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Abstract

In the framework of Mond-Weir duality a new equivalence between nonlinear pro-
gramming and a matrix game is given. Finally, certain conclusions about convex
programming with nested maxima and matrix games are also included.

1. Introduction

In Dantzig [3], some equivalence between linear programming duality and a
symmetric matrix game is given. Kemp and Kimura [5] gave an equivalence
theorem where the matrix game is not necessarily a symmetric game. In this case
the matrix game depends on primal and dual variables. Chandra, Craven and
Mond [2] presented analogues of results from [3] for certain class of nonlinear
programming problems. The case of convex optimisation with nested maxima
is treated in Preda [8].

The purpose of this note is to give analogues of Theorem 17 due to Kemp
and Kimura [5, page 29] for a certain class of nonlinear programming problems,
where matrix games depend only on primal variables. These problems are finite
dimensional and satisfy certain generalised convexity requirements. Nonlinear
programming problems with linear constraints are studied in Section 2, while
those with nonlinear constraints are treated in Section 3. Finally, certain results
about convex optimisation with nested maxima and matrix games are included
in Section 4. This equivalence is given in the frame-work of Mond-Weir duality
[1,7].
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2. Linear constraints case

Let us consider the linearly constrained nonlinear programming problem (P)
together with its Mond-Weir dual (D), as follows:

minf(x)
subject to: A(x) > b, x> 0;

(D)
maxg(;t, u) = f{x) — uJ(Ax — b)
subject to: V/(JC) - Aru > 0

xJ [V/00 - ATu] < 0, w > 0,

where x e I " , 6 e R * , « eMm, A — (a,7) is an m x n real matrix, the symbol
T denotes the transpose, / : K" —• R is differentiable and Vf(x) denotes the
gradient (column) vector of / at x.

Now we consider the matrix game associated with the following (n + 1) x
(m + 1) matrix Mi(x) (depending onx),

THEOREM 1. Let P° = (z?), Q° = ("?), x = x°/z°, ii = u°/z%, with z° > 0,
z\ > 0. Let iP°, Q°) solve the matrix game Af,(Jc) and PoJMiix)Q° = 0.
Then x and ix, u) are feasible solutions to (P) and (D) respectively with fix) =
gix, u). In addition, if there is weak duality between (P) and (D) then x and
ix,u) are optimal to the respective problems.

PROOF. Because the value of the game (in random extension) is zero and
iP°, Q°) is an equilibrium point it results:

Mxix)Q° <0 and M^xfP0 > 0.

Hence

AJu° - z°Vfix) < 0, (1)

-bTu° + z^Vfix) S 0, (2)
Ax" > z°2b, (3)

+ z^Vfix) > 0. (4)
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But x° >0,u°> 0, z° > 0, z£ > 0 and therefore from above we obtain

A T « - V / ( x ) < 0 , (5)

-bra + xTVf(x) < 0, (6)

Ax > b, (7)

-X T V/(JC) + xJVf(x) > 0. (8)

We further observe from the above

itTV/(i) < bTu < xJAJu < xJVf(x), i.e.,

bTH=xJATu=xTVf(x). (9)

Now, g(x, u) = f(x) - u\Ax -b) = f(x).
By using (5)-(9) we have: i T [ V / ( i ) - AJu] = 0. Thus x, (x, u) are feasible

solutions for (P) and (D) respectively. When a weak duality exists between (P)
and (D) then x is optimal for (P) and (Jc, u) is optimal for (D).

THEOREM 2. Let x and (Jc, u) be feasible solutions to (P) and (D) respectively,
such that uJ(Ax — b) = 0. We define

(P°, Q°) solve the matrix game M\ (x) and the value of this game is zero.

PROOF. We have

P°yMi(x)Q° = (z°xT4T - z°bJ, -zfiTV/(ic) + z°i

= z°z° [xJAJu - bJu - xJVf(x) + xJVf(x)]

Because Jc and (x, u) are feasible solutions to (P) and (D) respectively, and
u1(Ax — b) = 0, we obtain

-- bJu. (10)
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Now (10) and the conditions of the theorem relative to x, (x, u) give

<0,

PoJMx{x) = z\ • (fA1 - b, -JcTV/(.x) + JtTV/(j)) > 0.

Thus (P°, Q°) is an equilibrium point for the matrix game Mx{x) and the value
of this game is zero.

3. Nonlinear constraints case

Let us consider the general nonlinear programming problem (NP) together
with its dual (ND) as follows

(NP)

(ND)

nun j yx)
subject to: a(x) < 0, x > 0;
maxgQt, u) = f(x) + uJa(x)
subject to: V/(x) + Va{x)u > 0

x1 [V/(x) + VO(JC)M] < 0, M > 0,

where x, u, f are the same as in Section 2, a : M" ->• W" is a convex and
continuously differentiable function, and the gradient Va(jc) is an n x /n matrix.

