
Appendix C
Some practice with the path integral in field

theory

The path integral is extremely useful, both in field theory and in string theory. This
appendix provides a brief review of path integration, and some applications. Many of
the examples are drawn from finite-temperature field theory. These are instructive since
one can easily write explicit expressions. They are also useful for understanding the
high-temperature universe and are closely connected to the computations which arise in
compactified theories.

C.1 Path integral review

Feynman gave an alternative formulation of quantum mechanics in which one calculates
amplitudes by summing over the possible trajectories of a system, weighting by eiS/h̄,
where S is th classical action of the trajectory. For a particle, the path integral is

Z =
∫

[dx] eiS/h̄. (C1)

Here
∫ [dx] implies an instruction to sum over all possible paths of the particle.

This generalizes immediately to field theory, where surprisingly it is often more useful
than in the case of quantum systems with a small number of degrees of freedom:

Z =
∫

[dφ] eiS. (C2)

For a single field φ it is useful to introduce sources J(x) and to define

Z[J] =
∫

[dφ] exp

{
i
∫

d 4x
[

1
2
(∂φ)2 − V(φ)+ Jφ

]}
. (C3)

Green’s functions for φ can then be obtained by the functional differentiation of Z with
respect to J:

T〈φ(x1) · · ·φ(xn)〉 = δ

iδJ(x1)
· · · δ

iδJ(xn)
Z[J ]. (C4)

For free fields the integral can be performed by completing the squares. Writing the
action as

Sfree =
∫

d 4x
[

1
2
φ(x)D−1φ(x)+ φ(x) J(x)

]
, (C5)
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458 Appendix C Path integrals in field theory

with

D−1 = ∂2 − m2 = p2 − m2, (C6)

we can complete the squares in the action:

Sfree =
∫

d 4x
[

1
2
φ(x)+

∫
d 4y J( y)D( y, x)

]
D−1

[
φ(x)+

∫
d 4z J(z)D(z, x)

]
−

∫
d 4xd 4y J(x)D(x, y)J( y). (C7)

Now, in the free field functional integral one can shift the φ integral, obtaining

Z0[J ] = � exp

[−i
2

∫
d 4xd 4y J(x)D(x, y)J( y)

]
. (C8)

Here � is the free field functional integral at J = 0. It is the square root of the functional
determinant of the operator D; D itself is the propagator of the scalar. This expression can
then be used to develop perturbation theory. For example, with a (λ/4!)φ4 interaction we
can write

Z[J ] = exp

[
i
∫

d 4x
λ

4!
(

δ

iδJ(x)

)4
]

Z0[J ]. (C9)

Working out the terms in the power series reproduces precisely the Feynman diagram
expansion.

This has generalizations to non-Abelian gauge theories, both those with unbroken and
those with broken symmetries, which we discuss in Section 2.3. We will also find it useful
for addressing other questions.

C.2 Finite-temperature field theory

As an application of path integral methods and because of its importance in cosmology, we
consider at some length the problem of field theory at finite temperatures.

In statistical mechanics one is interested in the partition function,

Z [β] = Tr e−βH. (C10)

For a quantum mechanical system in contact with a heat bath, we have

Z [β] =
∑

n
〈n|e−βEn|n〉, (C11)

where n labels the energy eigenstates.
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459 Appendix C Path integrals in field theory

For a harmonic oscillator of unit mass, H = [( p2/2) + (ω2/2)]x2 and the partition
function is:

e−βF =
∑

n
e−βω(n+1/2)

= e−ωβ/2 1
1 − e−βω . (C12)

Now, we can think of

〈x|e−βH|x〉 (C13)

as the amplitude for starting at x and ending up at x after propagating through an imaginary
time −iβ. This can be represented as a path integral:

〈x|e−βH|x〉 =
∫

x(0)=x(β)=x
[dx] exp

(
−

∫ β

0
dt LE

)
, (C14)

where LE is the Euclidean Lagrangian,

LE =
(

dx
dt

)2
+ 1

2
ω2x2 (C15)

