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1. Introduction. The distribution of heat in an infinite rod is closely bound 
up with the theory of the Weierstrass transform. This connection is exhibited 
most clearly in the theory of Widder [3]. Consider the heat equation 

1.1 du _ dju 
dh dx ' 

Widder has shown that if u(x, h) satisfies 1.1 and if u(x, h) > 0 for — oo < % < oo, 
a < h < b then we have 

1.2 u{x, h") = f k(x - y, h" - h')u(y, hf) dy 
*J — on 

if a < h', h" < b, h" > h!. Here 

1.3 k(xt t) = (4TT/)~§ exp ( - x2/4t) 

1.4 J CO 

exp [ — ty2 — ixy] dy. 
-oo 

Let @w and § n be real m- and w-dimensional vector spaces respectively. We 
shall write the elements X, Y, Z of Sw and H, H\ H" of § n as column matrices, 

X = Y = 
r 3 ^ 2 ^ 

Z = 

H = 

*hn 

H' = 

\KI 

H" = 

In place of u(x, h), we consider u(X, H) depending upon the m + n real variables 
Xi, . . . , xm, hi, . . . , hn, and instead of the heat equation 1.1, we consider the 
system of partial differential equations 

1.5 du _ Y* d_^L_ l 

dhi f-jLi dXt dXj lj I = ! , . . . , « . 

Here the a's are real constants and 
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l _ l 
a>ij — dji. 

In the present paper we shall develop for such systems a theory analogous to that 
of Widder. 

Let £§(m+i) be the space of real symmetric m X m matrices, 

(
hi hi . . . t\m \ /tu hi . . . hm \ 

hi hi ••• hm J rp, __ I hi hi . . . hm 1 
t"ml *m1 • • • tmm % 1 ^ml • • « *mm 

We may define a partial ordering in 3^m(m+i) by writing T' > T if T' — T is 
positive definite. We introduce corresponding to the system 1.5 a mapping 
H—>Haol § n into £jTO(TO+i), the (i, j) entry of Ha being defined as 

n 

X a'* *« (*>i = 1, 2, . . . , m). 
Z = l 

We shall show that if u(Xt H) satisfies 1.5 and if u(X, H) > 0 for X 6 gm, 
H £ 5ft where 9t is an open convex subset of § n , then 

1.6 «(X, £T") = fg fe(X - F, H"a - i ï 'B)a(F f if ') d F 

if H', H" e % H"a > H'u. The function k(X, T) is defined by the formula 

1.7 k(X, T) = (2ir)-m f exp [ - F T F - *F*X] dF ; 

here 7" must be positive definite. An explicit formula for k(X, T) (due to Czuber) 
is given in §3. 

If A is any matrix, A* is its transpose; thus 
m 

Y*X =T,yt x« 
i= l 
m 

Y*TY^"£yttijyj. 

2. A special case. The equation of heat transfer in ra-dimensional space is 

- « du y£k d u du 

In this section we shall establish our theory for this special case. If m = 1 in 
2.1 we have the equation considered by Widder. It is to be noted that only 
relatively minor adjustments are needed to make the extension from 1 to m 
dimensions. We set 

2.2 k(X, t) = (4irt)-im exp I - ~ X*XJ, 

k{X% t) = (27r)~m J g exp [ - tY*Y - iY*X] dY. 
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Let us write \X\ for 
m 

(x*x)i = (£*?)*. 
l 

We begin with a discussion of the convolution transform 
2.3 f(X, h) = J g Jfe(Z - F, A)0(F) rfF 

under radial symmetry. A function <j> defined on ©m is said to be radically 
symmetric if 4>(X') = <t>(X") whenever \X'\ = \X"\. If in formula 2.3 <t>(Y) is 
radially symmetric, then for each h, \p(X, h) is also radially symmetric and the 
w-fold integration in our formula may be collapsed to a single integration with 
respect to a new kernel, which we need later and which we now compute. 
Since <j>(Y) depends only upon | Y\ = p we write </>(p) instead of <t>(Y). Similarly 
since ^(X, h) depends only upon \x\ = r and h, we write \K>, h) instead of 
MX, h). 

