
N and w

(Mr)
N+1 converge as r → +∞, we see using (6) that w(Mr)

n converge for
all n � 1. Denoting the limit by w(∞), we deduce that(

1 − h

n

)
n−c � w(∞)

n � n−c

for all n � N . Putting

v(∞)
n = (−1)nw(∞)

n ,

the uniqueness of the solution v(∞) subject to the normalization condition (8) fol-
lows from the fact that the solution space of (4) is two-dimensional and it contains
a divergent sequence by Theorem 5.
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Figure 1: Eigenvector v for ε = 0.1 and λ ∼ 14.94784

Numerical examples suggest that the following lemma is not the best possible
and that w takes its maximum value very close to n = λ. Figure 1 portrays the
eigenvector v of the operator A+ for the eigenvalue λ ∼ 14.94784 with ε = 0.1.

Lemma 9. If λ � 0, then the unique subordinate solution w of (6) satisfies

0 < wn+1 < wn for all n � 2λ.

Proof. Let w(M) denote the solution of (6) constructed in the proof of Theorem 8.
Then

w
(M)
M =

M + 2
M

(M + 2)−c +
2(M + 1 − λ)
εM(M + 1)

(M + 1)−c

= (M + 1)−c

(
(1 + 2/M)1−c(1 + 1/M)c +

2
εM

(1 − λ/(M + 1))
)

= (M + 1)−c
(
1 + c/M +O(M−2)

)
� (M + 1)−c,

provided that M is large enough. Therefore

w
(M)
M � w

(M)
M+1 � w

(M)
M+2.

We prove inductively that w(M)
n � w

(M)
n+1 for all n such that 2λ � n � M . If this

holds with n replaced by n+ 1 or by n+ 2, then
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w(M)
n − w

(M)
n+1 =

n+ 2
n

w
(M)
n+2 +

2(n+ 1 − λ)
εn(n+ 1)

w
(M)
n+1

−n+ 3
n+ 1

w
(M)
n+3 −

2(n+ 2 − λ)
ε(n+ 1)(n+ 2)

w
(M)
n+2

=
n+ 2
n

w
(M)
n+2 −

n+ 3
n+ 1

w
(M)
n+3

+
2(n+ 1 − λ)
εn(n+ 1)

w
(M)
n+1 −

2(n+ 2 − λ)
ε(n+ 1)(n+ 2)

w
(M)
n+2

�
(
n+ 2
n

− n+ 3
n+ 1

)
w

(M)
n+3

+
(

2(n+ 1 − λ)
εn(n+ 1)

− 2(n+ 2 − λ)
ε(n+ 1)(n+ 2)

)
w

(M)
n+2

� 0,

provided that n � 2λ. This completes the induction.

Finally, we take the same sequence Mr as in the proof of Theorem 8 to obtain

0 < w
(∞)
n+1 � w(∞)

n for all n � 2λ.

3. Compactness of the resolvent

In this section we prove that 0 /∈ Spec(A+) and that A−1
+ is a Hilbert–Schmidt

operator and hence is compact. This implies that the spectrum of A+ is discrete and
coincides with its set of eigenvalues. We cannot, however, prove that the spectrum
is real. We define the Hilbert–Schmidt operator R on l2(Z+) by

(Rf)m =
∞∑

n=1

ρm,nfn (9)

where ρ ∈ l2(Z+×Z+) is given by (14). We then show directly that R is the inverse
of A+.

Let φ be the solution of
ε

2
n(n− 1)φn−1 − ε

2
n(n+ 1)φn+1 + nφn = 0 (10)

that satisfies the initial conditions φ0 = 0 and φ1 = 1. One sees immediately that
φn > 0 for all n � 1. Theorem 5 implies that there exists a constant c1 > 0 such
that

c−1
1 na � φn � c1n

a

for all n � 1.
Let ψn = (−1)nwn be the unique subordinate solution of

ε

2
n(n− 1)ψn−1 − ε

2
n(n+ 1)ψn+1 + nψn = 0 (11)

such that w satisfies the normalization condition limn→+∞ ncwn = 1. Since

wn =
n+ 2
n

wn+2 +
2
εn
wn+1,
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we see that wn > 0 for all n � 1, and indeed that there exists a constant c2 > 0
such that

c−1
2 n−c � wn � c2n

−c

for all n � 1.
We finally define the discrete analogue of the Wronskian, namely

σn =
ε

2
n(n− 1)φn−1wn +

ε

2
n(n+ 1)φnwn+1 + nφnwn.

Lemma 10. The sequence σn is constant and positive.