(note the signs here!). The partition function is now

Z[β] =
∫ dx0

x(0)=x(β)=x0

[dx] exp

(
−

∫ β

0
dt LE

)
, (C16)

i.e. we integrate over the possible values of x at t = 0 in order to take the trace. This is the
problem of a box periodic in the time direction. For this simple system with one degree of
freedom, we can write:

x(t) =
∑

n

1√
T

ane−2π int/β . (C17)

We will simplify the problem slightly by taking x(t) to be complex (you can think of this
simply as corresponding to an isotropic harmonic oscillator in two dimensions). The action
of this configuration is

S =
∞∑

n=−∞

1
2
(
ω2

n + ω2)|an|2. (C18)

The path integral is now

Z[β] =
∏∫

danda∗
n e−SE . (C19)

The integrals are just Gaussian integrals. For a complex variable z we have∫
d2z e−a|z|2 = π

a
, (C20)
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460 Appendix C Path integrals in field theory

so we have the following result for Z:

Z[β] =
∏ 1
ω2 + ω2

n
, (C21)

where ωn = 2πn/T.
Now, before trying to evaluate this product, it is useful to pause and note that it can be

expressed in terms of the determinant of a matrix. Quite generally, Gaussian path integrals
take the form of (inverse) determinants. In this case, if we write M as the differential
operator

M = 1
2

(
− d2

dt2
+ ω2

)
, (C22)

its eigenfunctions are just eiωnt, with eigenvalues ω2
n + ω2. So Z is just the inverse

determinant of M. Had we worked with only one real coordinate, we would have obtained
the square root of the inverse determinant.

The determinant of an infinite matrix may seem a daunting object, but there are some
tricks that permit evaluation in many cases. The first thing is to write the determinant as a
sum, by taking logarithms. In general,

det M = exp(Tr ln M ) (C23)

(to see this, diagonalize M ). It is easier to evaluate derivatives of the determinant rather
than the determinant itself. We can obtain a very useful formula for the derivative of a
determinant by writing

det(M + δM ) = exp [Tr ln(M + δM )] = exp [Tr ln M + ln(1 + M−1δM)]
= exp (Tr ln M ) exp (Tr M−1δM ) ≈ det M(1 + Tr M−1 δM ). (C24)

Dividing by δM gives the derivative.
In our case, it is convenient to study

1
Z

d
dω2 Z =

∑
n

1
ω2 + ω2

n
. (C25)

This is progress. Our infinite product is now an infinite sum. The question is: how do we
do the sum? The trick is to look for a periodic function which is well-behaved at infinity
but has poles at the integers. A suitable choice is

1
eizβ − 1

. (C26)

We can then replace any sum of the form
∑

f(n) by a contour integral,

1
2π

∫
dz f(z)

1
eizβ − 1

. (C27)

Here the contour is a line running just above the real z axis and back again just below it.
The residues of the (infinite number of) poles give back the original sum.
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461 Appendix C Path integrals in field theory

Now one can deform the contour, taking one line into the upper half plane and the other
into the lower, picking up the poles at z = ±iω. This leaves us with

dF
dω2 =

(
1

e−ωβ − 1
− 1

eωβ − 1

)
1

2ω
. (C28)

We could analyze this problem further, but let us jump instead to free-field theory. Then

Z[β] =
∫
φ(β)=φ(0)

[dφ] exp

{
−

∫
d 4 x[(∂μφ)2 + m2φ2]

}
. (C29)

In a finite box, with periodic boundary conditions, we can make the following expression:

φ( �x, t) =
∑
�k,m

exp (i �kn · �x + iωmt)φ �k,m, (C30)

where ωm = 2πmT.
In this form we have that

Z[β] = det(−∂2 + m2)−1/2. (C31)

Again, this is somewhat awkward to work with. It is easier to differentiate it:

1
Z
∂Z
∂m2 = 1

Z

∫
[dφ] exp

(
−

∫
d 4xLE

)∫
d 4z

1
2
φ2(z). (C32)

