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EXISTENCE THEOREMS FOR SOME WEAK ABSTRACT 
VARIABLE DOMAIN HYPERBOLIC PROBLEMS 

ROBERT CARROLL AND EMILE STATE 

1. Introduction. In this paper we prove some existence theorems for 
some weak problems with variable domains arising from hyperbolic equations 
of the type 

(1.1) utt + Au = f 

where A = \A(t)} is, for example, a family of elliptic differential operators 
in space variables x = (x±, . . . , xn). Thus let H be a separable Hilbert space 
and let V(t) C H be a family of Hilbert spaces dense in H with continuous 
injections i(t): V(t) -* H (0 ^ / ^ T < oo). Let V' (t) be the antidual of 
V(t) (i.e. the space of continuous conjugate linear maps V(t) —> C) and using 
standard identifications one writes V(t) C H C V'(t). If R(t): H-> Vit) 
(into) is determined by ((R(t)x, y))t — (x,y) for x £ H and y 6 V(t), 
where (( , ) ) t (resp.( , )) denotes the scalar product in V(t) (resp. H), then 
R~l(t) is a positive selfadjoint operator in H and S{t) = R~*(t) maps its 
domain V(t) = D(S(t)) one to one onto H with ((x,y))t = (Sx, Sy) (see 
[9] for details). We will always make hypotheses which insure that 
I IS-1 (011 S C! with S-'( • )h measurable in H for h G H (i.e. (5~H • )h, k) 
is to be measurable for k G H). The use of such standard operators has been 
quite successful in describing the variation of the V(t) in weak abstract 
evolution problems (see [9; 10; 11; 12; 15; 16; 17; 20; 21; 34; 44] and see 
also [22; 23] for related work in some strong problems; this was reported on in 
part in [13; 24]). For the intrinsic meaning of the S(t) see [9, 14]. Let now 
W = L2(V(t)) = {u £ L2(H) on [0, T]\ u(t) G V(t) a.e.; Su £ L2(H) on 
[0, T]} with scalar product 

((u,v))tdt= I (Su, Sv)dt 
0 «^ 0 

(Su means S( • )u( • ), for example, and we suppress the t argument in the 
integrals for simplicity). Note that W depends on ( ( , ) ) * and hence on S(t). 
Under the hypotheses indicated for 5 _ 1 ( - ) it follows that W(ZL2(H) 
(cf. [9]). Let a(t, • , • ) be a continuous sesquilinear form on V(t) X V(t) 
with \a(t,x,y)\ S C2\\x\\t\\y\\ t for x, y Ç V (t). One writes 

o(t,x,y) = W(t)*,y)) 
and we assume that 21 ( • ) is a measurable family so that %u Ç W when 
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612 R. CARROLL AND E. STATE 

u G W (cf. [9]); we will call a(t, • , • ) a measurable family of continuous 
sesquilinear forms. Then a natural weak problem related to (1.1) is to find 
u e W with u' e L2(H) and u(0) = 0 (' in £) ' (#) = H valued distributions 
on (0, T); note that u will be continuous (cf. [9]) and we need not work on 
( -oo ? T)) such that 

« v')dt + I (B(i)u\ v)dt + I a(t, u, v)dt 
o «^ o J o 

= P (/,*)#+(«i,»(0)) 
•/ o 

for all v e Wsuch that v' 6 L 2 ( # ) and v(T) = 0 (cf. [32]); the problem with 
u(0) 9e 0 is somewhat more complicated as indicated in [32] and we will not 
discuss it. Here / 6 L2(H) and Ui £ H are given while one assumes that 
B(t) £ 8 (H) with | | 5 ( 0 | | ^ 3̂ and B( • )A measurable in H îor h Ç ff (8(ff) 
is the space of bounded operators H—+H). Under the assumptions listed, 
everything in (1.2) makes sense (note that B{ • )uf { • ) is measurable since 
(B(t)u',h) = (uf,B*(t)h) for h £ H, while 5* ( - )& is measurable since for 
k 6 JET, (B{i)k,h) = (k, B*(t)h)). We remark that Lions only considers 
F(/) = F in [32] and variable domain hyperbolic problems in general present 
serious difficulties not encountered in the variable domain parabolic situation 
(this is perhaps related to characteristics, retrograde light cones, etc. in the 
hyperbolic case); some variable domain hyperbolic results appear in [8; 28; 
31; 33; 40] f and other recent work on abstract hyperbolic problems can 
be found in [1; 2; 4; 6; 7; 25; 26; 27; 29; 30; 32; 33; 34; 35; 36; 38; 39; 41; 42; 
43; 45; 46; 47; 48; 49; 50]. We do not give references here to papers on the 
abstract Cauchy problem, semigroups, or the construction of evolution 
operators unless they explicitly deal with abstract equations of the form (1.1) 
or (1.2); similarly we have not tried to list the recent work on hyperbolic 
systems due to Friedrichs, Phillips, Lax, Sarason, Crandall, etc., nor have we 
given references to hyperbolic situations treated by the methods of singular 
integral operators (see [9] for bibliography in all these cases). 