Introducing spherical coordinates, 

yi = p cos 0i 
y<z = p sin fa cos fa 
y% = p sin fa sin fa cos fa 

ym-i = P sin fa sin fa . . . sin <£OT_2 cos #m_i 
3>m = p sin </>i sin <£2. . . sin </>w_2 sin </>m_i, 

and setting #i = r, x2 = #3 = . • . = xm = 0, we have 

/»00 flT /»7T /»7T 

*(r, h) = (4x/)-*" . . . «^(p)e-(r ,-2rpcos*'+ ' , , , /4! 

J o J-TTJO JO 

pm~ sinm~ fa . . . sin</>m_2 dfa... d<j>m-\ dp. 

From this we obtain 

By Watson [2, p. 79] we have 

f' rpcos*,/2( m-2 , , T(\m — | ) -y/w /Vp\ 
J e sin 0, d^ = —J-J^^— hm-\jt)• 

We finally get 

2.4 *(r,*) = (2tyx £e-^')/uP
imr-im+1Iim^(^)4,(P)dP. 

The function w(X, h) is said to belong to 5, w(X, A) Ç 5, at (X0, Ao) if there 
exists an open set in Em X H containing (X0, ho), throughout which the partial 
derivatives 

du d U ,-> * \ 

are continuous and if 
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du 

\X\ < R, 

\X\ < R, 

\X\ = R, 

X = XQ,\JI = h0. 

0 < h < c 

t = 0, 

0 < t < c, 

We denote the set of points 

by DRc and the set of points 

by BRc. 

LEMMA 2a. If 

1. u{X, h) G S for (X, h) 6 DRc; 

2. lim u(X, h) > 0 /or (Z0, h) G £*c 

/Ae# u(X, h) > 0 wz Z}#c. 

Suppose that there exists a point (Xi, &i) G DRc at which we have u(Xi, hi) = 
— / < 0. Form the function 

v(X, h) = u(X, h) + k{h - Ax) 

where & > 0 is chosen so small that 

]im z;(Z, A) > - J/ (Zo, A0) € £*«. 

For ô > 0 suitably chosen v(X, h) > — / within a distance 8 of 1?^. Conse
quently the minimum of v(X, h) in DRc is attained at some point (X2, fe) of 
DRc. The function z>(X, A) satisfies the partial differential equation 

2.5 dv 
-* . 

At (X2, A2) we must have 

2.6 Av> 0, 

2.61 I<°-
(If h2 5e c the equality holds in 2.61.) Equations 2.5 and 2.6, 2.61 are in contra
diction . 

LEMMA 2b. If 

1. u(X, h) e S, X e (£», 0 < h < c; 

2. lim u(X, h) = 0, l o £ gw; 

3. Jlf(r) = l.u.b. \u(X,h)\; 
| x |=r , 0</»<c 

4. Jlf(r) = 0 ( 0 , r - > + » 

for some a > 0; /Aew w(Z, H) = Ofor X f gffl, 0 < H c 
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Take X > 1 and form the auxiliary function 

UB(X, h) = XM(*)(«)* ft"1
 e-

(W'+R')lih Rim \X\~im+1 V - i ( ^ j p ) . 

Using the asymptotic formula 

2.7 /„ ~ ex/ y/~2™ (x -* + oo ), 

we find that [2] 
UB(X,h)\\x\-B~\(c/h)*M(R), # - > « , , 

uniformly for 0 < ft < c. Thus when R is large 

UB(X, ft) > M(R), \X\ = R, 0 < ft < c. 

The function UR (X, ft) - u{Xy ft) belongs to S for X 6 gro, 0 < ft < c. When 
i? is large 

Km tfa(X, ft) - «(X, ft) > 0, (Xo, ft0) 6 Sac-

By Lemma 2a we have 

u(X, ft) < UB(X, ft), (X, ft) 6 DBe. 