This is just the propagator, with periodic boundary conditions in the time direction:∫
d 4z 〈φ(z)φ(z)〉 = βV〈φ(0)φ(0)〉. (C33)

The propagator is given by

〈φ(0)φ(0)〉 =
∑

m

∑
k

1
ω2

m + �k 2 + m2
. (C34)

We can convert this into a more recognizable form by means of the same trick as above.
The propagator is given by the expression below:

〈φ(0)φ(0)〉 =
∫ d3k
(2π)3

1
2π

∫ dz
eizβ − 1

1
(2πnT)2 + �k 2 + m2

. (C35)

Now deform the contour as before, picking up the poles at ±i
√ �k 2 + m2. Both poles

make the same contribution, yielding

1

2
√ �k 2 + m2

⎛⎝ 1

exp
(
−β

√ �k 2 + m2
)

− 1
− 1

exp
(
β
√ �k 2 + m2

)
− 1

⎞⎠
= 1

2
√ �k 2 + m2

⎛⎝1 + 2

exp
(
β
√ �k 2 + m2

)
− 1

⎞⎠ . (C36)
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462 Appendix C Path integrals in field theory

Note the appearance of the Bose–Einstein factors here. Note also that the first term has
the structure of the zero-temperature expression for the energy; the second is the finite-
temperature expression. This is what we find on differentiating Eq. (C36):

βF = V
∫ d3k
(2π)3

[
1
2

Ek + β−1 ln(1 − e−βEk)

]
. (C37)

Note the connection with the result for the single oscillator. So far our discussion has
been for free-field theory but we can extend it immediately to interacting theories by
developing a perturbation order-by-order in the couplings, just as at zero temperature.

C.3 QCD at high temperatures

Two particularly important cases are QCD and the weak-interaction theory. At low energies
QCD is a complicated theory but, at high temperatures, things simplify drastically. In
perturbation theory, if we are studying the free energy, for example, over above path
integral analysis instructs us to study a Euclidean problem with discrete energies which are
multiples of T. So, provided that we do not encounter infrared problems, the free energy
should be a power series in g2(T), calculable in perturbation theory.

One can argue that there is actually a phase transition between a confined phase and a
deconfined phase. To find an order parameter for this transition, we start by considering a
Wilson line, running between imaginary times t = 0 and t = β,

UT( �x ) = P exp

[
i
∫ β

0
A0( �x, t)dt

]
. (C38)

Because of the periodic boundary conditions, this expression is gauge invariant. The
correlation of two such operators is related to the potential of two static quarks:

P(R) = 〈UT( �R)UT(0)〉 = C exp[−βV(R)]. (C39)

In a confining phase, with a linear potential between the quarks, P(R) vanishes exponen-
tially with R. In a Coulomb phase (nearly free quarks), it will tend to a constant. At very
high temperatures we would expect that we could compute P in a power series in g2(T)
and that we will find free-quark behavior. Numerical studies show that there is indeed a
phase transition at a particular temperature between confined and unconfined phases. The
order of the transition depends on the group.

Finite-temperature perturbation theory suffers from infrared divergences, even at very
high temperatures. The problem is the zero-frequency modes in the sum over frequencies.
If we simply set all the frequencies to zero, we have the Feynman diagrams of a three-
dimensional field theory. At four loops the divergence is logarithmic. At higher loops it is
power law.

We can understand this directly in the path integral. Consider a massless scalar field. The
exponent in the path integral is
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463 Appendix C Path integrals in field theory

∫ β

0
dtd3x (∂μφ)2. (C40)

For small β, assuming it makes sense to treat fields as constant in β, the path integral thus
becomes ∫

[dφ( �x )] e−βH, (C41)

which is the classical partition function for the three-dimensional system.
Thought of in this way, there is a natural guess for how the infrared divergences are

cut off. A three-dimensional gauge theory has a dimensionful coupling λ2. One might
expect that such a theory has a mass gap proportional to λ2 (in three dimensions, the gauge
coupling has the dimensions of

√
M). In the present case the coupling is λ= g2T. This

scale then would cut off the infrared divergence. This suggests that the theory at finite
temperature makes sense but does not help a great deal with computations. The problem is
that in four loops we obtain a contribution g8 ln g2 but, at higher orders, we obtain a power
series in g2/g2, i.e. we can at best compute the leading logarithmic term at four loops. It is
possible to study some of these issues numerically in lattice gauge theory, which provides
some support for this picture.

