SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS WHICH GENERALIZE THE HEAT EQUATION

I. I. HIRSCHMAN, Jr.

1. Introduction. The distribution of heat in an infinite rod is closely bound up with the theory of the Weierstrass transform. This connection is exhibited most clearly in the theory of Widder [3]. Consider the heat equation

$$
\frac{\partial u}{\partial h}=\frac{\partial^{2} u}{\partial x^{2}}
$$

Widder has shown that if $u(x, h)$ satisfies 1.1 and if $u(x, h) \geqslant 0$ for $-\infty<x<\infty$, $a<h<b$ then we have

$$
u\left(x, h^{\prime \prime}\right)=\int_{-\infty}^{\infty} k\left(x-y, h^{\prime \prime}-h^{\prime}\right) u\left(y, h^{\prime}\right) d y
$$

if $a<h^{\prime}, h^{\prime \prime}<b, h^{\prime \prime}>h^{\prime}$. Here
1.3

$$
\begin{aligned}
& k(x, t)=(4 \pi t)^{-\frac{1}{2}} \exp \left(-x^{2} / 4 t\right) \\
& k(x, t)=(2 \pi)^{-1} \int_{-\infty}^{\infty} \exp \left[-t y^{2}-i x y\right] d y
\end{aligned}
$$

Let \mathfrak{F}_{m} and \mathfrak{S}_{n} be real m - and n-dimensional vector spaces respectively. We shall write the elements X, Y, Z of \mathfrak{F}_{m} and $H, H^{\prime}, H^{\prime \prime}$ of \mathfrak{S}_{n} as column matrices,

$$
\begin{array}{ll}
X=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{m}
\end{array}\right), & Y=\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{m}
\end{array}\right), \\
H=\left(\begin{array}{c}
h_{1} \\
h_{2} \\
\vdots \\
h_{n}
\end{array}\right), & Z=\left(\begin{array}{c}
z_{1} \\
z_{2} \\
\vdots \\
z_{m}
\end{array}\right), \\
H^{\prime}=\left(\begin{array}{c}
h_{1}^{\prime} \\
h_{2}^{\prime} \\
\vdots \\
h_{n}^{\prime}
\end{array}\right), & H^{\prime \prime}=\left(\begin{array}{c}
h_{1}^{\prime \prime} \\
h_{2}^{\prime \prime} \\
\vdots \\
h_{n}^{\prime \prime}
\end{array}\right) .
\end{array}
$$

In place of $u(x, h)$, we consider $u(X, H)$ depending upon the $m+n$ real variables $x_{1}, \ldots, x_{m}, h_{1}, \ldots, h_{n}$, and instead of the heat equation 1.1 , we consider the system of partial differential equations

1.5

$$
\frac{\partial u}{\partial h_{l}}=\sum_{i, j=1}^{m} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} a_{i j}^{l} \quad l=1, \ldots, n .
$$

Here the a 's are real constants and
Received November 12, 1951. Research supported by the Office of Naval Research.

$$
a_{i j}^{l}=a_{j i .}^{l}
$$

In the present paper we shall develop for such systems a theory analogous to that of Widder.

Let $\mathfrak{I}_{\frac{1}{2}(m+1)}$ be the space of real symmetric $m \times m$ matrices,

$$
T=\left(\begin{array}{cccc}
t_{11} & t_{12} & \ldots & t_{1 m} \\
t_{21} & t_{22} & \ldots & t_{2 m} \\
& \ldots & & \cdots \\
t_{m 1} & t_{m 2} & \ldots & t_{m m}
\end{array}\right), \quad T^{\prime}=\left(\begin{array}{cccc}
t_{11}^{\prime} & t_{12}^{\prime} & \ldots & t_{1 m}^{\prime} \\
t_{21}^{\prime} & t_{22}^{\prime} & \ldots & t_{2 m}^{\prime} \\
t_{m 1}^{\prime} & \ldots & & \cdots \\
t_{m 2}^{\prime} & \ldots & t_{m m}^{\prime}
\end{array}\right)
$$

