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BERG'S TECHNIQUE FOR PSEUDO-ACTIONS 
WITH APPLICATIONS TO AF EMBEDDINGS 

TERRY A. LORING 

ABSTRACT. Berg's interchange technique is generalized to the context of certain 
new objects called pseudo-actions. This is used to find a more geometric proof of the 
Pimsner-Voiculescu theorem on the AF embedding of the irrational rotation algebras. 
Connections with Berg's original results are briefly examined. 

Embedding diagrams are introduced to provide a uniform way of describing em-
beddings of transformation group C*-algebras C(X) x Z into AF algebras. Pimsner 
has classified the transformation group C* -algebras which can be AF embedded. We 
present a new proof of this result using embedding diagrams and pseudo-actions. The 
need to calculate the join of an open cover with its iterates under the transformation has 
been eliminated. 
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1. Introduction and a history of Berg's technique. Berg's technique has become 
a catch-all phrase describing certain approximation techniques in operator theory and op
erator algebras. The common thread in these techniques is that they involve perturbing 
some "shift-type" operator to become unitarily equivalent to a second "shift-type" oper
ator. In addition, it is generally required that the unitary implementing this equivalence 
commute, or nearly commute, with a diagonal operator or algebra. 
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120 TERRY A. LORING 

In the paper [1] which spawned all this activity, Berg was interested in approximating 
weighted shifts T which have small self-commutators [T, 7>] by normal operators. His 
idea was to find sections of the shift with approximately equal, approximately constant 
weights. By gradually "rotating", or "interchanging", basic elements along these section-
s, he was able to obtain the direct sum of two shifts, each simpler than the original. In 
this way, he was able to ignore the local behavior of the weights, and concentrate on the 
behavior at infinity. 

This technique of introducing a gradual flip between two shift segments works just as 
well when the segments are selected from different shifts. Pimsner and Voiculescu [8] 
took advantage of this when they embedded the irrational rotation algebras into the AF 
algebras associated to continued fractions. 

Pimsner [7] generalized Berg's technique further when he classified the cross-product 
C*-algebras C(X) x Z which can be embedded into AF algebras. Specifically, he found 
that the cross-product can be AF embedded exactly when every point in the underlying 
dynamical system is pseudo-non-wandering (chain recurrent). His construction begins 
with matrices that represent the pseudo-orbits of the system. In order to put these togeth
er into an AF algebra, he needed a way to "glue" together finite-dimensional shifts into 
longer shifts. He accomplished this by introducing a more complicated interchange tech
nique involving several shift segments simultaneously. A similar technique was used by 
Versik [7] (cf. [9], Section 6) to prove a related AF embedding theorem. 

To illustrate the increasingly general interchanges described above, we offer the draw
ings in Figure 1. 

The first goal of this paper is to find a precise, flexible formulation of Berg's technique 
which will cover the above situations. 

(Berg himself, together with Davidson, has been investigating a generalization of the 
interchange technique. This is contained in [3], where it is used to find a constructive, 
quantitative version of the Brown-Douglas-Fillmore theorem. This version of Berg's 
technique involves tridiagonal matrices, not shift intervals. Therefore, we make no at
tempt to cover it here.) 

The specific embeddings arising in the proof of Pimsner's theorem have been as in
teresting as the theorem itself. For example, the special cases studied in [51 and [6] 
have rather unusual K-theoretic and homotopy properties. For this reason, the second 
goal of this paper is to develop a uniform method of describing star-homomorphisms of 
C(X) x Z into AF algebras. This will, I hope, encourage people to investigate specific 
examples of cross-products which can be AF embedded to see what types of AF algebras 
and embeddings may arise. 

The foundation for this work is a very simple object, called a pseudo-action. Pseudo-
actions are a slight modification of, and I hope improvement on, pseudo-orbits. They give 
a compact means for describing simultaneously a permutation matrix and an algebra of 
diagonal matrices. 
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FIGURE la. Berg's interchange technique: original form. 

FIGURE lb. Berg's interchange technique: as used by Pimsner and Voiculescu. 
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FIGURE lc. Berg's interchange technique: as modified by Pimsner. 
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An embedding diagram is defined to be a Bratteli diagram whose vertices are labelled 
by pseudo-actions, subject to a summability condition. Once generalized to the context 
of pseudo-actions, Berg's technique can be used to show that embedding diagrams de
termine homomorphisms into the AF algebras of the underlying Bratteli diagrams. 

Given this machinery, we obtain a slightly simplified proof of the Pimsner-Voiculescu 

result. With more work, in Sections 7-10, we are able to find a simplified version of Pim

sner's construction of AF embeddings of C(X) x Z. Our proof does not require taking 

the join of an open cover with its iterates, as does Pimsner's. This should be beneficial 

when looking at examples. 

The AF algebras in Pimsner's original construction are far from generic. They always 

contain UHF subalgebras and they tend to be far from simple (cf. [5, Appendix]). A spe

cial class of embedding diagrams can be used to define a large collection of interesting 

AF embeddings into AF algebras, including simple ones. The author and George Elliot-

t have investigated the A'-theory of these embeddings. The results of this will appear 

elsewhere, although a very simple example is presented in Section 6. 

The author would like to thank the operator theory group at Dalhousie for enduring 
a series of lectures that served as a rough draft of this article. He also wishes to thank 
George Elliott for his encouragement and motivating conversations during the planning 
stages of this work. 

2. A Form of Berg's technique. The following lemma is implicitly contained in 
Pimsner's paper [7] and in Putnam's [91. The idea of the proof, however, goes back to 
Berg. 

LEMMA 2.1. Suppose tH is a Hilbert space which decomposes as !H — î o 0 • • • 0 
9-Q, with pj the projection onto 9fj. If U and V are unitary operators on !H such that 

(i) UH = V% = %+u i=l,...,n-l,and 

(ii) U\H=V\H, i±n-h 
then there exists a unitary W on !H such that 

(Hi) \\WVW*-U\\ < TT/W, 

(iv) W\WQ = id^ , W\x = id^\\(W-I)\H\\ < n/n, and 

(v) ptW = Wph / = 0,. . . ,n. 

PROOF. The statement of the lemma, and the proof, are clearest if we work with 
matrices in po,p\, ...,pn coordinates. First, notice that we may use U to identify ?£ with 
9fj for ij > 1. Once we have done so, the hypotheses of the lemma state that U and V 
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are of the; following form, when viewed in {pj} coordinates: 

U 

/a 
c 0 

1 0 

1 

d 

1 0 
1 0 / 

, v = 

la 
c 0 

1 0 
d 

1 '• 

\ 
1 0 

v 0 / 

Using the branch of W which sends the unit circle to exp(2iri[—l/2n, 1/ 2w)), we 

obtain an nih root vlln of v such that || vlln - 11| < n/ n. Let 

/ I 

W = 

vll» 
v2ln 

,1-1/n 

\ 1 / 

By construction, W satisfies conditions (iv) and (v), and 

WVW* 

1 
v1 /» 

v1/" 

\ 

U, 

vxln) 

so| |WV^ r*- U\\ = || v 1 / " - 1|| < TT//I. 

REMARK. It is not necessary that U and V be unitary for the lemma to hold. We 
only require that U and V map ^ isometrically onto ^+\J — 1, . . . , n — 1 and that 
U(Hi\ Virti) are contained in 9^ V 5(\. 