Define now the (n + 1) x (m + 1) matrix M2(x) by

- (a(;t))T xJVf(x)

Now we have

THEOREM 3. Le? P° = (*«), Q° = ("°), x = x°/z°, « = u°/z% with z° > 0,
z£ > 0. Ler (P°, Q°) be an equilibrium point for the matrix game M2{x) and
PolM2(x)Q° - 0. Then x and (Jc, «) are feasible solutions to (NP) anrf (ND)
respectively, with the two objective functions having equal values. If also weak
duality holds between (NP) and (ND), then x is optimal for (NP) and (x,u) is
optimal for (ND).

PROOF. Because(/"\ Q°) is an equilibrium point for M2{x) and PoTM2(x)Q° =
0 we obtain: M2(x)<2o < 0 and PolM2(x) > 0, i.e.,

-z°2Va(x)u - z?V/(ic) < 0, (11)
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T ) M - z°2a{x)Ju + z2
oxTV/(x) < 0, (12)

-z° • xTVa(x) + z\ • xJVa(x) - z°a{x)J > 0, (13)

-z\ • *TV/(x) + z° • xJVf(x) > 0. (14)

Because z° > 0 by (13) we obtain a{x) < 0. But x > 0. Hence x is a feasible
solution for (NP). By x > 0 and (11) we get -z^xyVa(x)u - z%xJVf(x) < 0
and then (12) gives uJa{x)zl > 0. Dividing this relation by z£ > 0 we obtain
iiJa(x) > 0. Using this relation together with u > 0 and a(x) < 0 we obtain

uJa(x) = 0. (15)

From (15) and dividing (11) and (12) by z£ > 0 we obtain (x, M) is feasible for
(ND). Moreover, according to (15), we have g( i , u) = f{x) + uJa{x) = f{x),
i.e., the two objective functions have equal values. This, with weak duality,
proves that x is optimal for (NP) and (x, u) is optimal for (ND).

THEOREM 4. Let x and (x,ii) be feasible solutions to (NP) and (ND) respectively,
with iiya(x) — 0. Let

Then (P°, Q°) solve the matrix game M2(x) and the value of this game is zero.

PROOF. From the hypotheses of the theorem, we have

PoJM2(x)Q0 = {-z°?Va{x) - z"a(x)T + z°xJVa{x), -z°xJVf(x)

+z°xTVf{x)) Q°

= z\-z°2 [-xJVa(x)u + iTVa(x)M - a(xfu

-xTVf(x)+xTVf(x)] = 0,

PoJM2(x) = -z° (xJVa(x) - xJVa(x) + a(x)J, x

= -z\ (a(x)\ 0) > 0.

Thus, (P°, Q") is an equilibrium point for M2(x) and the value of this game is
zero.
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REMARK 1. The hypothesis of Theorems 1 and 3 seems to require a knowledge of
x in order to find x, but such results are not uncommon in nonlinear programming
(see [4], [6], [2, page 126]).

REMARK 2. The hypothesis of Theorems 1 and 3 assure that the Kuhn-Tucker
conditions in x are verified and (Jc, u) is feasible solution for the Wolfe dual of
the problems (P) and (NP) respectively.

4. Convex constraints with the nested maxima case

Let us consider the following programming problem

min/(x) = *(JC) + maxc,(x)

subject to: a(x) < 0, x > 0;
(PI)

where * : R" -+ R, c, : R" -+ R, 1 < i < k, a : R"
continuously differentiable functions.

This problem is equivalent with

(P2)

where c(x) = (c i (x) , . . . , Q(J : ) ) T and e = ( 1 , . . . , 1)T 6 R*.
For (P2), the Mond-Weir dual is defined by

(Dl)

', are convex and

min g(x,y) =
subject to: a(x) < 0, c(x) — ey<0,

x > 0, v 6 R.

max [g(x, y) + u^a^x) + vJ{c{x) - ey)]
subject to: V*(x) + Va(jc) + Vc(x)v > 0

exv=

u > 0, v < 0, x e R, y e R.

Here, VC(JC) is a « x m matrix.
On the other hand, to obtain in this case a matrix game, we consider the

following problem equivalent with (P2):

(P3)

minh(x, y\,y2) = *(•*) + y\ - yi
with the constraints: a{x) < 0,

c(x) - eyx + ey2 < 0,
x > 0, yi>0, y2> 0.
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Now for this case we define the matrix game M3(x, y),

M3(x,y)=

-Va(x) -Vc(x)

^ xJVa(x) - a(x)T xTVc(x) - c(x)T -xyV^(x) + y J

By using the procedure of Section 3, it can be verified that the relations
between primal-dual pair (PI), (Dl) and the matrix game M3(x, y) given by
Theorems 5 and 6 below hold.

THEOREM 5. Let P°y = CroT, yf, yf, z°), Q°r = (MOT, VOJ, Z°),X = x°/z°,
y = {y°- y%)/z°, ii = u°lz°2, v = v°/z°. Let (P°, Q°) be an equilibrium point
for the matrix game Mj(x, y) and the value of this game be zero. Then

a) (x, y) and (x, y, u, v) are feasible solutions to (P2) and (Dl) respectively
with f{x) = g(x, y) + uya(x) + iiT(c(i) - ey);

b) Jc is a feasible solution to (PI);
c) if weak duality holds between (PI) and (Dl), then x and {x, y, ii, v) are

optimal for (PI) and (Dl) respectively.