Proof. The positivity follows immediately from the positivity of φn and wn. To
prove the constancy, we use (11) to obtain

τn = (−1)nσn

=
ε

2
n(n− 1)φn−1ψn − ε

2
n(n+ 1)φnψn+1 + nφnψn

=
ε

2
n(n− 1) (φn−1ψn − φnψn−1) . (12)

If we perform the simplification using (10) instead, we obtain

τn =
ε

2
n(n+ 1) (φn+1ψn − φnψn+1) . (13)

By comparing (12) and (13) we deduce that τn = −τn+1.

If ε = 0.1 and wn, φn are normalized by w1 = φ1 = 1, then σ ∼ 1.004928137.

Theorem 11. If 0 < ε < 2 and

ρm,n =

{
(−1)nφmψn/σ if m � n,
(−1)nψmφn/σ if m > n,

(14)

then ρ ∈ l2(Z+ × Z+). The Hilbert–Schmidt operator R defined by (9) satisfies
A+Rf = f for all f ∈ l2(Z+). Indeed, 0 /∈ Spec(A+) and R = A−1

+ .

Proof. The above bounds on φ, ψ, σ imply that

|ρm,n| �
{
c4m

an−a−2 if m � n,
c4m

−cnc−2 if m > n.
(15)

It follows that
∞∑

m=1

|ρm,n|2 � c5n
−3

and then that
∞∑

m,n=1

|ρm,n|2 <∞.

We conclude that R is a compact operator. If {en}∞n=1 is the standard basis in
l2(Z+), then a direct calculation shows that A+Ren = en for all n. By using the
fact that A+ is closed, one deduces that Ran(R) ⊆ Dom(A+) and that A+Rf = f
for all f ∈ l2(Z+). We conclude from this that Ran(A+) = l2(Z+). The bound
0 < ε < 2 implies that Ker(A+) = {0} by Theorem 4, so we finally see that
0 /∈ Spec(A+) and that R = A−1

+ .
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Because R is compact, its eigenvalues can in principle be computed as the limits
of the eigenvalues of its truncations Rn to the subspaces of sequences with support
in {1, 2, . . . , n}. However, the convergence is slow and R has a full matrix, so this
is not computationally efficient.

We use the bounds on ρm,n to prove that A+ equals the minimal operator B+ as-
sociated with the infinite matrix (3). This is defined as the closure of the restriction
of A+ to the subspace D consisting of those v ∈ l2(Z+) that have finite support.

Lemma 12. If v ∈ Dom(A+) satisfies |vn| � σn−s for all n ∈ Z+ where σ � 0 and
s > 3/2, then v ∈ Dom(B+).

Proof. We define the sequences φN , vN ∈ D by

φN,n =




1 if n � N ,
2 − n/N if N � n � 2N ,
0 if n � 2N ,

and vN,n = φN,nvn. We then have

(A+v −B+vN )n =
ε

2
n(n− 1)vn−1 − ε

2
n(n+ 1)vn+1 + nvn

−ε
2
n(n− 1)φN,n−1vn−1 +

ε

2
n(n+ 1)φN,n+1vn+1 − nφN,nvn

=
ε

2
n(n− 1)(vn−1 − φN,n−1vn−1)

−ε
2
n(n+ 1)(vn+1 − φN,n+1vn+1) + n(vn − φN,nvn)

= (1 − φN,n)(A+v)n +
ε

2
n(n− 1)(φN,n − φN,n−1)vn−1

−ε
2
n(n+ 1)(φN,n − φN,n+1)vn+1.

Therefore
A+v −B+vN = (1 − φN )A+v − wN − xN

where

wN =




0 if n � N ,
0 if n � 2N + 1,
εn(n− 1)vn−1/2N if N + 1 � n � 2N ,

and

xN =




0 if n � N − 1,
0 if n � 2N ,
εn(n+ 1)vn+1/2N if N � n � 2N − 1.

Both wN and xN vanish outside the interval [N, 2N ] and inside this interval they
are dominated by ε|nvn| � εσn1−s. Therefore

lim
N→∞

‖wN‖ = lim
N→∞

‖xN‖ = 0.

Hence
lim

N→∞
‖A+v −B+vN‖ = 0.

We conclude that v ∈ Dom(B+) and B+v = A+v.
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Theorem 13. The operators A+ and B+ are equal.

Proof. Lemma 12 implies that Ren ∈ Dom(B+) for every en in the standard basis
for l2(Z+). Hence Rf ∈ Dom(B+) and B+Rf = f for all f ∈ D. By using the
boundedness of R and the closedness of B+ we deduce that Rf ∈ Dom(B+) for all
f ∈ l2(Z+) and that B+Rf = f for all such f . Now let f ∈ Dom(A+). If g = RA+f ,
then g ∈ Dom(B+) and A+g = B+g = B+RA+f = A+f , so A+(f − g) = 0. Since
Ker(A+) = {0} we deduce that f = g and hence that Dom(B+) = Dom(A+).