At first glance, this lemma may appear to be unrelated to Berg's original interchange 
technique. To see the connection, consider an operator S (for example a weighted shift) 
on a Hilbert space 9~C which has two "shift sections" of weight 1 and length n + 1. In 
other words, there are orthonormal vectors, not necessarily spanning, 

such that 
S<j>i — (j>i+\,i < n, 

S(j>n ±{<l>o9...,<l>n,\l)o,...,il;n}, 

Slpn _L{ <£o,..., 0/1,^0,. . . ,^*}. 
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124 TERRY A. LORING 

Consider also the operator T defined by 

T<t>n-l = ifrn, 

n =si if i JL{<t>n-u^-i}-

A picture representing this situation is this: 

?n-\ 
S: 

V>0 — • ^ 1 — * • ^ n - l —> ^n 

90 —* </>i — • • 9 / i - i </>« 

1̂0 —>^l—• >VVi-l V>n 

Let ^ = \l{<t>i,i)i} J = 1,...,ft — 1, ^o = (©/>o-?£) • As remarked above, the 
lemma applies to 5 and 7, so there exists a unitary W such that 11 WSW*—T\\ < TT / (n — 1 ). 

A more concrete way to view this result is that there is a new orthonormal basis 

Of 

Vi^o,...,^,^,...,^} 

such that 

U0 = V>0» C/i = n̂» 

and S is close to To where 

?o£ = ifor£ J . { 0o, . . . , 0n, -00, • • • , V>n} , 

r0a;,- = u;i+u i < n. 

Of course, one such basis is 

& = W>/, « = 0,. . . ,n, 

^. = W*^i, i = 0, . . . ,n, 

but it is not the basis Berg exhibits in [1] or [2]. This basis does, however, arise in David
son's proof of Berg's technique [4]. 
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3. Pseudo-actions. Most applications of Berg's technique, and its generalizations, 

have involved diagonal operators and shift operators. For example, the principal object 

used in the Pimsner-Voiculescu AF embedding is a pair of unitary matrices, one diag

onal and the other a cyclic shift. When constructing his more general AF embeddings, 

Pimsner works with algebras of diagonal matrices and cyclic shifts. A pseudo-action is 

simply a device for defining simultaneously permutation matrices and algebras of diag

onal matrices. 

DEFINITION 3.1. Let X be a topological space. A pseudo-action on X is a triple UJ — 

(7, ou, a) such that 

(i) / i s a set, 

(ii) UJ : / —• X is a function, 
(iii) a : / —• / is a bijection. 

By the order of UJ , denoted | UJ |, we mean the cardinality of /. We are mostly interested 

in finite pseudo-actions, \UJ\ < oo, so unless it is indicated otherwise, we shall assume 

that all pseudo-actions are finite. 

Associated to UJ is a C*-algebra AU9 a star-homomorphism 71^: CQ(X) —> A^ and a 

unitary Uu EA^. Consider the Hilbert space £2(/), with basis { et \ i G /} . We let 

A , = <B(£\I)\ 

^(f)et =f(u(ï))ei for i G / , / G C0(X), 

Uuei = ea(i)forieI. 

There is an obvious notion of isomorphism of pseudo-actions. We say that UJ is iso

morphic to a second pseudo-action 77 = (/,77, (5) if there exists a bijection/: / —> J such 

thatP of = foa and 77 0 / = UJ. This implies that 71̂  and U^ are simultaneously unitarily 

equivalent to 71̂  and Uv. As in [7] and [8], we are not so much interested in this type of 

equivalence as in approximate simultaneous unitary equivalence. 

Before proceeding further, we impose some restrictions on the space X. We shall as

sume that X is compact and metrizable. For convenience, we also assume that X is a 

compact subset of R k or C k with the induced metric d. This selects for us generators 

£ ! , . . . , £ * €C(X), 

namely the coordinate functions restricted to X. We use g i , . . . ,g* to establish a notion 

of distance between homomorphisms <j>,tj): C(X) —+ *B(9{). We use the induced metric 

because then we have 

\gj(x)-gj(y)\<d(x,y), y = l , . . . , * , x j E l , 

and this simplifies some formulas. 

DEFINITION 3.2. Suppose UJ = (/, u, oc) and 77 = (7,77,/?) are pseudo-actions on X. 

We define the distance between UJ and 77, denoted d(uj, 77), as follows. If | UJ \ ^ 1771 then 

d(uj, 77) = 00. Otherwise 

J(a;,77) = i n f m a x { | | ^ - W ^ W * | | , | | 7 r a ; ( g 1 ) - W 7 r 7 7 ( g 1 ) W * | | , . . . 
w 

...,\\*n(8k)-Wirn(gk)W\\}, 
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where the infimum is taken over all unitaries of I2(J) onto l2(I). 
A convenient way to describe a pseudo-action is by the sort of pictures shown in 

Figure 2. Here, we think of / as floating above X, with a represented by arrows between 
the points of / and UJ : / —-» X downward projection. Notice that it does not suffice to draw 
the images in X as this fails, for example, to distinguish uj\ from U2 (as defined in Figure 
2), and u\ ^ U2 since the spectrum of UUx is not equal to the spectrum of UU2. An upper 
bound on d(uj\, c^) can be obtained using Berg's technique, as we now show. 

FIGURE 2a. 

FIGURE 2b. 
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-f. 
/ (I 2 ,co 2 ,a 2 ) 

X 

FIGURE 2C. Examples of pseudo-actions 

Identifying AUl and A^2 with M^(0 ) in an appropriate way, and letting 

'0 o n 
1 0) 

we find that 

U„ 
/ 0 ! 

/ 0 

V / o / 
,Uu, 

(0 A 
I 0 

/ 0 
\ v 0 / 

For any g 6 C(X), there are scalars Ai, A2, A3, A4 such that 

^,(g)= ^(g) 

/A, / 

V 

A2/ 
A3/ 

A4// 

By Lemma 2.1, there is a unitary W, which according to the proof of Lemma 2.1 is of 
the form 

/ " 1 / 4 . . . \ 

W = 
V2/4 

y3/< 

/ / 

such that 

!«/„, — Wt/^WH < TT/4. 
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Because of the block diagonal form of W, clearly W commutes with ix^ (gj) — ^ ( g / ) , 

so 

\Mgj)-W*U2(gjW*\\ - 0 . 

We have shown that d(uj\,uj2) < 7r/ 4. 

We end this section with a few more definitions. Suppose (/, a;, a) and (7, rj,(3) are 

pseudo-actions on X. We define their sum UJ + r\ by disjoint union. That is, 

U + T] 

7(0 

Notice that Aw+T/ ^ A^ ® Av, but there is an obvious inclusion of A^ ® A^ in Au+r] which 

sends (L^, £7 )̂ to Uu+r} and for which the following diagram commutes: 

A-uj+n 

C(X) y Au © A^ 

We say that (/, u, a) is principal if LU is injective, and cyclic if a is a cyclic permuta

tion. Every pseudo-action has a cyclic decomposition, unique up to order and isomorphis-

m, as a sum of cyclic pseudo-actions. If UJ, UJ\, uj2 are as depicted in Figure 2, then none 

of them is principal, UJ and UJ2 are cyclic and uj\ has a cyclic decomposition consisting 

of two isomorphic principal, cyclic pseudo-actions. 