In section two we reformulate a simplified version of (1.2) as a first order 
system (problem (2.2)). This version involves B(t) = 0 and U\ = 0 with 
a(t, • , • ) selfadjoint and coercive, which is sufficient to indicate the main 
features of the theory developed here. (Extensions of this theory to include 
forms a(t> • , • ) which are perturbations of selfadjoint coercive p(t, • , • ) as 
in section three and to include operators B(t) of the form indicated below 
seem to be straightforward and we will not spell out the details (cf. also 
remark 2.9).) One considers a parabolically regularized strong problem 
(problem 2.5), associated with problem 2.2, to which solutions u 6 can be 
found, and, after obtaining suitable estimates on the ue , limits can be taken 

fSee also an important recent paper: J. Cooper and C. Bardos, A nonlinear wave equation in 
a time dependent domain, TR 71-25, University of Maryland, 1971. 

https://doi.org/10.4153/CJM-1971-069-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1971-069-9


HYPERBOLIC PROBLEMS 613 

in the related regularized weak problem which leads to a solution of problem 
2.2. The resulting theorem (Theorem 2.7) seems quite strong but we remark 
that it is an abstract theorem in the sense that the hypothesis (2.17) is difficult 
to verify in practice (cf., however, remark 3.8 for some interpretation of (2.17) ). 
In section three we work with (1.2) directly using a version of a technique of 
State (cf. [13; 44]) which involves the introduction of a new space of test 
functions. The ensuing result is essentially weaker than Theorem 2.7 but, 
as indicated in section three, the technique is of independent interest, addi­
tional terms are included, and moreover it illustrates again the role of (2.17); 
remark 3.7 provides additional reasons for exhibiting this technique. The 
results have been announced in [19]. 

2. In general one expects results with forms ait, • , • ) which are perturba­
tions of selfadjoint forms pit,-,-) (i.e. pit, x, y) — p(t,y, x)) where 
pit,y,x) =è a||x||*2 — ô|x|2; cf. [1 ; 2; 32; 44], and section three of this 
paper). In this section we simply take a coercive selfadjoint family a(t, • , • ) 
(i.e. a(t,x,x) è a*||x||*2) with \a(t,x,y)\ ^ £z|WUb||« in order to illustrate 
an application of the method of parabolic regularization to a weak abstract 
variable domain hyperbolic situation (for parabolic regularization see, e.g., 
[4; 33; 35]). The ensuing result can evidently be improved upon to include 
additional terms etc. as in (1.2) but we will not dwell on this (cf. comments 
in section one and hypotheses in section three). Now such coercive selfadjoint 
forms a(t, • , • ) induce a norm topology on V(t) equivalent to its original 
topology since aj| |x| |j2 ^ a(t,x,x) ^ cf||x||*2. Hence we introduce a new 
Hilbert structure on V(t) with scalar product ((x, y))t = a(t,x,y), and use 
this structure exclusively in the remainder of this section (with the same 
notation ( ( , ) ) * and || | | t ) . Note that when %{t) is the identity, 21(0 is auto­
matically a measurable family in our new W and neither uniform boundedness 
nor coercivity relative to the old norms is required. 

Now a(t,x,y) = (A(t)x,y) where A(t): V(t) —» V(t) is linear and con­
tinuous (recall that Vit) is the antidual). Note also that ( , ) is linear in the 
first argument and antilinear in the second and one can thank of V(t) = V" it) 
as the antidual of V (t) in formulas such as (Ait)x,y) = {A(t)y,x) = 
(xtA(t)y). We define an (unbounded) operator in H, denoted also by Ait), 
by stipulating that x in V(t) belongs to D(A(t)) if A(t)x G H. Thus, for 
x G D(Ait)), ait,x,y) = (A Q,)x, y) = (Ait)x,y) and this is the same as 
specifying that x in Vit) shall belong to the domain of a linear operator A it) 
if the map y —> a (2, x, y): Vit)—*C is continuous in the topology of H 
(cf. [9; 32]). Consequently, since (A(t)x,y) = a(t,x,y) = a{t,y,x) = 
iA it)y, x) = ix, A it)y) for x,y G DiA it)), we see that A it) is a selfadjoint 
operator in H (cf. [9; 32]); in particular, Ait) is closed and densely defined. 
We recall next (cf. [9]) that there is an isometric isomorphism 

Bit): V'it)->Vit) 
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determined by (x, y) = ((6(t)x, y))t\ hence 

(x,y) = a(f,d(t)x,y) = (A(t)0(t)x,y). 