Fix X and ft and let R —> + œ. Making use of 2.7 we find that w(X, ft) = 0 
for 0 < ft < l/4a, X G @w. If 4a < 1/c, our proof is complete. Otherwise 
repeat the above argument with u(X, ft) replaced by u(X, ft + l/4a), and so 
forth. 

L(dm) is the class of functions <t>(X) defined for X Ç Sm and such that 

J@ ) ^ | 0 ( X ) | ^ 

exists. 
Exactly as in [3] we may establish 

LEMMA 2C. If 

1. <t>(X)e~alxl* £ L(®m) for sotne a > 0, 

2. F(X, ft) = §^k(X - F, ft)0(F) dY, 

then F(X, ft) is defined and belongs to S in the strip 0 < ft < l/4a. 

LEMMA 2d. Under the assumptions of Lemma 2c, we have 

lim 4>(X) < Hm F(X, ft); Hr̂  F(X, ft) < îîr^ 0(X). 

LEMMA 2e. If <t>(Y) is integrable for \ Y\ < A then for any c > 0, we have 

lim (l.u.b. f k(X - F, A)0(F) <ZF ) = 0. 

LEMMA 2f. If 

1. «(X, ft) € 5, 0 < ft < c, X 6 Sm; 
2. w(X, ft) > 0, 0 < ft < c, X e <5»; 

/ften we ftaz/e 
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j; „ k(X - F, Ô > ( F , 8) dY < u(X, 8' + 8), 

0 < <5, 0 < 5', 8 + 5' < £, X G <£». 

Consider the function 

fU(X, A) = «(X, A + 5) - f *(X - Ff *)«(F, 8) <2F 
J\Y\<A 

where A is a positive constant. If 8' < c' < c — 5 then ^ ( X , A) belongs to S 
for (X, A) G DRc> for any i?. Let I > 0 be given. Using Lemmas 2d and 2e we 
see that, if R is sufficiently large, 

lim vA(X, h)> - I, (X0, h) G 5* lC ' . 

Lemma 2a implies that vA{X, h) > — / for (X, h) G DRtC>. Letting /—>0 + 
and i?-> + oo, We find that vA(X, h) > 0 for X G @m, 0 < h < c'. Setting 
h = 8' we have 

f &(X - F, 0 > ( F , 8) dY < w(X, 5' + 8). 
J\Y\<A 

Letting A increase without limit, we obtain our desired result. 

LEMMA 2g. If 

0 <h <c, X G ®m; 
0 < h < c, X £ ®m; 

X G ®w; 

w/(X, A) = I «(X, /) dt. 

It is easily verified that w{X,h) G 5 for 0 < h < c, X G @w. We have w(X, hi) 
> w(X, A2) if c > hi > h2 > 0. It follows that 

Jr w(X, A) > 0 

and hence that Aw(X, h) > 0 for 0 < h < c\ equivalently w(X, h) is a subhar-
monic function of X for each value of h, 0 < h < c. 

Let 8 be an arbitrary number 0 < 8 < c and let 8' be such that 0 < 8' < c — 8. 
By Lemma 2f we have 

w(0, 5' + 5) > (47n5)-*m L *- | r | - / 4 a
 W ( F , Ô') dF. 

Again we have 

L e-lYl'/Uw(Y,8')dY> M(X) f *e/(F,o')^F 
Jl&m J\Y-X\<1 

where 

1. u(X, h) G S, 
2. w(X, A) > 0, 
3. u(X, 0) = 0, 

ew u(X, h) = 0 
We set 
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Jlf (JO = g.l.b. [e-]Y]2,ul 
\Y-X\<1 

Since w(Y, b') is subharmonic 

It follows that 

for a > 1/45. Since 

J\Y-X\<I 

w(X,b') = 0(expa |Z | 2 ) 

we find that 

J- w (X, h) > 0 

l.u.b. \w(X,ô)\ = 0(ea*°). 