4. Berg's technique for pseudo-actions. Given a pseudo-action u = (/, UJ, a) on 

a space X, we would like to know which permutations <5 on / can be considered small, 

meaning that (I,UJ,8 o a) is close to UJ. Essentially, the following theorem states that 

this is true so long as, for all i,8(i) is close to /, i.e., d(uj(6(i)),uj(i)) is small, and also 

the "history" a~l(S(i)), a~2(è(i)),... of S(i) stays close to the "history" of / for a long 

time. Recall that X is a space with certain assumptions on it, and g\,...,gk € C(X) are 

specified. 

THEOREM 4.1. (The Pimsner-Berg technique). Suppose I is a finite set, UJ and UJ' are 

functions UJ,UJ':I —• X and a and 8 are permutations of I. Let /Q be the set 

Io = {ieI\6(i)?i}. 

If m is a positive integer such that 

a-j(I0)ni0 = 0 forj= l , . . . , m - 1 , 

(/U 7,7,0), 
uj(i) ifiel 
rj(i) if / G 7 ' 

(a(i) ifiel 
\(3(i) i f / £ 7 * 
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then 

d((I9<j,a),(I,u',6 o a)) < max{7r/m,E + F} 

where 

E= 2 - max d(uj(a-j(i)),uj(a~j8r(i))\ j = 0 , . . . , m - 1, rG Z, i G 70 

F = max tf(a;(i)), (a/(/)), (/ G /). 

PROOF. First, we shall prove a weaker version of the theorem. For notation, we let 

u = (7,o;, or), 

7/ = (7,u/,£ar). 

Consider the following subspaces of 9~l — £2(I): 

^ = < V " w ( / o ) ) , j = l , . . . , m , 
^ = ( ^ e . . . 0 9QL. 

Again, let ej denote the basis vector corresponding to i G 7. Notice that, for / G IQJ — 
1,... ,m — 1, 

Uueaj-m^ — eaj-m+\{ï) G ^9+1, 

and 

Uuei = L^e, for i ^ a~1(70). 

Therefore, the hypotheses of Lemma 2.1 are satisfied, so there exists a unitary W on 
£2(7), which commutes with the projections on the ^ , such that 

\\WUVW* - Uu\\ < 7r/m. 

It should be clear that there is a diagonal operator on £2(7) which is constant on the 
blocks corresponding to 9{\,..., ^ 4 such that 

\K(gk) - G\\ < max dL(a-j(h)),u;(a-J(i2))), 
j=0,...,m—l \ v ' v ' / 

for all &. Here we have used the fact that | gk(x) — gk(y)\ < d(x, y). Because W commutes 
with G, we have, for all k, 

hMk) - mMk)W*\\ < 2\\*u(gk) - G\\, 
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and 

<\\*u,(gk) ~ Wiru(gk)W*\\ + || WTTMÙW* - W^igùWW 

<\\*u,(gk) ~ Wiru(gk)W*\\ + \\iru(gk) ~ *M\ 

<2 • max d\u{a~j{i\)^u{a~^{i2))\ + maxd(o;(i),a/(0). 

If S is a cycle, then this is equal to the estimate stated in the theorem. Otherwise, it is 
much cruder. 

One obtains the sharper estimate by working on each disjoint cycle of 6 separately. 
The errors do not accumulate, essentially because the unitaries so obtained will be non-
trivial on orthogonal subspaces, by condition (iv) of Lemma 2.1. We leave the details to 
the reader. • 

REMARK. If / is an infinite set, this proof still works, exactly as stated if /o is finite, 
with minor modifications otherwise. 

For an example which illustrates the way this theorem will be used when embedding 
cross-products into AF algebras, consider the two pseudo-actions illustrated in Figure 3. 
By Theorem 4.1, the distance between them is less that 7r/4. The permutation 6 which 
converts one into the other is indicated by double lines. 

For a more classical example, consider, for each integer m > 0, a two-sided shift Tm 

with weights as shown in Figure 4, graphed against Z. It follows as a special case of [1 ; 
Theorem 2] that there is a normal operator at a distance at most lOOy'm from Tm. Let us 
see how to prove this in the language of pseudo-actions. 

Let LU denote the pseudo-action depicted in Figure 5a. Up to unitary equivalence, 
Tm equals U^^ig), where g: [0,1] —» R is ordinary inclusion. Let u'\ I —-> [0,1] and 
S : / —> / be as depicted in Figure 5b. Here è, drawn in double lines, consists of [A/TH] 

two-cycles, and UJ' is constant on subsets of / of size approximately 2m/ [y/m]. We may 
apply Theorem 4.1 with the m in the theorem equal to [y/m]. Since 

rf(a,(0.W'(«-))<^^, fori G I 

d{a~\ï),a~r8{i)) < 2 r / m , 

we find that, with 77 = (7, u',6 o a ) , and m > 4, 

d(uj,r]) < %yfm. 

Consequently, there exists a unitary W such that 

\\Tm-WUvirv(g)W*\\ < 1 6 / V ^ . 
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FIGURE 3a. 

FIGURE 3b. An example of the Pimsner-berg interchange for pseudo-actions 

1+ 

o 

FIGURE 4. Weights for a nearly normal shift. 
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ê 
v 

$ 

co = (I, co, a) 

<?r 

FIGURE 5a. 

• \ . • • • _3 N * • 

CO' CO' CO' CO' 

FIGURE 5b. 
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T| = ( I , CO', ÔoOC) 

\ 

\ 

\ 

FIGURE 5C. A proof by pseudo-actions 

Finally, notice that 7rv(g) commutes L^, and therefore U^n^ig) is normal. 
We close this section with an example which illustrates the convenience of allowing 

8 in Theorem 4.1 to contain cycles other than two-cycles. Consider the weighted shifts 
Tm,m a positive integer, with weights as shown in Figure 6a. Using the classical inter
change, we may "pinch off" the hump and show that, up to unitary equivalence, Tm is 
close to the shift Rm whose weights are shown in Figure 6b plus a finite-dimensional nor
mal summand. Using Theorem 4.1, we can show that Tm is, up to unitary equivalence, 
close to the shift Sm whose weights are shown in Figure 6c, without needing to add on a 
direct summand. 

Figure 7 shows a pseudo-action u on [0,1] for which Tm — U^^ig). Define u/ 
equal to u, except for points between x and y, where we define uj\aj(x)) = j / 3m. Let 
è be the permutation indicated by double lines. The reader can easily check that, for 
j] = (I,u)',6 o a) , 

d(u,r])< S/y/m, 

which immediately shows that there exists a unitary W such that 

l^-w^ootrii < 16/v ,̂ 
and clearly U^ix^ig) — Sl 
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/ ^ ^ . m ^ ^ m fe ^ m ^ 
1- ^ " - • ~ ^ / s ^ " —~̂  ^ • ^ 

^s 

0 s 

FIGURE 6a. Weight for the shift Tm 

1-
^ 

*4- m - • 

0 
> > 

FIGURE 6b. Weight for the shift Rm 

FIGURE 6C. Weight for the shift S, 
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I 
? co = ( I , c o , a ) 

x* ' ' "n ' ' "n 'à ' > 
< w w u 

I 

FIGURE 7. A pseudo-action proof that Tm is approximately unitarily equivalent to Sm 

5. The Pimsner-Voiculescu embedding of A$. Recall that, for 6 irrational, the ir
rational rotation algebra AQ is the universal C*-algebra generated by two unitaries w, v 
subject to the relation vu — e2ni9uv. Also recall that AQ is simple. Two good references 
for these facts are [4] and [10]. 