This formula, together with (A(t)v,y) = ((v,y))t = (6~1(t)v,y)1 shows that 
in fact A(t) = 6-l(t). We recall next from [16] that 0(0 = S~2(t) when 
restricted to H. Indeed for w € H and v G V(t) one has 

(wfv) = (S(t)6(t)w,S(t)v) 

so (w,v) = (w,v) means that S(t)6(t)w 6 D(S(t)) with S2(t)6(t)w = w. 
Thus, when x C D ( i ( 0 ) with 4 (0* = 3> 6 H we have 0(0? = S~2(t)y = x 
so S2(t)x = ^4(0^ for x Ç D(A(t))\ this means that 5 ( 0 = A*(t). We sum­
marize some of this as a lemma. 

LEMMA 2.1. PFÏ/A //z£ Hilbert structure on V(t) defined by ((x, y))t = a (2, x, y) 
it follows that A(t) = 0_1(O: Vit) —» F ' (0 and, as an operator in H, 
A (0 = S2(t) is self adjoint. 

Measurability properties and bounds will be indicated below. Now we will 
change (1.1) into a first order system in order to exploit some results of 
[15; 16] (cf. also [4; 33; 35] for somewhat different formulations). The novelty 
here is that an additional term must be added in the weak problem to take 
into account the variation of the V(t). Thus consider formally U\ = A*u = Su 
and u2 = v! where u £ W and u' G L2{H) (' in SD'(Jff) on (0, T)\ cf. [18] for 
similar reductions). We shall assume from now on that S~1( • ) is weakly C1 

(i.e. that (S~1( • )h, k) is C1 for h, k 6 H). It follows that there are selfadjoint 
operators S~l{t) G 8 ( # ) such that for h, k 6 H (S^&h, k)' = (S^^h, k) 
with ||5_1(0H = ci and | | 5 _ 1 (0 | | ^ 4̂ while 5_ 1(* ) is Lipschitz continuous 
in norm (see [9, Lemma 4.5.7]). In particular S~l(- )h is measurable in H 
for h G H and FF C L2(H). It follows that in 35'(il) (suppressing the t argu­
ment for convenience) 

(2.i) u' = os- îy = 5-̂ 1 + s-w 
provided U\ makes sense, and one is led to pose the following weak problem. 

Problem 2.2. Find 

u - fe) * * = L*W X L'(H) 
such that 

(2.2) - (u, v') + X(u, v) + («u, 5v) = (f, V) 

for all 

v = r 1 ) 6 W X W = SB with v' € § 
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and v ( r ) = 0 where 

(2.3) St - (f1 "J) ; f = (J) 
with f £ L2 (H) and X is an arbitrary real number. 

Existence (or uniqueness) is not affected by the X term (cf. [9]) and X will 
be chosen large enough to aid in obtaining estimates later. We display the 
equations (2.2) also in the form 

(ui, vi')dt + X I (MI, vi)dt - I (u2} Svi)dt 
o J o J o 

(S~1uhSv1)dt = 0) 
0 

(u2, v2')dt + X I (u2, «2)* + I (wi, 5w2)* 
o */ o •/ o 

- / . 

0 

T 

( / , V 2 ) * . 

Thus setting i/i = 5~V for ç G C0
œ(H) on (0, JT) with y/ = 5"V + ^ " V ' 

and taking X = 0, (2.4) leads to 

(2.6) {S~lUu <p')dt — I (u2, <p)dt. 
o J o 

This implies that w2 = (S~lUi)f in 35'(27) and hence given a solution u of 
problem 2.2 (with X = 0) we define u = S~lU\ so that n2 = w' and {u\, Sv2) = 
(Sw, 5^) = a(t, u, v2). Hence (2.5) becomes 

(u',v2')dt + I a(t,u,v2)dt= I (f,v2)dt. 
0 «/ 0 «^ 0 

In a certain weak sense (2.2) corresponds to initial values u(0) = 0, but we 
will not dwell on this; the technique we use gives U = lim u€ weakly in § 
wi thu e (0) = 0. 

We recall next from [16] that one can write W = L2(V(t))' = L2(V'(t)), 
where L2(V'(t)) is defined as r ¥ = {&-*( • )v{ • )\v G W). Following [16], 
we defineL: W->W'byLu = u' with D(L) = {u G PF| w' eL2(H);u(0) = 0} 
a n d ! / : W - ^ W ' b y L ' w = -u'with D(L') = {u £ W\u' Ç L2(H);u(T) = 0}. 
By [16, remark 2.3], L and Lf are densely defined and by [16, Theorem 4.7 
(or 4.8)], Ls = L = (Z/)* = £«,; both results are a consequence of 5 - 1 ( • ) 
being weakly C1 (L denotes the closure of L). 