Applying Lemma 2b we see that w(X, h) = 0 for 0 < h < 5', X Ç Sm. Since 
ô' < c is arbitrary we have w(X, h) = 0 for 0 < h < c, X £ @m. This in turn 
implies that u(X, h) = 0 for X Ç @TO, 0 < A < c. 

THEOREM 2h. / / 

1. u(X, h) e S for X £ ($mia <h < b\ 
2. u(X, h) > 0 for X £ ®m, a < h < b; 
3. a < h', h" < b, h" > h'\ 

then 

u(X, h") = L *(Z - F, A" - ft'MF, A') dY. 

By Lemma 2f we have 

L *(X - F, h - h')u(Y, h') < u(X9 h) 

for hf < h < b. This together with Lemma 2c implies that 

L k(X - Y,h- h')u(Y, h') dY e S 

for h' < h < b, X £ gro. Thus 

v(X, h) = «(X, A) - (L jfe(X - F, h - A > ( F , A') rfF 

belongs to 5 and is non-negative for hr < h < b, X Ç (§m. Moreover, by 
Lemma 2d, 

lim »(X, A) = 0. 

Lemma 2g implies that v(X, h) = 0. Setting A = A", we obtain the desired 
result. 

3. The main theorem. Let T Ç £jm(m+i) be positive definite and let X Ç gm. 
We set 
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3.1 k(X, T) = {2ir)~m L exp [ - Y*TY - iY*X] dY. 

Since T is positive definite, there exists a constant e > 0 such that Y*TY > 
e\ F|2. This insures the validity of our definition. Let $ = [#<*]*, j - i m be a 
real unimodular matrix. We assert that 

3.2 k&^X, T) = *(X, <i>r$>*). 

We have 

iC*" 1 ^, r ) = (2w)-m (L e x p [ - F * ! T F - iF**" 1*] <ZF. 

Making the change of variable F = <ï>*Z we obtain 

k(JTxX, T) = (27r)~m J g exp [ - Z*<ï>r<ï>*Z - iZX) dZ = * ( * , <ï>r<ï>*). 

This formula may be used to compute k{X, T) explicitly, see [1, p. 185]. By 
this method, Czuber has shown that 

>(lr;lM 3.3 k(X, T) = ^ _ 

In particular if T is a diagonal matrix with equal entries, 

/T 0 . . . Ov 
# 0 T . . . 0 \ 

V0 0 . . 

then k(X9 T) is equal to k(X, r). 
Consider the system of partial differential equations 

i A du ^ d u i , i i 

where the a's are real constants. The function u(X, H) is said to belong to S (a) 
at (Xo, Ho) if there exists an open set in Em X Hn containing (X0, H0) throughout 
which the partial derivatives 

du n . N d2u . . 4 

are continuous and if equation 3.4 holds for X = Xo, H = H0. 

LEMMA 3a. If: 

1. u(X, H) G 5(a), where 9Î is an open subset of § n , X Ç(gm, H £%l; 
2 . <J> = [^>z>/]<,y=i m is a real unimodular matrix; 
3. w(X,h) = « ( S - 1 * , * ) ; 

• then 
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i c dw ^ dw it 
ohi a " i dxa dx/? 

/or X € (§m, ff G 5ft, wfcre 
m 

6a,/9 = 2Lr aO" <£«*' ^ i -

(Briefly we have w(X, H) £ 5(6) for I f ^ f f C 5ft.) 
We have w(X, H) = u(Y, H) where X = 3>F. Now 

d& __ ch^ d2U __ 'A d2W 
dhl ~ dA,' dyt dyj ~ar£i oxa dxp * a i *"" 

Substituting in 3.4 we obtain 3.5. 
If H £ § n , then H—>Hb is a mapping of § n into 2^m(m+i), the (i, 7) entry of 

iJ6 being 

n 

1=1 

It is easily verified that 

3.6 $H« $* = i?6. 
LEMMA 3b. / / : 