We may define a partial ordering in $\mathfrak{T}_{\frac{1}{m}(m+1)}$ by writing $T^{\prime}>T$ if $T^{\prime}-T$ is positive definite. We introduce corresponding to the system 1.5 a mapping $H \rightarrow H_{a}$ of \mathfrak{S}_{n} into $\mathfrak{I}_{\frac{1}{2} m(m+1)}$, the (i, j) entry of H_{a} being defined as

$$
\sum_{l=1}^{n} a_{i j}^{l} h_{l} \quad(i, j=1,2, \ldots, m)
$$

We shall show that if $u(X, H)$ satisfies 1.5 and if $u(X, H) \geqslant 0$ for $X \in \mathbb{E}_{m}$, $H \in \mathfrak{N}$ where \mathfrak{N} is an open convex subset of \mathfrak{S}_{n}, then

$$
u\left(X, H^{\prime \prime}\right)=\int_{\mathfrak{C}_{m}} k\left(X-Y, H_{a}^{\prime \prime}-H_{a}^{\prime}\right) u\left(Y, H^{\prime}\right) d Y
$$

if $H^{\prime}, H^{\prime \prime} \in \mathfrak{R}, H^{\prime \prime}{ }_{a}>H^{\prime}$. The function $k(X, T)$ is defined by the formula

$$
1.7 \quad k(X, T)=(2 \pi)^{-m} \int_{\mathfrak{C}_{m}} \exp \left[-Y^{*} T Y-i Y^{*} X\right] d Y
$$

here T must be positive definite. An explicit formula for $k(X, T)$ (due to Czüber) is given in §3.

If A is any matrix, A^{*} is its transpose; thus

$$
\begin{aligned}
Y^{*} X & =\sum_{i=1}^{m} y_{i} x_{i}, \\
Y^{*} T Y & =\sum_{i, j=1}^{m} y_{i} t_{i j} y_{j} .
\end{aligned}
$$

2. A special case. The equation of heat transfer in m-dimensional space is
2.1

$$
\frac{\partial u}{\partial h}=\sum_{i=1}^{m} \frac{\partial^{2} u}{\partial x_{i}^{2}} \quad \text { or } \quad \frac{\partial u}{\partial h}=\Delta u .
$$

In this section we shall establish our theory for this special case. If $m=1$ in 2.1 we have the equation considered by Widder. It is to be noted that only relatively minor adjustments are needed to make the extension from 1 to m dimensions. We set
2.2

$$
\begin{aligned}
& k(X, t)=(4 \pi t)^{-\frac{1}{2} m} \exp \left[-\frac{1}{4 t} X^{*} X\right] \\
& k(X, t)=(2 \pi)^{-m} \int_{\mathfrak{C}_{m}} \exp \left[-t Y^{*} Y-i Y^{*} X\right] d Y
\end{aligned}
$$

Let us write $|X|$ for

$$
\left(X^{*} X\right)^{\frac{1}{2}}=\left(\sum_{1}^{m} x_{i}^{2}\right)^{\frac{2}{2}} .
$$

We begin with a discussion of the convolution transform

2.3

$$
\psi(X, h)=\int_{\mathfrak{C}_{m}}{ }^{k(X-Y, h) \phi(Y) d Y}
$$

under radial symmetry. A function ϕ defined on \mathfrak{E}_{m} is said to be radically symmetric if $\phi\left(X^{\prime}\right)=\phi\left(X^{\prime \prime}\right)$ whenever $\left|X^{\prime}\right|=\left|X^{\prime \prime}\right|$. If in formula $2.3 \phi(Y)$ is radially symmetric, then for each $h, \psi(X, h)$ is also radially symmetric and the m-fold integration in our formula may be collapsed to a single integration with respect to a new kernel, which we need later and which we now compute. Since $\phi(Y)$ depends only upon $|Y|=\rho$ we write $\phi(\rho)$ instead of $\phi(Y)$. Similarly since $\psi(X, h)$ depends only upon $|X|=r$ and h, we write $\psi(r, h)$ instead of $\psi(X, h)$.