Remark 2.3. One sees easily that, following the presentation of [16], the 
present theory can be developed for W = Lp(V(t)) 

(with W = Lq(V'(t)) for I + - = l) 
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when ^ 2 . Also, nonlinear A might be envisioned. However, we confine 
ourselves to the L2 case and linear A for simplicity. 

We recall now that a (nonlinear) map Q: W —>W (W being, for example, 
a reflexive Banach space) is monotone if 

(2.8) Re<0(«) - Q(v),u-v)^0 

for u,vÇ: D(Q) C W. When Q is linear and monotone with D(Q) dense we 
say that Q is maximal monotone if it is not the proper restriction of another 
linear monotone operator. A (nonlinear) operator Q: W —>Wr with D(Q) = W 
is bounded if it takes bounded sets into bounded sets; such a Q is hemicon-
tinuous if it is continuous from lines in W to the weak topology of W and it 
is coercive (in a general sense) if Re(Qx, x) è ^(IWDIWI where cp(x) —> °° 
as x —» o° (with <p(x) possibly negative for small x). Now, as in [16], by a 
result of Brezis [3], Ls is maximal monotone since Ls = Lw (this holds also 
for the reflexive Banach space W = Lp(V(t)), p ^ 2) and we cite the follow­
ing special case of a result of Browder [5] (only single valued maps are con­
sidered here). 

THEOREM 2.4. Assume that SB is a reflexive Banach space. Let 8: SB —> SB' 
be a {closed and densely defined) linear maximal monotone map and 
Ë: SB —> SB' a monotone, hemicontinuous, bounded, and coercive map. Then 
2 + E maps D(2) C SB onto SB'. 

We will apply these results to the regularized strong parabolic problem 
associated with (2.2). Thus we consider 

Problem 2.5. Find u e G SB such that 

(2.9) 8u< + Air + gu€ + €»u« = f 

where 

(2.10) 8 = (J- °L); 

«-(rV" i)-
We check first that a solution of (2.9) satisfies (2.2) with a suitable e term 

added. Thus let u e satisfy (2.9) and let v G SB with v ' Ç § and v(T) = 0. 
Then v 6 Z?(8') in an obvious notation and taking SB — SB' brackets in 
(2.9) with v we obtain 

(2.11) - (u% v % + x(u% v)s + (2lu% Sv)^ + e(5u% Sv)^ = (f, v)*. 
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Indeed the individual equations in (2.9) are 

(2.12) Lsux* + \ui* + d-lS-lS-liii* - Su2* + drlux< = 0 

(2.13) Lsu2* + \u2* + Sus + érH2* = f 

and one notes here that if x £ H and v G V(t) then (x, v) = (x, v) whereas 
if x e V'(t) andz; € V(t) then 

(2.14) (x,v) = ((foe,»)) = (S6x,Sv). 

Hence, in appropriate spaces, we have (^~15~15'~1^i€, vi) = (5_1Wi% Svi)> 
-(Su2

e,vi) = -{Su2% vi) = -(w2
e , 5»i), {B-Iux%vi) = (5«i%5»i), etc., so 

<gu€, v) = (2lu%Sv), (S3ue, v) = (5u e ,5v), etc. Now the idea in what 
follows is to find solutions u e of (2.9) with |u€|g and €f||ue||gs bounded (note 
that one does not expect [[u€|(as to be bounded; cf. [35]). Then by weak com­
pactness (or weak sequential compactness) we can take limits in (2.11) as 
€ —•> 0, which leads to a solution of (2.2). 

By the previous discussion S is obviously maximal monotone and it remains 
to see when S = S + X + e93 satisfies the conditions of Theorem 2.4. First 
one sees that Ê is obviously continuous from SB to SB' since the injections 
SB -» § -*> $3' a r e continuous and 0 - 1 is an isometric isomorphism SB —> SB'. 
Therefore S is trivially hemicontinuous and, since it is continuous and linear, 
6 is also a bounded map. We need consider therefore only Re((Su, u ) = S 
which, using (2.12) and (2.13), is the sum of two terms: 

(2.15) Ei = X|^I|2
L2(H) + Re(5-%i, Sui)L2{H) —Re(Su2,Ui)L2iH) + «ll^iH^2 

(2.16) E2 = ^\u2\
2

L2iH) + e\\u2\\w
2 + Re(Suuu2)L2iH). 