Instanton effects at high temperatures

In QCD at zero temperature we saw that instanton calculations were plagued by infrared
divergences. At high temperatures this is not the case. The scale invariance of the zero-
energy theory is lost and the instanton solution has a definite scale, of order the temperature.
As a result, instanton effects behave as exp[−8π2/g2(T)] and are calculable. Thus it is
possible to compute the θ -dependence systematically. This is particularly relevant to the
understanding of the axion in the early universe.

C.4 Weak interactions at high temperatures

The weak interactions exhibit different phenomena at high temperatures. Most strikingly,
there is a transition between a phase in which the gauge bosons are massive and one
in which they are massless. This transition can be uncovered in perturbation theory. By
analogy with the phase transition in the Landau–Ginzburg model of superconductivity,
one might expect that the value of 〈�〉 will change as the temperature increases. To
determine the value of� one must compute the free energy as a function of�. The leading
temperature-dependent corrections are obtained by simply noting that the masses of the
various fields in the theory (the W and Z bosons and the Higgs field, in particular) depend
on �. So the contributions of each species to the free energy are �-dependent:

F(�)VT(�) = ±
∑

i

∫ d3p
2π3 ln

{
1 ∓ exp

[
−β

√
p2 + m2

i (�)

]}
, (C42)
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where β = 1/T, T is the temperature, the sum is over all particle species (physical helicity
states) and the plus sign is for bosons, the minus for fermions. In the Standard Model,
for temperature T ∼ 102 GeV, one can treat all the quarks as massless except for the top
quark. The effective potential (C42) then depends on the top quark mass mt, the vector
boson masses MZ and mW and the Higgs mass mH. Performing the integral in the equation
yields

V(�, T ) = D
(
T 2 − T 2

0
)
�2 − ET�3 + λ

4
�4 + · · · . (C43)

The parameters T0, D and E are given in terms of the gauge boson masses and the gauge
couplings. For the moment, though, it is useful to note certain features of this expression.
The quantity E turns out to be a rather small dimensionless number, of order 10−2. If we
ignore the φ3 term then we have a second-order transition, at temperature T0, between a
phase with φ �= 0 and a phase with φ = 0. Because the W and Z masses are proportional
to φ, this is a transition between states with massive and massless gauge bosons.

Because of the φ3 term in the potential, the phase transition is potentially at least weakly
first order. A second, distinct, minimum appears at a critical temperature. A first-order
transition is not, in general, an adiabatic process. As we lower the temperature to the
transition temperature, the transition proceeds by the formation of bubbles; inside the
bubble the system is in the true equilibrium state (the state which minimizes the free
energy) while outside it tends to the original state. These bubbles form through thermal
fluctuations at different points in the system and grow until they collide, completing the
phase transition. The moving bubble walls are regions where the Higgs fields are changing
and all Sakharov’s conditions are satisfied.

C.5 Electroweak baryon number violation

We have seen that, at low temperatures, violations of baryon and lepton number are
extremely small. This is not the case at high temperatures, where baryon number violation
is a rapid process which can come to thermal equilibrium. This has at least two possible
implications. First, it is conceivable that these sphaleron (see below) processes can
themselves be responsible for generating a baryon asymmetry. This is called electroweak
baryogenesis. Second, sphaleron processes can change an existing lepton number, pro-
ducing a net lepton and baryon number. This is the process called leptogenesis. In this
section, we summarize the main arguments showing that the electroweak interactions
violate baryon number at high temperature.