Corollary 14. If λ is a complex eigenvalue of A+, then Re(λ) � 1.

Proof. If w ∈ D, then an elementary calculation establishes that Re〈B+w,w〉 �
〈w,w〉. If v is the eigenvector associated with λ and vN ∈ D converge to v in the
graph norm of B+, then ‖vN − v‖ → 0 and ‖B+vN −B+v‖ → 0. Therefore

‖v‖2 = lim
N→∞

‖vN‖2 � lim
N→∞

Re〈B+vN , vN 〉
= Re〈B+v, v〉 = Re(λ)‖v‖2.

The next corollary is a direct application of the Lumer–Phillips theorem; see
[10, Theorem 8.3.5]. However, [10, Theorem 8.4.1] and the numerical plots of the
pseudospectra of A+ in [4, 19] together strongly suggest that Tt is not a holo-
morphic semigroup.

Corollary 15. There exists a one-parameter contraction semigroup Tt on l2(Z+)
with generator Z = −A+.

Our next theorem provides a precise bound on the decay of the Fourier coeffi-
cients of any eigenfunction of (2), and hence precise information about the degree
of local regularity of the eigenfunction itself. The bound is expressed in terms of
the norm

‖w‖∞,γ = sup{|wn|nγ : 1 � n <∞}.
In principle, the theorem also provides quantitative control on the rate of conver-
gence of the spectrum of the truncation AN,+ to A+ as N → ∞. However, the
magnitudes of b and m may be too large for this to be numerically useful. If one
already knows that all eigenvalues of H are real, then the theorem is not as sharp
as Theorem 8, but (16) may still be useful.

Theorem 16. There exist constants b, m such that if v ∈ Dom(A+), λ ∈ C and
A+v = λv then

‖v‖∞,c � b|λ|m‖v‖2.

Proof. The theorem is an immediate corollary of the bound

‖Rmw‖∞,c � b‖w‖2, (16)

valid for all w ∈ l2(Z+). We prove this below by an inductive procedure using (15).
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If w ∈ l2(Z+), then

|(Rw)m|2 =

∣∣∣∣∣
∞∑

n=1

ρm,nwn

∣∣∣∣∣
2

� ‖w‖2
2

(
m∑

n=1

|ρm,n|2 +
∞∑

n=m+1

|ρm,n|2
)

� b1m
−3

by applying (15) together with the inequalities c > 3/2, a > −1/2. Therefore

‖Rw‖∞,3/2 � b2‖w‖2.

Next suppose that ‖w‖∞,γ <∞ where 1 � γ < c− 1. Since

|(Rw)m| =

∣∣∣∣∣
∞∑

n=1

ρm,nwn

∣∣∣∣∣
� ‖w‖∞,γ

(
m∑

n=1

|ρm,n|n−γ +
∞∑

n=m+1

|ρm,n|n−γ

)

� b2m
−γ−1,

we deduce that
‖Rw‖∞,γ+1 � b3‖w‖∞,γ .

If, however, γ + 1 > c then a similar estimate only yields

‖Rw‖∞,c � b3‖w‖∞,γ .

Starting from one of γ = 1, γ = 3/2, we obtain (16) after a sufficient number of
iterations.

4. λ-dependence

In this section we prove that the unique normalized subordinate solution vλ,n =
(−1)nwλ,n of (4) provided by Theorem 8 depends continuously on λ.

We first observe that for any Λ � 1 the various constants N (i)
λ,ε defined above

are uniformly bounded with respect to λ, provided that 0 � λ � Λ. We use the
notation Ñ (i)

Λ,ε to refer to the relevant upper bounds.

Lemma 17. If 0 � λ � µ � Λ, then

0 < wΛ,n � wµ,n � wλ,n � w0,n <∞
for all n � Λ.

Proof. The positivity of wλ,n for n � Λ follows from the positivity of the coefficients
of (6) for n � Λ and the positivity of wλ,n for all n � N = Ñ

(5)
Λ,ε. We need only

prove the central inequality above, since the other two are special cases of it.
Theorem 8 implies that if δ > 0, then

wµ,n � (1 + δ)wλ,n for all n � N = Ñ
(6)
Λ,ε,δ. (17)
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This inequality persists for all n ∈ [Λ, N ] by the monotonicity of the coefficients
of (6). Since (17) holds for all δ > 0 and all n � Λ, the required inequality follows
by letting δ → 0.