Pimsner and Voiculscu [8] showed that AQ could be embedded into an AF algebra in 
such a way that the induced map on Ko is an isomorphism. In this section, we present a 
way to construct such an embedding which is a little simpler than the original. 

Our construction is based on some pseudo-actions on the circle, associated to rational 
rotations. We regard Sl as the unit circle in C, and so our canonical list of generators 
of C(Sl) is simply g = e2*ix. Of course, any pseudo-action (/,o;,a) on R defines a 
pseudo-action on Sl, namely (7, a/, a ) when u'(x) = e2iriu(x\ Our pictures will all be of 
pseudo-actions on R, regarded a pseudo-actions on Sl. 

Suppose p and q are poisitive integers, not necessarily relatively prime. We define the 
p, q rotation rp,q to be the following pseudo-action on Sl : 

rPA = (/,«;, a ) , 

/ = [ 0 , $ ) = { 0 , 1 , . . . , ? - 1 } , 

LJ(J) = exp(27r(//tf), 

a(j)=j+p-ql(j+p)/<il 
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Notice that rp+q,q = rPtq, but r2P,iq ^ rPA. We have not defined r^q. These "zero-
rotations" are useful when one is embedding C(T2) into an AF algebra, but the above 
definition is not the correct one. We shall discuss "zero-rotations" in a future paper with 
Elliott. 

The notation 

VP4 = *rM(g) 

is a useful shorthand. Clearly 

(5-1) Vp,qUp,q = e2^Wp,qVp,q. 

PROPOSITION 5.1. Suppose p, q, s, t are positive integers such that q < t and 0 < 
pj q,s/1 < 1. Suppose also that m, n are nonnegative integers, and let p' = mp + ns and 
q' — mq + nt. We then have 

d(mrPtq + nrSJ, rp'^) < max{ 2n/ q, E + F}, 

E = ^q\pj q — s J' t\, 

F = max{ lirmq \p/q — p /q'\, 2nnt \s/1 — p'/q'\ } . 

PROOF. Consider Figure 8. This illustrates a pseudo-action {I,u,a) which is iso
morphic to mrpq+nrsj. The double lines indicate a permutation 8 such that è ooc is cyclic. 
Let uo'Uè o a)r(x)) = rp'j q'. Regarded as a pseudo-action on Sl,rj = (I,UJ,6 o a) is 
isomorphic to jy^'- We may estimate d(uj, r\) by Theorem 4.1. 

Consider two points j, k £ /o. If they are both from mrp>q or nrs,t, they have identical 
histories going back (q — 1) steps. If they lie one in mrp^ one in nrst, then 

d(uj(a'h(j)luj(a-h(k))) < \ exp(2iri(-hp/ qj) - exp(27n(-/w/0)| 

< 2itq\pl q — s jt\ 

for /z = 0 , . . . , g — 1. (We could use 2n(q — 1) in place of 2nq, but don't wish to make the 
statement of the proposition any murkier.) This explains E in the estimate. In a similar 
fashion, one sees that 

d(u(j),u>'<j))<F, 

when a;, a/ are considered as Sl valued functions. • 
Now consider the continued-fraction expansion [a\, a2, • • •] °f #, with pnj qn the par

tial fractions. Here are some basic facts about pn and qn. 

(5.2) pn = anpn-\ +pn-2, qn = anqn-\ + qn-2, 

(5.3) pnqn-\ +Pn-iqn = ±1 , 
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• — ! • • — w - 9 - •-a 
r • • • • • • • " 

m ' rP,q 

4 

ii 
• — • • — • • 

^ 

<-

1 1 

H > 

P S (q-D lÇ-f 

FIGURE 8. An illustration of why m r ^ + nrsj is close to rmp+ns^mq+nt. 

(5.4) 

(5.5) 

Pn _Pn-2 
< 

Pn-l Pn-2 

qn qn-2 qn-\ qn-i 

qn 

< 
1 

ft 

1 
qn-\qn-2 

By Proposition 5.1 and (5.4), we find that 

d(rPnAn,anrPn^qn_x + rPn^qn_2) < max{ir/qn-2,E + F], 

E = Anqn-2 

F = 2-K max 

< 2ir max 

A l - l Ai - 2 47T 

qn-\ qn-2 <37i-l 

\anqn-\ 
Pn Pn-l 

qn qn-\ 
,qn-2 

\an 1 1 2 T T 

1 qn ' <?«- l qn-\ 

El _ ^z? 
qn qn~2 
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Therefore 

(5.6) d(rPn,qn,anrPn_uqn_2) < max i-i Ô7T 

[qn-2 Qn-\ 

THEOREM 5.2. There is an embedding ofAg into Bg, where Bg is the AF algebra 
associated to the continued-fraction expansion of 6. 

PROOF. Recall that the Bratteli diagram shown in Figure 9a determines BQ . Let us 
identify Mqn with AYpnqn andlet£/n = UPnAn,Vn — VVnAn. We may interpret (5.6) as saying 
that there exists a unitary W = Wn such that, if we define 7« as 

7„: Mqn 0 Mqn_x —• Mqn+] 0 Mqn 

/S 

7„((5,r)) w w\s\ 

77 

we have the estimates 

hn((Un,Un-i)) -(Un+uUn)\\ <max 
7T 67T 

||7n((K, V„-i)) - (V„+i, V„)|| < max! — , — 

The denominators gn grow geometrically fast. Therefore, the sequences 
((£/„, t/„_i)) and ((Vn, Vn-i)), are Cauchy sequences in 

We let 

B = \ïm(Mqn® Mqn_i9-yn). 

u= Hm(un,un-i)eB 
n—KX> 

V = l im(Vn ,Vn_i)€*. 

These are unitaries, and by (5.1) and (5.5), we also have VU = e2*10 UV. There is an 
induced unital star-homomorphism 

<l>:Ao->B, 

sending w, v to U, V, and because Ag is simple, (j> is an embedding. 
All that remains to do is to observe that B = Bg because the 7n have the correct K-

theory. It should be pointed out, however, that if we define Bg as the inductive limit of 
Mqn 0 Mqn_x with some canonical choice of connecting maps, the isomorphism between 
B and Bg will be somewhat complicated, as it must involve the Wn. Another way to put 
this is that we do not have a very good idea of how Mqn ® Mqn_x sits inside B. • 
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q ^ . q 0 

139 

FIGURE 9a. The Bratteli diagram for the continued-fraction algebra. 

Figure 9b. A representation of the Pimsner-Voiculescu embedding. 
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The preceding construction is summarized in Figure 9b. This will serve as a model 
for the definition of embedding diagram, given in the next section. 

THEOREM 5.3. If<f>:Ae —• BQ is a unital embedding then 

<l>*:Ko(A0)-+Ko(Bo) 

is an isomorphism. 