Since Re (Su2, U\) = Re (Sui,u2), in order to have coercivity in the form 
S è e||u||22B (and thus also monotonicity since 6 is linear), it suffices to 
assume that 

(2.17) Re(x, ^ (O^G)*)* ^ -j8|*U8 

for x G V(t) and then we take X > fi (the hypotheses (2.17) will also arise 
in section three); if /3 ^ 0 we simply neglect this term. Thus under these 
circumstances we can apply Theorem 2.4 to obtain 

THEOREM 2.6. Let a(t, • , • ) be a family of continuous sesquilinear coercive 
self adjoint forms, and put on V(t) the corresponding Hilbert structure, so that 
A \t) = er1^) with S2(t) = A (t) in H as in Lemma 2.1. Assume that S~l( • ) 
is weakly C1 and suppose that (2.17) holds. Then for X > ft there exists a solution 
u€ of problem 2.5. 
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Now our solutions IT satisfy (2.12) and (2.13) and we recall from [16] 
t h a t Re(Lsu, u) ^ 0. Thus , using (2.15), (2.16), and (2.17), one obtains 

(2.18) e||ir||2B2 + (X - 0 ) | u V ^ Re</ , u^) 

= R e ( / , ^ 2 e ) 
^ 1/ \L2(H)\U2€\L*(H) 

S à\u2
€\2LHH) + \f\2LHH)/à. 

Consequently, taking ô < X — /3 we see tha t , for X > /3, | i r | $ ^ c*> and 
€^|[ue|lias S CQ. T a k e now for simplicity e = en —» 0, so by weak sequential 
compactness there exists a subsequence u e n (again denoted by en) with 
u e n - ^ u weakly in § . Since 21 is linear and continuous from § to § i t is 
weakly continuous (cf. [9]) and we can take limits in (2.11) to obtain (2.2); 
note here t h a t 

(2.19) en\ (Sir», SV)Q\ ^ W | S v | £ - » 0 

because |SuC n |^ = |j"Uie"||̂ 33- This proves 

T H E O R E M 2.7. Under the hypotheses of Theorem 2.6, there exists a solution 
of problem 2.2. 

Remark 2.8. When V(t) = V we note t h a t in general 5 _ 1 ( / ) will still depend 
on t since a(t, x, y) will usually depend on t for x, y G V. Thus , some differen­
tiabil i ty relative to the forms a(t,x,y) remains in the hypotheses, as one 
expects from [32]. 

Remark 2.9. I t is clear t h a t by sui tably increasing X the preceding theory 
applies to selfadjoint forms a(t,x,y) where a(t, x, x) }^ at\\x\\t

2 — fi\x\2 

(cf. (2.4) and (2.5) and the s t a t ement immediately following). One would 
then take ((x, y)) t = a(t, x} y) + J3(x, y). 

3 . One has the impression from section two and previous work of S ta t e [44] 
t h a t whenever a(t,x,y) = p(t, x, y) + r(t, x,y), with r(t,x,y) a small 
per turba t ion of a selfadjoint coercive p(t,x,y)} then the introduct ion of a 
new scalar product ((x,y))t = p(t, x, y) on V(t) allows one to deal a t once 
with a more meaningful S{i)\ thus a certain economy in the hypotheses is 
promised. In view of remark 2.9 we need only consider coercive selfadjoint 
p(t,x,y). In this section we give a version of a technique of S ta te [44] in 
which the new scalar product is now used. This technique involves working 
with (1.2) directly by introducing a new space of tes t functions and was 
reported on briefly in [13]; the hypotheses indicated in [13] imply t h a t 
V(t) — V, as pointed ou t by T . K a t o (cf. [16]), b u t the technique is flexible 
and leads to a result using (2.17) (cf. [44]). T h e result is weaker in certain 
respects than Theorem 2.7 bu t i t contains terms no t in (2.2) and i t i l lustrates 
again the role of (2.17); we include it also to display the technique of using 
new spaces of test functions and remark 3.7 provides addit ional mot ivat ion. 
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This kind of technique has led recently to some existence results for first order 
problems where regularity of data is systematically inserted into the problem 
and then an equivalent problem with new test functions is solved (see 
[12; 17; 37]); we consider such techniques an interesting complement to the 
Lions Projection Theorem. 

Thus we take a = p + r as indicated below with \p(t, x,y)\ ^ £7ll#IUM|*. 
Then given that p(t, • , • ) is selfadjoint with p(t, x, x) ^ a^|x|[^2 we put on 
V(i) the new scalar product ((x, y))t = pit, x, y) and use this from now on. 
As before, writing ((x, y))t = p(t,x,y) = (($(*)#> y)) t, we have ty(t) is the 
identity and no measurability assumption is required since we work in the 
new W. We write also r(t, x, y) = (R(t)x, y) and we assume that Ru G L2(H) 
for u G W with \r(t,x,y)\ g ^sll^lhM (cf. [32]). Operators 6(t) and S(t) are 
determined as before and we write p(t,x,y) — (P(t)x,y) with P(t) = S2(t) 
as an operator in H. 