Recall that, classically, the ground states are field configurations for which the energy
vanishes. The trivial solution of this condition is �A = 0, where �A is the vector potential.
More generally, one can consider an �A which is a “pure gauge”,

�A = 1
i

g−1 �∇g, (C44)

https://doi.org/10.1017/9781009290883.042 Published online by Cambridge University Press

https://doi.org/10.1017/9781009290883.042


465 Appendix C Path integrals in field theory

where g is a gauge transformation matrix. In an Abelian (U(1)) gauge theory, fixing the
gauge eliminates all but the trivial solution, �A = 0.1 This is not the case for non-Abelian
gauge theories. There is a class of gauge transformations, labeled by a discrete index n,
which do not tend to unity as | �x | → ∞ and which therefore must be considered to be
distinct states. These have the form:

gn( �x ) = einf ( �x )x̂ · τ/2, (C45)

where f(x)→ 2π as �x → ∞ and f( �x )→ 0 as �x → 0.
So, the ground states of the gauge theory are labeled by an integer n. Now if we evaluate

the integral of the current K0, we obtain a quantity known as the Chern–Simons number:

nCS = 1
16π2

∫
d3x K0 = 2/3

16π2

∫
d3x εijkTr(g−1∂igg−1∂jgg−1∂kg). (C46)

For g = gn, nCS = n. The reader can also check that for g′ = gn(x)h(x), where h is a gauge
transformation which tends to unity at infinity (a so-called “small gauge transformation”),
this quantity is unchanged. The Chern–Simons number nCS, is topological in this sense (for
�As which are not pure gauge, nCS is in no sense quantized).

Schematically, we can thus think of the vacuum structure of a Yang–Mills theory
as indicated in Fig. C.1. We have, at weak coupling, an infinite set of states, labeled
by integers, and separated by barriers from one another. In tunneling processes which
change the Chern–Simons number, because of the anomaly the baryon and lepton numbers
will change. The exponential suppression found in the instanton calculation is typical of
tunneling processes, and in fact the instanton calculation which leads to the result for the
amplitude is nothing other than a field-theoretic WKB calculation.

One can determine the height of the barrier separating configurations having different
nCS by looking for the field configuration which corresponds to a particle top of the barrier.
This is a solution of the static equations of motion with finite energy. It is known as a
sphaleron. When one studies the small fluctuations about this solution, one finds that there
is a single negative mode, corresponding to the possibility that the system will roll downhill
into one or the other well. The sphaleron energy is of order

Esp = c
g2 MW . (C47)

This can be seen by using scaling arguments on the classical equations; determining the
coefficient c requires a more detailed analysis. The rate for thermal fluctuations to cross
the barrier per unit time per unit volume should be of order the Boltzmann factor for this
configuration, multiplied by a suitable prefactor:

�sp = T 4e−Esp/T. (C48)

Note that the rate becomes large as the temperature approaches the W boson mass. The
W boson mass itself goes to zero as one approaches the electroweak phase transition.

1 More precisely, this is true in axial gauge. In the gauge A0 = 0, it is necessary to sum over all time-independent
transformations in order to construct a state which obeys Gauss’s law.
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E

T = 0

T ~ E

nCS

0 1 2

Fig. C.1 Schematic Yang–Mills vacuum structure. At zero temperature instanton transitions between vacua with different
Chern–Simons numbers are suppressed. At finite temperature these transitions can proceed via sphalerons.

At this point the computation of the transition rate is a difficult problem – there is no small
parameter – but general scaling arguments show that the transition rate is of the form:2

�bv = α4
W T 4. (C49)

Suggested reading

The path integral is well treated in most modern field theory textbooks. Peskin and
Schroder (1995) provide a concise introduction. High-temperature field theory is devel-
oped in a number of textbooks, such as that of Kapusta (1989).

Exercises

(1) Go through the calculation of the free energy of a free scalar field, being careful about
factors of 2 and π .

(2) Compute the constants appearing in Eq. (C43). Plot the free energy, and show that the
transition is weakly first order.

(3) Show, by power counting, that infrared divergences first appear in the free energy of a
gauge theory at three loops. To do this you can look at the zero-frequency terms in the
sums over frequency. Show that the divergences become more severe at higher orders.

2 More detailed considerations alter slightly the parametric form of the rate.
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