PROOF. This is a triviality in the high-tech world of modern A -̂theory. Both AQ and 
Be have unital traces, say a and r , which induce isomorphisms of KQ{AQ) and KO(BQ) 

with Z + 0 Z. Since a is the unique unital trace on AQ , and </> is unital, <j> must pull r 
back to a. Therefore, 0* must be the identity map on Z + 6 Z. • 

6. Embedding Diagrams. In this section we define embedding diagrams. These 
are embellished Bratteli diagrams which define simultaneously a homomorphism 
7r: C(X) —» A and a unitary U €A, where A is an AF algebra. The most interesting cases 
are those for which (7r, U) is the covariant form of a homomorphism C(X) M Z —> A, 
but we do not yet limit ourselves to these cases. 

Before we define embedding diagrams, we must clear up a few minor points about 
Bratteli diagrams. For technical reasons, it will be useful to allow diagrams which cor
respond to limit systems of finite-dimensional C*-algebras 

(6.1) y An —• An+i > • • • 

which have non-injective connecting maps </>n. For example, we consider the diagram in 
Figure 10 to be a Bratteli diagram. 

Consider the system (6.1) and suppose An = ©A{*\ with each A%\ isomorphic to 
Mr(C ) for some r. As usual, the connecting maps define homomorphisms 

(/>n,m:An—»Am, m>n, 

</>n,oo:A„—y A = limAn. 

Consider the restrictions of these maps to A%\ 

ti%'Af^An-^Am, m>n, 
0/1,00-Ai C * An y A. 

Since A^ is simple, either (f>n% is an embedding or zero. Also, 4>n% will be nonzero if, 
and only if, </>n

(^ is non-zero for all m > n. 
We hope that the reader will forgive the following excessive formality which is nec

essary to allow easy statements of theorems. 
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2» 

4« 

8« 

16» 

10» 

3 0 * 

2« 

FIGURE 10. A Bratteli diagram with non-injective connecting maps. 

DEFINITION 6.1. A Bratteli diagram 'Dis a sequence ©„ of finite sets (of vertices) 

together with positive integers (sizes and embedding multiplicities) 

' s(y) forv<E£>n, 
m(v, w) for v G (Dn+\, w E 1)n. 

*D is unital if 
s(v) = J2 m(v,w)s(w), forv E (Dn+i. 

we<Dn 

DEFINITION 6.2. A Bratteli diagram (D is called an embedding diagram over a topo

logical space X if, for each n, 

(i) (Dn is a finite set of pseudo-actions on X, 

(ii) s(u) = | a; |, for UJ E (Dn 

and 

(///) ^ sup d\u, 5Z ^(u;, 77)77 < oo. 
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Suppose A is an AF algebra, U is a unitary in A and TX : C(X) —> A is a unital homo-
morphism. By universal nonsense, these define a unital homomorphism. 

<j>:C(X)*cC(Sl)^>A 

sending/ to n(f) and u — e2i:lx to U. Our real interest is in those cases where (U, TT) is 
covariant for some action, i.e., cases where <j> drops to a homomorphism 

C{X) M Z -+A. 

We will take up, in the next section, the question of when a homomorphism associated 
to an embedding diagram is covariant. 

Suppose the *D is an embedding diagram and that A is isomorphic to the limit of 

where 

ue<Dn 

and Aw is embedded into Av with multiplicity m(r], UJ). If, in addition, we have a homo
morphism 

</>:C(X)*c(S
l)^>A 

such that 
0 ( f ) = l i m </>„,oo(Pn(/*)X 

n—»oo 

</>(u) = l i m (j>n,oo(Un) 
n—>oo 

where 
f/« € «(A„), 

p„:C(X)-+A„ 

are simultaneously unitarily equivalent to 

u>£(Dn 

then we say that <j> is associated to *D. 

PROPOSITION 6.3. There always exists a homomorphism associated to an embedding 
diagram (D. 

PROOF. This is guaranteed by condition 6.2.iii. Specifically, we know that, given 
any connecting maps 
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i/i+l 

which have the proper embedding multiplicities, we may correct them by defining <\)'n 

AdWn o <j>n, where Wn is a unitary in An+\ chosen so that 

; < E 2 > „ 

K © uu ) - © t/, 
t/eia* 

, j = i , . . . , f c , 

are summable sequences. This means that 

n—>oo 

lim^CeTT^C^)) 
«—•oo 

exist. We may define a homomorphism associated to (D by sending u, g i , . . . , gk to these 
elements of lim(An, <j>'n). • 

We do not know to what extent these associated homomorphisms are unique. Certain
ly, any two will induce the same map on Ko(C(X) *c C(S1)), (or on Ko(C(X) x Z ) if the 
maps drop to the cross-product.) We also do not know what is the appropriate notion of 
equivalence for embedding diagrams. We will make do with the following weak notion 
of equivalence. 

Suppose (D and T, are embedding diagrams with identical underlying Bratteli dia
grams. Thus, we have bijections 

which preserve embedding multiplicities and vertex sizes. If 

lim sup d(uj,Tn(uj)) = 0 

then we shall say that (D and £ are weakly equivalent. In this case, it follows that a 
homomorphism is associated to *D if, and only if, it is associated to *£. 

We have already seen one embedding diagram, Figure 9b. Let us consider another. 
This will be one of the simplest examples of the type of embedding diagram considered 
in joint work with Elliott. 

Consider the diagram in Figure 11a. To see that the summability condition is fulfilled, 
we must evaluate the maximum of the distances 

d(rUn+i,2ri3«+r_i,3*), 

d(r_1>3»n,ri>3» + 2r_i>3».). 

https://doi.org/10.4153/CJM-1991-008-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1991-008-5


144 TERRY A. LORING 

r l , 3 r-1,3 

f1,9 r-1,9 

r1,27 r-1,27 

\ / 

FIGURE 1 la. An embedding diagram for mapping C(T2) into a simple AF algebra. 

- • p^* • . . _ ! ! 

• *4- Jl 
.._u. 

FIGURE 1 lb. Pseudo-actions and an interchange showing why the summability condition 6.2.hi holds. 
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By symmetry, these are equal. Figure lib illustrates how one may apply Theorem 4.1 
to conclude that, for all n, 

d(rl3n+^2rh3n + r_U3n)<C/3"'2 

for some constant C (cf. Figure 7). As this is summable, we have an embedding diagram. 
Any associated homomorphism will drop to the trivial cross-product COS1) x Z 

which is isomorphic to C(T2). Let <j> : C(T2) —> A be such a map. 
Consider the underlying Bratteli diagram and the associated system 

A I 2 J A 1 V 
Z2 ^ Z 2 ^ • • • . 

The homomorphisms 
fl/3n 1/3M 

fit together to map the limit group into R 2. It is now easy to see that K0(A) is a subgroup 
of Z[1/3] 0 Z , namely 

K0(A) ^ {(m/ 3\k)\ m = k (mod 2)} 

with order unit (2,0) and the strict order from the first component. Notice that A is simple. 
Finally, arguing as in the proof of [6; Theorem 3.4], one may show that the induced 
homomorphism 

^:^o(C(r2)) = Z © Z ^ W 

is an injection, sending (a, b) to (2a, 2b). 