The idea now is to work with (1.2) directly and use the Lions Projection 
Theorem applied to suitable spaces. Thus let W = L2(V(t)), emphasizing 
that this is the new W determined by the p(t, • , • ), and set 

F = {ue W\u' G L2(H);u(0) = 0}, 

K = {v G W\v' G L\H) ; v(T) = 0}, 

and $ = L>\<p(t) = S~\t) J ' e2XyS(X)v(\)d\ for v G Kj 

where 7 ^ 0 is real. If we call the left side of (1.2) (Eu, v) and the right side 
L(v), then the problem to solve is 

Problem 3.1. Given / G L2(H) and U\ G H find u G F such that 
E(u,v) = L(v) for all v G K. 

Now we assume again that S~l ( • ) is weakly C1 and, if <p G $, it follows that 

(3.1) <p' - $r*S<p = e2^v. 

Therefore we can write (note that (p(0) = 0) 

(3.2) Ë(u, ip) = E(u, v) = £ (« , ér2* V - S~lS<p))\ 

(3.3) £(*>) = L(i>) = (uly «,'(0)) + f * (/, e"27 V - $-lS<p))dt. 
J 0 

Then solving problem 3.1 is equivalent to solving 

Problem 3.2. Find u £ F such that E(u, ip) = Z(p) for all ip G $. 

We check first that $ C F algebraically. Clearly <p(0) = 0 and <p(t) G 7 (0 -
Then, using Holder's inequality, one has 
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(3.4) I M U 2 = \S<p\\Hm = (T P ' e2yXS(\)v(\)d\\dt 
J o I J o I 

^ cuj*(f^\Sv\2d\)dt =g CnT\\v\\w\ 

Finally from (3.1), we see that <p' G L2(H) since v G W CL2(H), and 

(3.5) |5_1^U2(ff) g c4|5^|£2(JÏ) = C 4 |M | IF 

where | | 5 _ 1 (0 | | ^ £4. We introduce a scalar product on F by 

(3.6) ( ( « , « 0 ) F = ((titv))w+ (U\V')LHH), 

whereas for <£ we write 

(3.7) ((*, * ) ) . = ((*>, * ) ) , + (*>'«)), * ' (0)) . 

I t follows easily that F is a Hilbert space. Note that from 

un(t) = I **'(£)# 
•/ o 

there results 

k(0l ^è(/oV'(S)lW)3 

and hence z/(0) = 0 is preserved in taking limits. Since the injection 3> —> F 
is obviously continuous we can state 

LEMMA 3.3. F is a Hilbert space and $ C F is a pre-Hilbert space with con­
tinuous injection. 

This serves as context for the Lions Projection Theorem (see [32]) which 
we cite as 

THEOREM 3.4. Let $ C F be a pre-Hilbert space contained in a Hilbert space F 
with continuous injection (<£ not necessarily dense or complete). Assume that 
E(u, <p) is a sesquilinear form on F X $ with u —> Ë(u, <p): F —» C continuous 
and \E(<p, <p)\ ^ e||<p||$2. Let L be a continuous conjugate linear form on <i>. Then 
there exists u G F such that E(u, <p) = L(<p) for all <p G <ï>. 

Now, looking at the left side of (2.1), it is obvious that u —» E(u,v) = 
Ë(u, <p): F—+C is continuous so, in order to apply Theorem 3.4, it remains 
only to check that L is continuous and that \Ë(<p, <p)\ ^ e |MU2 for <p G 3>. 

LEMMA 3.5. The map <p —•» L((p): $ -+ C is continuous. 

Proof. First, referring to (3.3), we note that 

|(«i,*>'(0))| ^ W 1^(0)1 £cl2\<p'Mi-

Further, since \a + b\2 ^ 2 (a2 + 62) and e~27' g 1, we have 
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(3.8) f\/,^V-^%))^ I J o I 

^ V e-2yV\W - trls<p\dt 
J o 

•/ o 

-Cu\io {^' 

(\^\'+\$-1Sv\
i)dti 

\i 

g C l 4 | | ^ | | * . 
• ) * 

Now write 

(3.9) 

(3.10) 

X = Re f ait, <p, <p' - S^S^e-^'dt, 
J o 

Y = Re \ (B(tW, <p' - Sr^rie-^'dt, 
J o 

Z = -Re V {#', (e_2YV - &-lSV))')dt, 
J o 

(3.11) 

so X + Y + Z = Re E(<p, <p). We note first that if <p Ç $ with 

h= S<p= f V7\S(X>(X)dX 
•/ o 

then 

(3.12) ! * ( * , *, *) = | ((*. *))i = (*. * ) ' = 2 Re(*. A') 

= 2 Re (Sp, S OP' - S - 1 ^ ) ) = 2 Re />(*, *>, / - S^Sp) . 