Introducing spherical coordinates,

$$
\begin{aligned}
& y_{1}=\rho \cos \phi_{1} \\
& y_{2}=\rho \sin \phi_{1} \cos \phi_{2} \\
& y_{3}=\rho \sin \phi_{2} \sin \phi_{2} \cos \phi_{3} \\
& \quad \ldots \\
& y_{m-1}=\rho \sin \phi_{1} \sin \phi_{2} \ldots \sin \phi_{m-2} \cos \phi_{m-1} \\
& y_{m}=\rho \sin \phi_{1} \sin \phi_{2} \ldots \sin \phi_{m-2} \sin \phi_{m-1},
\end{aligned}
$$

and setting $x_{1}=r, x_{2}=x_{3}=\ldots=x_{m}=0$, we have

$$
\begin{aligned}
& \psi(r, h)=(4 \pi t)^{-\frac{3}{m} m} \int_{0}^{\infty} \int_{-\pi}^{\pi} \int_{0}^{\pi} \cdots \int_{0}^{\pi} \phi(\rho) e^{-\left(r \cdot-2 r \rho \cos \phi_{1}+\rho^{\rho}\right) / 4 t} \\
& \rho^{m-1} \sin ^{m-2} \phi_{1} \ldots \sin \phi_{m-2} d \phi_{1} \ldots d \phi_{m-1} d \rho .
\end{aligned}
$$

From this we obtain
$\psi(r, t)=(4 \pi t)^{-\frac{3}{2} m} \frac{2 \pi(\pi)^{\frac{1}{2}(m-3)}}{\Gamma\left(\frac{1}{2} m-\frac{1}{2}\right)} \int_{0}^{\infty} \phi(\rho) e^{-\left(r^{2}+\rho^{2}\right) / 4} \rho^{m-1} d \rho \int_{0}^{\pi} e^{r \rho \cos \phi_{1} / 2 t} \sin ^{m-2} \phi_{1} d \phi_{1}$.
By Watson [2, p. 79] we have

$$
\int_{0}^{\pi} e^{r \rho}{\cos \phi_{1} / 2 t}_{\sin ^{m-2}}^{\phi_{1}} d \phi_{1}=\frac{\Gamma\left(\frac{1}{2} m-\frac{1}{2}\right) \sqrt{ } \pi}{\left(r_{\rho} / 4 t\right)^{m m-1}} I_{\xi m-1}\left(\frac{r \rho}{2 t}\right) .
$$

We finally get

$$
\psi(r, t)=(2 t)^{-1} \int_{0}^{\infty} e^{-\left(r^{2}+\rho^{2}\right) / 4 t} \rho^{\frac{k}{m}} r^{-\frac{1}{2} m+1} I_{\frac{1}{} m-1}\left(\frac{r \rho}{2 t}\right) \phi(\rho) d \rho .
$$

The function $u(X, h)$ is said to belong to $S, u(X, h) \in S$, at $\left(X_{0}, h_{0}\right)$ if there exists an open set in $E_{m} \times H$ containing (X_{0}, h_{0}), throughout which the partial derivatives
are continuous and if

$$
\frac{\partial u}{\partial h}, \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} \quad(i, j=1, \ldots, m)
$$

$$
\frac{\partial u}{\partial h}=\Delta u \quad \text { for } X=X_{0}, ; h=h_{0}
$$

We denote the set of points

$$
|X|<R, \quad 0<h \leqslant c
$$

by $D_{R c}$ and the set of points

$$
\begin{array}{lr}
|X| \leqslant R, & t=0 \\
|X|=R, & 0<t \leqslant c
\end{array}
$$ by $B_{R c}$.

Lemma 2a. If

$$
\begin{array}{ll}
\text { 1. } u(X, h) \in S & \text { for }(X, h) \in D_{R c} ; \\
\text { 2. } \varliminf_{X \rightarrow X_{0}, h_{\rightarrow} \rightarrow h_{0}} u(X, h) \geqslant 0 & \text { for }\left(X_{0}, h_{0}\right) \in B_{R c}
\end{array}
$$

then $u(X, h) \geqslant 0$ in $D_{R c}$.
Suppose that there exists a point $\left(X_{1}, h_{1}\right) \in D_{R c}$ at which we have $u\left(X_{1}, h_{1}\right)=$ $-l<0$. Form the function

$$
v(X, h)=u(X, h)+k\left(h-h_{1}\right)
$$

where $k>0$ is chosen so small that

$$
\lim _{x \rightarrow \overline{X_{0}, h \rightarrow h_{0}}} v(X, h) \geqslant-\frac{1}{2} l \quad\left(X_{0}, h_{0}\right) \in B_{R c}
$$

For $\delta>0$ suitably chosen $v(X, h)>-l$ within a distance δ of $B_{R c}$. Consequently the minimum of $v(X, h)$ in $D_{R c}$ is attained at some point $\left(X_{2}, h_{2}\right)$ of $D_{R c}$. The function $v(X, h)$ satisfies the partial differential equation

$$
2.5 \quad \Delta v=\frac{\partial v}{\partial h}-k
$$

At $\left(X_{2}, h_{2}\right)$ we must have

$$
\begin{gathered}
\Delta v \geqslant 0 \\
\frac{\partial v}{\partial h} \leqslant 0
\end{gathered}
$$

(If $h_{2} \neq c$ the equality holds in 2.61.) Equations 2.5 and 2.6, 2.61 are in contradiction.