7. Approximating actions by pseudo-actions. For the rest of this paper, we shall 
assume that T: X —* X is a homeomorphism. We let a : C(X) —> C(X) denote the asso
ciated aciton, and are interested in mappings of C(X) x a Z into AF algebras. Pimsner 
attacks this problem by considering sequences of open sets, taken from a cover of X, 
which approximate T. We are able to work in a similar fashion by considering a cover 
of X to be a discrete topological space and investigating those pseudo-actions over the 
cover which mimic the action of T. 

For our purposes, a cover V is a finite cover of X by open sets. By the diameter of V, 
we mean 

diam V = sup sup d(xyy). 
Ve^x,yev 

The order | V\ of V is the number of open sets it contains. 

DEFINITION 7.1. Let V be a cover of X, and let a; = (/, a;, a ) be a pseudo-action 
over V. We say that V respects T if 
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T(Lj(j))riLJ(a(j))?Q 

for all j el. 
By themselves, pseudo-actions over a cover V are not useful. We are interested in 

C(X), not C{V). By choosing a point out of cj(j), for each7, we obtain a pseudo-action 
back on X. 

DEFINITION 7.2. Suppose V is a cover of X and a; = (/, w, a ) is a pseudo-action 
over ^ . If Û; is a pseudo-action over X, then a; is contained in u, denoted 

ci; G a;, 

if û is (isomorphic to) (/, Q, a ) where Q : / —> X is such that 

for all 7 G/. 
Our strategy is to produce a diagram of pseudo-action on covers such that, by choosing 

pseudo-actions on X contained in these, we obtain an embedding diagram. The following 
lemmas will be used to show that the resulting homomorphism is covariant, if the pseudo-
actions respect T, and does not depend on the choices made. 

LEMMA 7.3. For each F G C(X), and each e > 0, there exists 6 > 0 such that, 
whenever u is a pseudo-action over a cover V for which diam *V < 8 and UJ respects 
T, and given Q £ UJ, we have 

\\^{a{f))-U^Q{f)U%\\ <e. 

PROOF. The operator to be estimated is diagonal, so 

\\*Q{«{f))-UQ*Q(f)irQ\\ =sup 
i 

Let i G IUJ . Since u respects T, there exists a 

Therefore, 

^{mfj -/(o(a-»(o))| 
< jfo Tl (a)(0) -foTl(y)\ + |/(7~'(j)) - / (^(a- 'O ' ) ) ) ! 
< sup \foT-\x)-foT-l(y)\+ sup |/(x) - / (y) | 

d(x,y)< diam ^ </(*,)0< diam ^ 

V\T - '(û)(0))-/(â)(a- '(/))) 
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and by the uniform continuity off a n d / o T ' , this converges to zero as diam V tends 

to zero. • 

LEMMA 7.4. Suppose thai UJ is a pseudo-action over a cover V. If UJ G UJ and 

Q G u, then 

d(u),(D) < diam V. 

The proof is obvious, so we omit it. 

8. Decomposing pseudo-actions. The more closely a pseudo-action approximates 

the homeomorphism T, the larger it tends to be. If we are to be able to construct a covari-

ant embedding diagram out of pseudo-actions which approximate T, we must have a way 

of decomposing, at least approximately, a large pseudo-action into smaller ones. In this 

section, we introduce a simple notion, called the m-decomposition of pseudo-actions on 

covers, which translates, via the Berg-Pimsner technique, into an approximation theorem 

for pseudo-actions on X. 

DEFINITION 8.1. A pseudo-action a; on a finite set S1-decomposes into the tuple 

(T]I , . . . , 7]£ ) of pseudo-actions on S if there exists a permutation S : 1^ —• /^ such that 

w(«(/)) = w ( / ' ) , ; G / w , 

(Iu,,u>,8 o a w ) ^ ^ % . 

If, in addition, there exists such a 8 for which 

u)U - ' (£ ( / ) )} =u;(a~r(j))jelu;,r = 0,...,m-l 

a " r ( / 0 ) n / 0 = 0, r= l , . . . , m - l , 

where /0 = {/1 CJ(Ï) ^ / } , then we say that UJ m-decomposes into (7/1 , . . . , r\t ). 

Consider the pseudo-action illustrated in Figure 12a. Figure 12b illustrates a 1-decom

position of UJ into three pseudo-actions; the double lines illustrate the implementing 8. 

This UJ can only be 2-decomposed into two pseudo-actions, as illustrated in Figure 12c. 

Our interest in m-decompositions is limited to the case S = V, a cover of X, and 

where the pseudo-actions respect T. 

LEMMA 8.2. Suppose UJ and rj\,..., r\t are pseudo-actions over *]/, a cover ofX, 

and T is a homeomorphism ofX. If UJ m-decomposes into ( r / i , . . . , rft ), then UJ respects 

T if and only if each r]j respects T. 

PROOF. It suffices to observe that if (/, UJ , a ) respects T and 8 : / —» / is a permutation 

such that 

uj(8(i)) = a;(ï), i G /, 
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• ^ • «4-
(I, co5 a) 

Va 
^ - — • • • • • • 

- • • 

• • • 

FIGURE 12a. A pseudo-action u. 

• • • • • • • • — ^ 

- # • • • 

FIGURE 12b. A 1-decomposition of uo. 
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• *4 • •* 

- • • • • • • • • 

- • • • • • • 

FIGURE 12c. A 2-decomposition of u. 

then (I,LJ,8 o a) also respects T. This is true because 

T(u)(ï)) H u(8 o a(i)) = T(uj(i)) H uj(a(i)) ^ 0. 

• 
We now show that sufficiently large pseudo-actions may be m-decomposed into 

smaller ones. 

LEMMA 8.3. Let m be a non-negative integer, and let S be a finite set of cardinality k. 
Every pseudo-action over S can be m-decomposed into pseudo-actions of order at most 
2m-If. 

PROOF. This proof is basically a simple induction based on the pigeon-hole princi
ple. However, there is a minor detail arising when m > 1 which forces us to prove a 
stronger claim to facilitate the induction. Notice it suffices to prove the lemma for cyclic 
pseudo-actions of order at least m. 

Given a pseudo-action UJ over S, by a marking of u we shall mean a subset M(LJ) of 
lu, called the set of marked points, such that the "distances" 

min{ r > 0 | a\i) G M(u)}, i E M(u) 

between marked points are in the interval [m,2m-l]. Markings always exist for cyclic 
pseudo-actions of order at least m. 

What we shall prove is that given a marked pseudo-action u over 5, there is a permuta
tion 8 of lu, fixing the unmarked points /^ \ M (a;) and implementing an m-decomposition 
of UJ into pseudo-actions of order at most 2m • If1. This is trivially true for | a; | < 2m • If1. 

Assume that a; is a marked pseudo-action with \u\ > 2m- If and that our claim is 
true for marked pseudo-actions of lesser order. Because of the size of w, there must be 
two sequences of the form 

uj(a-m+l(i)),uj(a-m+2(i)),... ,o;(/), i G M(u>), 

uo(a-m+l(j))^(a-m+2(j)),...,uj(j\ jeM(u),i^f 

which are identical. 
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If i and y lie in distinct orbits of a, then let 80 be the trivial permutation of lu. Other
wise, let 60 switch i and j . Either way, 8Q implements an m-decomposition of UJ into two 
pseudo-actions UJ\ , UJ2 of lesser order, 

ut = (li9u\Ii9(So oa)\It). 