Furthermore one has easily 

/

T I 

r(t,<p,<p' - 5 " 1 5 ^ ) e ~ 2 7 ^ 
o I 

â 2 c . f r | M | , ( k l + |5-15«»|)«-,,r,«tt 
• / 0 

gc 8 ( l + 2c4) f ' l M I . V ^ t e + c, f ^ k ' l V 2 1 " * . 
•/ o •/ o 
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Consequently there results 

(3.14) 2X = I 4, P(*> V, <p)e~""dt + f 2 Re r(t, <p, <p' - S-lS<p)e~2ytdt 
J o at J o 

«/ o 

+ (2T - c8 - 2c8C4) | |M| ,V* 'd / . 
•/ o 

I t is evident that 

(3.15) 2 F ^ -2cz (T y\\~2ltdt - ^ 4 (T (W'\2 + I k H i V 2 7 1 ^ 
«/ o Jo 

so it remains to find estimates for Z compatible with (3.14) and (3.15). The 
procedure we use involves the technical assumption that 5 - 1 is weakly C2 and 
in view of Theorem 2.7 this seems excessive in general (cf. remarks in sections 
one and two about extensions of problem 2.2 to include additional terms). 
Thus, techniques based on new spaces of test functions and Theorem 3.4 may 
not always give the best possible results, but they have provided already a 
number of general abstract results in areas where no such theorems were 
previously available (see [12; 17; 37; 44]). In particular such techniques are 
seen to be a useful adjunct to the Lions Projection Theorem. 

Now to estimate Z, we recall that <p(0) = 0 and v{T) = 0 implies that 
(<pf - S-^Sip) (T) = 0. Therefore 

(3.16) 2Z = - 2 Re V ((*>' - S " 1 ^ ) ^ 2 7 ' , (éT* V - S-lS<p))')e2ytdt 
J o 

- 2 Re J (Sr'Sv, (éT2r V - S-'S^Y)^ 
J o 

= | ^ (0 ) | 2 + 2 7 / ^ W - S~lS<p\2e~2ytdt 

+ 2 Re I ((S-'Sv)', tp9 - STlSv)e-2ytdt. 
J 0 

However we can write (S~~1S<p)/ = S^Scp + S~1(S<p)/ and one notes that 
<p\r S^Scp = S-'iScpY since <p' = (S^S^Y = S~lS<p + S " 1 ^ ) ' . Now 
H^S1^) | | ^ Cn and, looking at individual terms, we have 

(3.17) (S'lS<pf <p'- $-lScp)e~ 
0 

iyidt 

è (eu2 + 2cuCi) (T \y\\t
2e-2ytdt + V W\2e-2-"dt. 

J 0 J 0 

https://doi.org/10.4153/CJM-1971-069-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1971-069-9


HYPERBOLIC PROBLEMS 6 2 3 

Further, using (2.17) we obtain 

(3.18) 2 Re r (S-\S<p)', S-\S<p)')e-2ytdt ^ - 0 f * \S~\S<pY\2e-2ytdt 
Jo J o 

ï> _ £ ÇT y _ $-1sv\*e-*"dt. 
J o 

Consequently, we obtain from (3.16) and (3.18) 

(3.19) 2Z à k ' (0) | 2 + (2T ~ 0) | r 1^ - S^S^e'^'dt 
J o 

- ci,(c„ + 2c4) f * |M|«V2^ - f r Ip'lV^'*. 
t/ 0 •/ 0 

Finally, since ab S àa2 + b2/8, where we take 0 < ô < 1, there results 

(3.20) (T W - S-'S^e-'^dt è (1 - «) fT k ' | V 2 7 ^ 
J o •/ o 

Therefore (3.19) becomes 

(3.21) 2 Z â k ' ( 0 ) | 2 - c 1 6 f r | W | « V * " & + c „ f r | ^ ' | V 2 7 ^ , 
•/ 0 t / 0 

where 

c16 = (27 - jS)(l/ô - l)c4
2 - c15

2 - 2ci5c4 and c n = (27 — /3) (1 — Ô) — 1. 