Lemma 18. If 0 � λ � µ � Λ and |µ− λ| � δ then

0 < wλ,n � pΛ,ε,n,δwµ,n (18)

for all n � 2Λ, where

pΛ,ε,n,δ = (1 + δ) exp

{
2δε−1

∞∑
r=n

r−2

}
.

Proof. Since 1 + δ � pΛ,ε,n,δ, Theorem 8 implies that (18) holds for all n � N =
Ñ

(6)
Λ,ε,δ. We prove inductively that the same inequality persists for n ∈ [2Λ, N ]. If

(18) holds with n replaced by n+ 1 and by n+ 2, then, using Lemma 9, we obtain

wλ,n =
n+ 2
n

wλ,n+2 +
2(n+ 1 − λ)
εn(n+ 1)

wλ,n+1

� n+ 2
n

pΛ,ε,n+2,δwµ,n+2 +
2(n+ 1 − λ)
εn(n+ 1)

pΛ,ε,n+1,δwµ,n+1

� pΛ,ε,n+1,δ

(
n+ 2
n

wµ,n+2 +
2(n+ 1 − λ)
εn(n+ 1)

wµ,n+1

)

� pΛ,ε,n+1,δ

(
n+ 2
n

wµ,n+2 +
2(n+ 1 − µ)
εn(n+ 1)

wµ,n+1 +
2δ
εn2

wµ,n+1

)

� pΛ,ε,n+1,δ

(
wµ,n +

2δ
εn2

wµ,n+1

)

� pΛ,ε,n+1,δ

(
1 +

2δ
εn2

)
wµ,n

� pΛ,ε,n,δwµ,n.

This completes the induction.

The function f defined in (19) specifies the initial conditions, and vanishes if and
only if λ is an eigenvalue.

Theorem 19. The unique normalized subordinate solution vλ defined in Theorem 8
depends continuously on λ for 0 � λ <∞. Hence the function

f(λ) := εvλ,2 − (1 − λ)vλ,1 (19)

is continuous on [0,∞).

Proof. It is sufficient to prove that f is continuous on [0,Λ] for every positive
integer Λ. It follows directly from the estimates in Lemmas 17 and 18 that the map
λ ∈ [0,Λ] → (wλ,2Λ, wλ,2Λ+1) is continuous. Composing this with the continuous
map (wλ,2Λ, wλ,2Λ+1) → εvλ,2 − (1 − λ)vλ,1 yields the second statement of the
theorem; see [15].

The function f in (19) can be calculated as defined, but there are other formulae
which are more stable numerically. These are based upon the following lemma.
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Lemma 20. Let vλ be defined as in Theorem 8, and let φλ be the solution of

n(n− 1)φλ,n−1 − n(n+ 1)φλ,n+1 + 2
n− λ

ε
φλ,n = 0

that satisfies the initial conditions φλ,1 = ε and φλ,2 = 1 − λ. Then the Wronskian

W (λ, n) =
1
2
(−1)nn(n+ 1)(φλ,n+1vλ,n − φλ,nvλ,n+1)

defined for n � 1 does not depend on n, and is given by

W (λ, n) = f(λ).

The proof closely follows that of Lemma 10.

5. Numerical calculations

Following the notation of Lemma 20, the eigenvalues λn are the solutions of
f(λ) = 0, or equivalently of W (λ,mn) = 0, where we may choose mn to maximize
the numerical stability of the calculation.

If λ is a real eigenvalue of A+ and φ is the corresponding real, l2 eigenvector
then an elementary calculation yields

λ

∞∑
n=1

φ2
n = 〈A+φ, φ〉 =

∞∑
n=1

nφ2
n.

This supports the numerical evidence that |φn| increases rapidly for n � λ and
decreases for n > λ, as in Figure 1. Assuming that this is the case, a good way
of computing φ is to use forward iteration from n = 1 up to n = [λ], backward
iteration from ∞ for n � [λ] and then match the two solutions at n = [λ]. One
can therefore find the eigenvalues λ � 1 by solving W (λ, [λ]) = 0. Since W (λ, n) is
independent of n it is still a continuous function of λ even when n is chosen in this
discontinuous manner.