Mark uj( by M(UJ) n /,-. By induction, there exists permutations <5,:// —> /,, fixing the 
unmarked points and implementing m-decompositions into sufficiently small pseudo-
actions. 

Let<5 = (61 U 82) o60. Clearly, 

uj(a'r(8 (/))) =cu(a-r(j)), r = 0 , . . . , / n - l 

since this equation holds for 8Q,8\ and 82. Finally, 8 fixes the unmarked points, so IQ C 
M(cj)and 

a - r ( / o ) n / 0 C a - r ( M ( a ; ) ) n M ( a ; ) , r = l , . . . , m - 1 

which is empty because the marked points are "distance" at least m apart. • 

THEOREM 8.4. Suppose UJ is a pseudo-action on the cover Vy and UJ m-decomposes 
into (7/1,... ,T)t). Then 

d(uj, ^2 fjj) < max{ 7r/ m, 3 • diam V} 

whenever UJ G UJ and fjj G rjjj — 1 ,...,£. 

PROOF. This is an immediate Corollary to Theorem 4.1. • 

9. Pimsner's Construction. We now present a generic method of constructing ho-
momorphisms of C(X) x Z to AF algebras. We do not impose any conditions on T 
until the next section where we discuss when the homomorphisms constructed are em-
beddings. While based on Pimsner's work [7], this construction produces a wider class 
of homomorphisms. The AF algebras produced in [7] always contain UHF subalgebras. 
This is not true of our construction. 

We will use the following notation, borrowed from Pimsner. If V and W are covers, 
then the expression 

<V <f <W 
shall mean that/: W—• 1/ is a function such that 

WC/(W)forall We <W. 

Of course, this means in particular that W is finer than V. 
Now suppose that V <f *W and UJ — (/, UJ, a) is a pseudo-action over <W. We shall 

let fuj denote the pseudo-action over V 
fuj = (I,fouj,a). 

Clearly, û e UJ implies Q G/a;, and if UJ respects T then fuj respects T. 
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DEFINITION 9.1. Let T be a homeomorphism of X. A Pimsner diagram for T consists 
of a sequence of covers Vn of X such that 

]T diam Vn < oo, 
a sequence of functions /„: ^+i —> Vn such that 

a sequence of positive integers mn such that 
J]l/mn < oo, 

and finally a Bratteli diagram *D such that each u G ©„ is a pseudo-action over ^ which 
respects T and, for each UJ G 2)„+i, 

/wa; mn-decomposes into ^ m(a;, 77)77. 
•//e2>„ 

PROPOSITION 9.2. Suppose that (VnJn^mn^ *Dn)n is a Pimsner diagram for T. For 
each UJ G (Dn choose UJ G UJ. Let *D denote the Bratteli diagram obtained from T) by 
replacing each UJ by UJ. 

1. *D is an embedding diagram. 
2. Any homomorphism associated to T) drops to C(X) x Z. 
3. Up to weak equivalence, CD does not depend on the choices of the uJ. 

PROOF. The three parts of this theorem are immediate consequences of Theorem 
8.4, Lemma 7.3 and Lemma 7.4, respectively. • 

Given a specific T:X-^X, one should select a reasonably small collection of pseudo-
actions over each cover ^ and then add to these any pseudo-actions that arise in the de
composition of higher-level pseudo-actions. This should produce a managable Pimsner 
diagram to study. 

For generic T, about the only natural way to restrict the collection of all pseudo-
actions to make it finite is by size. For any T: X —-»• X, any cover V and any m > 0, we 
let £l( V, T, m) denote the set of isomorphism classes of pseudo-actions over V, of order 
at most 2mI V\m, which respect T. (Actually, we regard the elements of Q ( ^ , T,m) as 
pseudo-actions, one representative from each class.) 

THEOREM 9.3. Given a homeomorphism T:X —> X and given sequences of open 
covers l/n, functions fn and positive integers mn such that 

Vn <fn Vn+U 

^2 diam Vn < 00, 

there exists a Bratteli diagram *D with 

<Dn = Çl(Vn,T,mn) 

such that ClSn,fn,mn, 1)n)n is a Pimsner diagram for T. 
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PROOF. All the data in the Pimsner diagram is determined except for the multiplic
ities m{uj,r]) for u G *Dn+\ and 77 G ©„. Given UJ G 2)n+i» Lemma 8.3 implies that/„a; 
can be mn -decomposed into a list (771,..., 77 ̂  ) of pseudo-actions over Vn of order at most 
2mn\ Vn\

m\ By Lemma 8.2., each rjj respects T and so is an element of *Dn. For 77 G Dn, 
we let m(u, 77), equal the number of times 77 occurs in this list. • 

Notice that there is no unique, or canonical, way to choose the multiplicities ra(cj, 77). 

10. Injectivity. In the last section (Theorem 9.3), we introduced a generic method 
for constructing Pimsner diagrams, and thus embedding diagrams. The resulting homo-
morphisms of C(X) x Z into AF algebras are injective, as we show in this section, except 
when there is a topological obstruction to the cross-product being a subalgebra of any 
AF algebra. Everything in this section is due to Pimsner, although we have streamlined 
some of his proofs. 

DEFINITION 10.1. A point x G X is called pseudo-non-wandering for the homeo-
morphism T.X—+X if, for every cover V and every V G V such that x G V, there exists 
a finite sequence Vo,V\,...,Ve G V,l > 1, with 

V0 = Wi = V, 

T(Vj)n Vj+i / 0 f o r 7 = O,...,£ - 1 . 

An equivalent way of saying that x G X is pseudo-non-wandering is that, for x G 
V G 1/, there exists a (finite) pseudo-action UJ over V that respects T with u(i) = V for 
some /. 

It is relatively straightforward to show that having every JC G X be pseudo-non-
wandering is a necessary condition for the existence of an AF embedding of C(X) x Z. 
We shall simply state the relevant results from [7]. 

LEMMA 10.2 (PIMSNER). A point x G X is not pseudo-non-wandering if, and only if, 
there exists an open set U C X, with closure V, such that T(Û) C U andx G U\ T(0). 

Given U as in Lemma 10.2, one may easily construct a non-unitary isometry in the 
cross-product. 

LEMMA 10.3 (PIMSNER). If there exists x G X which is not pseudo-non-wandering, 
then C(X) x Z contains a non-unitary isometry. 

Since all isometries in an AF algebra are unitary, this lemma implies the following. 

LEMMA 10.4 (PIMSNER). If there exists x G X which is not pseudo-non-wandering, 
then C(X) x Z cannot be embedded into an AF algebra. 

The key ingredient in the proof of the converse is the next lemma which shows that 
there are sufficiently many pseudo-actions that approximate the orbit of a pseudo-non-
wandering point. 
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LEMMA 10.5. Suppose x E X is pseudo-non-wandering and m is a positive integer. 
For any cover V, and any sequence 

Vo,Vi,...,vw_! eV 

with 

Tjx£ V,,y = 0 , . . . , m - l , 

there exists a pseudo-action LO over V which respects T such that, for some *o £ 4;» 

u(aJ(i0)) = V,,y = 0 , . . . , m - 1 . 

PROOF. If x is periodic, this is trivial, so assume that Vx — Tkx only if y = k. 