Combining (3.14), (3.15), and (3.21) it follows that 

(3.22) 2 Re £(*>,?) ^ |<?'(0)|2 

\\(p\\t
2e~2ytdt 

o 

\<p'\2e~2ytdt. 
o 

We write 27 — c8 — 2C$CA — CzC\ — Ci6 = 27(1 — c4
2(l/ô — 1)) — C\% and 

en — C3C4 "~ 2c3 — c$ = (27 — j8) (1 — 5) — tig. Now first pick ô so that 
1 > c4

2(l/ô ~ 1) (i.e. c4
2/(l + c4

2) < ô < 1) and then pick 7 large enough 
so that (27 — j8)(l — Ô) > c19 with 27(1 - c4

2(l/ô - 1)) > ci8. Under these 
circumstances 2 Re £ (9 , <p) ^ e ||<£>|k2 and we have 

THEOREM 3.6. Let a(t, x, y) = p(t, x, y) + r(£, x, y) where p(t, • , • ) is a 
family of continuous, s elf adjoint, coercive, sesquilinear forms on V(t) X V(t) 
and put on V(t) the corresponding Hilbert structure so that P(t) = fl""1^) w ^ 
S2(t) = P(t) as an operator in H. Let \r(t,x, y)\ ^ ^sIMUM for x, y Ç V(t) 
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and assume that Ru Ç L2(H) foru^W where r(t,x,y) = (R(t)x,y). Let 
B(t) 6 2(H) with ||i3(/)|| ^ c% and B(- )h measurable for h £ H. Assume that 
S~l( • ) is weakly C2 and suppose that (2.17) holds. Then there exists a solution 
of problem 3.1. 

Remark 3.7. In [44] State proves a version of Theorem 3.6 without intro­
ducing the new Hilbert structure determined by p(t, - , - ). This formulation 
requires one to express the interaction of p(t, • , • ) with the way V(t) varies 
in order to describe d/dtpit, u, v) and this originally led to the introduction 
of the space <£. Such theorems are indeed necessary since one may know how 
the V(t) vary in their original description by 5" 1 (t) but not know a priori much 
about the new 5_1(/) determined by p ( / , - , - ). State's result in [44] connects 
these descriptions and the linking hypothesis is that S(/)^3(/)S_1(/) D e weakly 
C1 where p{t,x,y) = ((^(t)xyy)) and S(t) is the original standard operator 
(cf. [13]). We have developed the technique here in section three in terms of 
the new S(t) for purposes of comparison with section two and the application 
of the method of section two using the original S(t) is developed in [44]. 

Remark 3.8. Suppose that for h £ H fixed we have 

(3.23) | \Sr\t)h\* ^ -2p\S-\t)h\2. 

Then ReiS^^h, S^&h) ^ -/3\S-1 (t)h\2 and setting x = S^iOh we have 
Re(x, 5" 1 (t)S(t)x) ^ — jô|x|2; since any x G V(t) is of the form x = S~l(t)h 
we obtain (2.17). Thus (3.23) implies (2.17) (and conversely) and in order to 
elucidate (3.23) we set first y = | 5 _ 1 / J | 2 . Then from y' + 2/3y ^ 0 one has 
(y exp 2/3/)' ^ 0 and thus upon integration y(t) exp 2/3/ ^ y(s) exp 2/3s, for 
t ^ s. Therefore, setting 5-1(/)/z< = z, one obtains for z Ç F(/) (taking square 
roots) 

(3.24) IS - 1 ^)^ / )* ! ^ \z\ exp /3(/ - 5). 

Consequently, S~1(s)S(t) extends by continuity from the dense set V(t) to all 
of H as a bounded operator T for t ^ s. Thus 7"* is defined in all of H, so for 
x Ç 7 ( 0 and y G i ï 

(3.25) (x, T*y) = (7*. y) = ( S ^ W ) * , ? ) = ($(*)*, S"1 (*)?). 

This shows that x —» (5(/)x, 5-1(s);y): F(/) —» C is continuous in the topology 
of H, which implies that S~~1(s)y £ D(S(t)) (recall S(t) is selfadjoint); it 
follows that T*y = S(t)S~1(s)y for any y £ H and S(/)5 - 1(s) is therefore a 
bounded operator for / ^ s. In particular, V(s) C V(t) for / ^ s. 

We note also that if V(s) C V(t) f or / ^ s then P = S(t)S~l (s) is a bounded 
operator in H (cf. [9]) and for y £ F(/) with x £ H one has 

(;y,Px) = (S-i(s)S(/)y,*). 
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Thus, for y G V(t), P*y = S^^S^y and hence S-1(s)S(t) extends to be a 
bounded operator T = P* in H. We do not know however if (3.23) holds in 
this case; it seems probable that it is not so in general. A concrete example 
where (3.23) holds is provided by V(t) = HaU)(-co, co) where a(t) = 
(2T - t)/2T (for details see [44]). 
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