Table 1: Eigenvalues and condition numbers for A+ with ε = 0.1

n λn ‖Pn‖
1 1.00968 1.0189
2 2.07334 1.1848
3 3.22978 1.8868
4 4.50134 4.3409
5 5.89993 13.341
6 7.43194 50.638
7 9.10097 226.20
8 10.9092 1152.9
9 12.8578 6561.3
10 14.9478 41018
15 27.5331 −
20 43.74 −
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Figure 2: f(λ) for ε = 0.1 and 0 � λ � 4

Since f is continuous, one can compute the roots of f(λ) = 0 by evaluating f(λ)
numerically for a range of values of λ. We determined the subordinate solution by
solving (6), starting from M = 4000 (and also M = 8000 to check consistency) with
wM+i = (M + i)−c for i = 1, 2. Figure 2 plots f(λ) for ε = 0.1 and 0 � λ � 4. The
eigenvalues listed in Table 1 were obtained by solving f(λ) = 0 numerically, and
are quite close to those obtained in [4]. We carried out a similar calculation using
W (λ, [λ]) as described above, obtaining the same results.

The accuracy of the computations is limited by the rapidly increasing condition
numbers of the spectral projections. Rounding errors makes it hard to compute
more than 20 eigenvalues for ε = 0.1 whatever numerical algorithm is used. In our
particular approach, the problem is that the function f gets rapidly smaller as λ
increases, so the points at which it vanishes become harder to determine.

There is also cutoff error: we are forced to choose a value for M , and the conver-
gence of the method is quite slow as M increases; on the other hand, the individual
calculations are so simple that one can choose large values of M without making
the implementation of the algorithm impractical. By choosing various values of M ,
one can be confident that the values in Table 1 are accurate to the stated accuracy.

For ε = 1, the Fourier coefficients decrease much more slowly, and the eigenvalue
calculation is correspondingly more onerous. We computed the first five eigenvalues
for ε = 1, determining the subordinate solution as before with M between 1000
and 32000. The apparent number of solutions of f(λ) = 0 increased from 7 to 11
as M increased in this range. For M = 4000 it appeared that the computation of
the first five eigenvalues presented in Table 2 was reliable to the accuracy given.
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We conclude by providing strong evidence that the eigenvectors vn of A+ do not
form a basis; this question was raised but not resolved in [4, 3]. It seems quite
plausible that they form a complete set in the sense that their linear span is dense.

If the eigenvectors form an unconditional basis, then there exists a bounded
invertible operator S such that {Svn}∞n=1 is a complete orthonormal sequence; see
[10, Theorem 3.4.5]. This implies that B = SA+S

−1 is self-adjoint and hence that

‖(zI −A+)−1‖ � ‖S‖ ‖S−1‖ | Im(z)|−1

for all z /∈ R. However, the pseudospectral portrait of [4, Figure 6], confirmed in
[19, pp. 124–125, 406–408] for almost the same operator, shows, to the extent that
numerical data can, that no such bound holds.

If the eigenfunctions of the differential operator H defined in (2) form a condi-
tional (Schauder) basis, then the spectral projections

Pnf =
〈f, φ∗n〉
〈φn, φ∗n〉

φn

of H must be uniformly bounded in norm, where φn are the eigenfunctions of H
and φ∗n the corresponding eigenfunctions of H∗; see [10, Lemma 3.3.3]. However, it
appears from [4, Figure 4] that the eigenfunctions φn concentrate more and more
strongly around θ = π as n increases; the eigenfunctions φ∗n should concentrate
around θ = 0 as n → ∞ for similar reasons. If this is indeed the case, then the
norms of the spectral projections (called the condition numbers of the eigenvalues
in the numerical literature)

‖Pn‖ =
‖φn‖ ‖φ∗n‖
|〈φn, φ∗n〉|

must diverge as n→ ∞ and the eigenfunctions do not form a basis.
In our reformulation of the problem, φ∗n,r = (−1)rφn,r and

‖Pn‖ =
∑∞

r=1 |φn,r|2
|∑∞

r=1(−1)r|φn,r|2| .

The norms of the first ten spectral projections computed using this formula are
presented in Table 1 and provide strong evidence that they diverge rapidly as n
increases. It appears likely that the norms increase at an exponential rate as n→ ∞,
which bodes badly for attempts to use the eigenvectors to expand general elements
of l2(Z+), even with the help of resummation techniques.

Table 2: Eigenvalues of A+ for ε = 1

n λn

1 1.4485
2 4.3159
3 8.6219
4 14.3638
5 21.5414
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The above conclusions are in line with those for the NSA harmonic oscillator,

(Hf)(x) = −f ′′(x) + cx2f(x)

acting in L2(R). If c is complex, then the eigenvalues and eigenfunctions can be
written down in closed form, but it has been proved rigorously that the eigenfunc-
tions do not form a basis; see [7, 8, 9, 11]. Once again, this may be understood in
pseudospectral terms. The Cauchy problem for the NSA harmonic operator is well
posed, but for the operator studied in this paper we have seen that it is not.
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