Choose disjoint open sets QjJ — 0 , . . . , m — 1, such that 

7^G0, ,y = O , . . . , m - l , 

Next, choose open sets Rm-\,Sm-\ such that 

T-lxesm.u 

sm-\ c Rm-\ c Qm-\ n vm_i 
and also choose open sets Rj, SjJ — m — 2 , . . . , 1,0, such that 

Vx G Sj9 

SjCRjCQjnT-l(sj+i)nVj. 
Consider the cover 

W={Rj\j = 0,...,m-l}U {V\USe | Ve V}. 

Notice that V <f W where 

f(Rj) = VjJ = 0,...,m-h 

f(v\ust) = v.veV. 
Since x is pseudo-non-wandering and x G /?o, there is a pseudo-action 77 over ^ 

which respects T and such that r\ O'o) = #/0 for some /Q £ V Now, for y < m — 1, 

but 

T(Rj)nRk C g7+i n Q* = 0, A; ^ y + 1, 

T(Rj)n (V\ U Se) C 5^1 H (V\S;+J) = 0, V G 0>, 

so the only way for rj to respect T is by satisfying 

fl(aj(i0j) = Rj. 

The desired pseudo-action is u — fr]. m 
Lemma 10.5 says nothing about the size of the pseudo-action LU which follows the 

orbit of x. However, the next lemma shows that by m-decomposing ujy for appropriate 
m, we may produce a reasonably small pseudo-action tracking x. 
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LEMMA 10.6. Suppose UJ is a pseudo-action over a finite set S and SQ, S\ , . . . , sn^\ is 

a sequence in S such that 

Lj(aj(io)) = SjJ=OA,.--,n-l 

for some ioEluj.Ifm>n and UJ m-decomposes into (771,..., r\i ) then, for some rjk — 

(Jk,rik,(3k), 

^ ( / 3 / ( / i ) ) - ^ , 7 = 0 , l , . . . , n - l 

for some i\ G /*. 

PROOF. Suppose 6 implements the m-decomposition, so 

Since m > n, at most one of 

(10.1) /o,cK<o),. . . ,an _ 1Oo) 

lies in the set IQ = { /' | 6 (i) ^ /} . If none lie in /0 , then let i\ = /Q and observe that 

( « o a y ( i 1 ) = a^(io),y = 0 , l , . . . , f i - l . 

In this case then, we are done since some rj^ must contain a copy of the sequence ( 10.1 ) 

and must map it to so,..., sn-\. 

In the remaining case, let ad(k) be the unique element of the sequence (10.1) con

tained in /o, and let i\ — cc~dob~x oad(io). Since ad(i\) = e~l(ad(i0)) is in /Q, no other 

element of the sequence 

i , , a ( i , ) , . . . , a ' , " 1 ( i i ) 

is contained in IQ. Therefore 

{ aJ(io) for d <j < n 

Since 8 implements an m-decomposition, 

u}(aj(ix)) = ui^ai-d[6-\ad(h)) 

= uj(aJ'd{ad(k))) = u{a\k)) 

for j < d. Therefore 

w((5 o am)) = w(aj(ioJ) = sjtj = 0,1,...,n-\ 

and we are done as in the first case. 
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THEOREM 10.7. Suppose that 2) = ( % ,/n, mn, ©„ ) n is a Pimsner diagram for T and 
(Dn = £2(%, T, mn). If every point in X is pseudo-non-wandering and 

<t> : C(X) M Z -> A 
w a homomorphism associated to 2), /fte/i </> w aft embedding. 

PROOF. For each UJ G £>„, we let û; denote some choice of pseudo-action CJ Gw.We 
shall write Au for A^ and so forth. By iUtN,N > ft, and i^^ we shall mean the canonical 
homomorphisms 

and Au
 c—> A„ —• An+i —• • • —• AN, 

where ^ c_y A„ —> A 

Given r\ G 2>w and u; G ©n+i, we shall write 77 < UJ if 77 is in the mn -decomposition 
offncj, i.e., if m(uj,ri) ^ 0. Given 77 G 2)n and a; G 2)n+z, we shall write n << UJ if 
there exist 771,..., r/z_i such that 

77 < 771 < ••• < 77̂ -1 < u. 

Let 
2^ = { u G 2)„ I \/N > ft, 37 G Dyv such that a; < < 7 } . 

Recall that iUt00 is an isometry unless i^^ — 0 for some N. Therefore, i^^ is an isometry 
if, and only if, a; G 2^. 

If x G X and a; is a pseudo-action over a cover 1 ,̂ we shall say that u tracks xfor I 
steps if, for some J"O £ ^ , 

P(x) G a; (ay(/0)) for y = 0 , . . . , t - 1. 
Given integers n < N and x G X, let 

T(x, «, AO = { CJ G 2)n I UJ tracks x for mn steps and a; < < 77 for some 77 G 2}v} • 

Applying Lemma 10.5 to the cover V^ and integer ra„, we find a pseudo-action 7 on 
1^ which respects T such that 7 tracks x for ran steps. By Lemmas 10.6, 8.2 and 8.3, we 
may also assume that 7 G *DN. Repeatedly applying Lemma 10.6, one easily sees that 
there exists u G 2)„ such that UJ tracks x for mn steps and UJ < < 7. Thus r(jt, ft, AO is 
nonempty. Finally, 

TO, ft, ft + 1) D T(JC, ft, « + 2) D • • • 

is a decreasing sequence of nonempty finite sets, so 

T(x,n) = p | V(x,n9N) 
/v>« 

= { u G 2^ I UJ tracks JC for mn steps } 

is nonempty for every x. 
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The rest of this proof follows Pimsner almost verbation ([7, pp. 624-625]). It is in
cluded for completeness. 

Recall that, for a G C(X) x Z, 

|| a\\ = sup||AJC(a)|| 
xex 

where Xx: C(X) x Z -> <B(l2(l)) is defined by 

Xx(f)en=f(Tnx)en, 

Xx(u)en = en+\. 

We need only prove injectivity on elements of the form 

i=0 

For any e > 0, we can find x G X and a sequence (£*)|£i °f scalars such that 

EI& l 

and 
oo TV 

«II2 < E Y.ik-fiC^x) 
i k = l i = 0 

+ e /2 . 

We may also assume, perhaps by replacing x, that £ * is supported on [0, M] for some M. 
Let 

6n = max sup \ft(x) -ft(y)\. 

Notice that <5n —> 0 as n —+ oo. Let no be an integer such that 

mno> M + N. 

If a; G T(JC, n), where n > no, then there is ay'o G /^ such that 

û(a*(/o))> 7*JC G w(*) G ^n , k = 0 , 1 , . . . ,mno - 1, 

and so 
|/i{^(a*(/o)))-y;-(7*jr) < ^ n 

for all i, ̂  = 0, . . . M + N. Therefore 

\ i = 0 
£iru(/i)t£ 
i = 0 

> EM/»^, E&** 
£=0 &=0 

= £ 
M+N 

>E 
*=0 

^ ^ - ^ ( « ( a ^ o ) ) ) 

£&-tf(7**) 
i=0 

> ||a||2 — e for large n. 

(N+\)8n 
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Since e was arbitrary, 

and 

1=1 

IVK^OH — n m S U P 
i = 0 
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