1. u(X, H) is continuous for X Ç (Sm, i7 Ç 5ft w/zere 5ft w aw 
0/>ew subset of § n , 

2. # ' , H" 6 5ft, # " a > # ' a , 

3. «(X, iJ") = Lk(Y-X, H"a - H'aMY, H') dY, 

4. w(X,H) = u{3TlX,H), 

then w(X, H) is defined and continuous for X Ç Em, H Ç N, H"h — H\ > 0, 
and 

w(X, H") = J@ k(Y - X, H'\ - H\)w(Y, H,) dY. 

In 3, replace X by $ - 1 X and make the change of variable Y = $_1Z to obtain 

ui^X, H") = L ^ ($ _ 1 Z - $_1X, ff"a - I T a J t t t ^ Z , H') dZ. 

w(X, H") = f. *($ _ 1 Z - tf"1*, H"a - H'a)w(Z, H') dZ. 

By 3.2 and 3.6 we have 

k(JTxZ - 3TlX, H"a - H'a) = k(Z - X, $H"a 3>* - $>H'a $*), 

= k(Z-X,H"b-H'b). 

Our lemma follows. 
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THEOREM 3C. / / : 

1. u(X, H) 6 5(a), X £ Emi H G % where 91 is an open 
convex subset of § n , 

2. u(x, H)>o, x e®m,Heyi 
3. H', H" 6 % H"a > Hf

ai 

then 

u(X,H") = L k{Y-X,H"a-H'a)u(Y,H')dY. 

Let $ be a real unimodular m X m matrix. Because of Lemmas 3a and 3b, 
it is sufficient to establish the corresponding relation for w(X, H) = u($~lX} H), 

w(X, H") = J g k(Y - X, H'\ - H'b)w{Y, H') dY. 
By 3.6 we have 

It is possible to choose $ so that H'\ — H\ is a diagonal matrix with equal 
entries, i.e., 

/ T 0 . . . 0 \ 

i ^ - i r 6 = (Or . . .oY 

\o o! ! ! T/ 
Having chosen <i> in this manner, we consider 

w [x,(l-f)H' + lH"] = v(X,t). 

Since 9Î is convex and open, v(X> i) is defined for a < t < b where a < 0, 
b > T. We have 

a/ 
Since 

= sM><-*«>]• 

we find that 
àhi ^L\ dXi dXj ij ifjii dXi dxj iJ 

90 A 

Thus-z;(X,/) Ç 5 for X Ç (gm, a < / < b where a <0,b > r. Applying Theorem 
2h we have 

v(X, r) = J ^ M * - Y, T)V(Y, 0) dF. 

Now 
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v(X, T) = w(X,H"), v(X, 0) = w(X,H'). 

Thus 

w(X, H") = j^k(X - F, T)w{Y, fT) <*F, 

w(X, H") = §^k(X - F, i?"ft - H\)w(Y, H') dY, 

a relation which we have seen to be quivalent to our theorem. 
There are some systems of equations 3.4 for which Theorem 3c gives no infor

mation. This is because there do not exist real vectors H' and H" such that 
H"a > H'a. The system consisting of the single equation 

du __ d_u d_u 
dh dx\ dxt 

is of this type. 
Making use of Theorem 3c and the concept of weak compactness, we may 

demonstrate the following result. 

THEOREM 3d. Let 5ft be an open subset of &n such that H', H" G 9Î imply 
\"H" + \'H' 6 m for 0 < X', 0 < X", X' + X" < 1, and such that H € 5» 
implies that Ha is positive definite. If: 

i. u(x, H) es (a), x e®m,H em 
2. u(x,H) >o, x e ®m,H e m 

then 

u{X, H) = j^k(X - F, Ha) dm(Y) ia,ff«, 

where m(Y) is a non-negative measure defined in the a-field of Borel sets of Em. 
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