THEOREM 6. Let x be a feasible solution to (PI) and y e R such that (x, y)
and (x, y,u,v) are feasible solutions to (P2) and (Dl) respectively. We suppose
that: uJa(x) = 0, vT(c(Jc) - ey) = 0. Let us define: z° = 1/(1 + £JL, Jc,- + y),
z°2 = 1/(1 + £J"=1 U] + J2k

s=i i>s)- Then there exist y, > 0, y2 > 0 with
y = yx — y2, such that (P°, Q°) solve the matrix game Af3(ic, y) and the value
of this game is zero, where PoJ = z\ • (xT, yj, yj, 1), QoT = z°(iir, vT, 1).

REMARK 3. There is a weak duality between (P2) and (Dl) because g(x, y) +
MTa(;c) + vJ(c(x) — ey) is a convex function of x, y, for all feasible x, y, u, v.

REMARK 4. If * = 0, we obtain a minmax problem.

REMARK 5. For fractional programs similar comments and conclusions hold.

5. Some further remarks and results

In this section we consider some remarks relative to conditions P°*M\ (it) Q°
= 0 (Theorem 1), uJ(Ax — b) = 0 (Theorem 2) and the way to obtain an
information about compatibility of inequality systems.
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REMARK 6. Relative to Theorem 1, if /n = n, AJ = — A, x is a stationary point
for / and b > 0, then the value of matrix game Mx (x) is zero. Hence the
condition PolMx(x)Q° = 0 is satisfied.

REMARK 7. Relative to Theorem 2, if (x, u) is a feasible solution for (D) and a
saddle point for the Lagrangian of problem (P), then the condition uJ(Ax — b) =
0 is satisfied.

REMARK 8. By virtue of theorems above, useful ideas from both theory and
mathematical programming can be applied to problems in either discipline.
Now we consider an application of the matrix game Mi (x) to the inequality
systems.

Let us first consider a general lemma. In the following we use some notations.
Ifx = (xi,..., xn)T is a vector, then x > Oshallmeanx, > OforalW = 1, 2,.., n;
x > 0 shall signify x, > 0 and x ^ 0; x » 0 denotes that x, > 0 for all
1 = \,2,..,n.

LEMMA 1. Let Cbea matrix game sx p. Then, between the following situations
(il), (i2) and (i3), one and only one is true:

(11) the system crj <C 0, ?j > 0, r) e Rp, is compatible;
(12) the systems

, - 0 ,
(a) r\ > 0, and (b)

are compatible;
(13) the system CT£ » 0, £ > 0, £ € Ms, is compatible.

PROOF. According to the minmax theorem for matrix games we have that there
exists an equilibrium point (£, rj), in the mixed strategies, and a real number v
such that

Ct] < ves and vep < CT£, (16)

where es = (1, 1,.., 1)T e R',ep = (1 , . . . , 1)T e W.
By (16) we obtain (il), (i2) and (i3) according as v < 0, = 0 and > 0.
Hence, between statements (il), (i2) and (i3), at least one is true. If (il) and

(i2) are both true then by (il) and (b) we obtain %JCrj > 0. But Cr) «C 0 and
£ > 0, £ ,£ 0. Thus £TC?7 < 0. Hence we have a contradiction.
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In the same way we obtain that (il) and (i3), (i2) and (i3) respectively, are
not both true.

Using this lemma and M3(x), it is possible to consider a result relative to
compatibility of some inequality systems. Here we consider a special case for
M2(x).

PROPOSITION 1. Let us consider A, an m x n real matrix and b e W". Then,
between the systems

ai = a2b
*l> 0L2 > 0

(17)

a2

ATy
and bJy > 0 (18)

one and only one is compatible.

PROOF. Let f be a constant function on R" and the problem: inf(f(x)/Ax =
b, x > 0). This problem is equivalent to inf(f(x)/Ax > b, —Ax > —b,x > 0).
Then for any x, the matrix M\ (x) is defined by

A7 -A1 0

According to Lemma
(jl) the system

is compatible, and
(j2) the systems

bJy
y €

1 at least

<o
>o
Rm

one of the following statements is true:

AJy « 0
bry >0
y e M!"

and

Aa\ = a2b
aua2>0

ax e W, a2 e R

are compatible.
Now is sufficient to prove that the systems are not compatible simultaneously.

If (ati, a2) is a solution to (17) and y is a solution to (18) then aJAyy = a2b
Jy.
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By this relation together with (ai, a2) > 0, bJy > 0 and AJy <C 0 we obtain a
contradiction.

REMARK 9. We note that (17) is compatible if and only if at least one of the
following systems is compatible:

Aa, = b
«i > 0 (19)
a, e K"

Aax = 0
a, > 0 (20)
a, e Rn.
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