Lemma 2b. If

1. $u(X, h) \in S$,	$X \in \mathbb{E}_{m}, 0<h \leqslant c ;$
2. $\lim _{X \rightarrow X_{0}, h_{\rightarrow 0+}} u(X, h)=0$,	$X_{0} \in \mathfrak{F}_{m} ;$
3. $M(r)=\underset{\|x\|=r . \mathrm{b}}{\text { l.u<h<c }}\|u t(X, h)\|$;	
4. $M(r)=O\left(e^{a r^{2}}\right)$,	$r \rightarrow+\infty$

for some $a>0$; then $u(X, H) \equiv 0$ for $X \in \mathfrak{E}_{m}, 0<h \leqslant c$.

Take $\lambda>1$ and form the auxiliary function

$$
U_{R}(X, h)=\lambda M(R)(\pi c)^{\frac{1}{2}} h^{-1} e^{-\left(|X|^{2}+R^{2}\right) / 4 h} R^{\frac{1}{2} m}|X|^{-\frac{1}{2} m+1} I_{\frac{1}{2} m-1}\left(\frac{R|X|}{2 h}\right)
$$

Using the asymptotic formula
2.7

$$
I_{\nu} \sim e^{x} / \sqrt{2 \pi x}
$$

$$
(x \rightarrow+\infty)
$$

we find that [2]

$$
\left.U_{R}(X, h)\right|_{|x|=R} \sim \lambda(c / h)^{\frac{1}{2}} M(R), \quad R \rightarrow \infty,
$$

uniformly for $0<h \leqslant c$. Thus when R is large

$$
U_{R}(X, h) \geqslant M(R), \quad|X|=R, 0<h \leqslant c
$$

The function $U_{R}(X, h)-u(X, h)$ belongs to S for $X \in \mathbb{E}_{m}, 0<h \leqslant c$. When R is large

$$
\varliminf_{X \rightarrow \overline{X_{0}}, h \rightarrow h_{0}} U_{R}(X, h)-u(X, h) \geqslant 0, \quad\left(X_{0}, h_{0}\right) \in B_{R c}
$$

By Lemma 2a we have

$$
u(X, h) \leqslant U_{R}(X, h), \quad(X, h) \in D_{R c}
$$

Fix X and h and let $R \rightarrow+\infty$. Making use of 2.7 we find that $u(X, h)=0$ for $0<h<1 / 4 a, X \in \mathfrak{F}_{m}$. If $4 a \leqslant 1 / c$, our proof is complete. Otherwise repeat the above argument with $u(X, h)$ replaced by $u(X, h+1 / 4 a)$, and so forth.
$L\left(\mathfrak{F}_{m}\right)$ is the class of functions $\phi(X)$ defined for $X \in \mathbb{E}_{m}$ and such that

$$
\int_{\mathfrak{E}_{m}}|\phi(X)| d X
$$

exists.
Exactly as in [3] we may establish
Lemma 2c. If

$$
\begin{aligned}
& \text { 1. } \phi(X) e^{-a|X|^{2}} \in L\left(\mathfrak{E}_{m}\right) \text { for some } a>0 \\
& \text { 2. } F(X, h)=\int_{\mathscr{E}_{m}} k(X-Y, h) \phi(Y) d Y,
\end{aligned}
$$

then $F(X, h)$ is defined and belongs to S in the strip $0<h<1 / 4 a$.
Lemma 2d. Under the assumptions of Lemma 2c, we have

Lemma 2e. If $\phi(Y)$ is integrable for $|Y| \leqslant A$ then for any $c>0$, we have

$$
\lim _{|X| \rightarrow \infty}\left(\operatorname{li.u.b.~}_{0<h<c}\left|\int_{|Y| \leqslant A} k(X-Y, h) \phi(Y) d Y\right|\right)=0
$$

Lemma 2f. If

$$
\begin{array}{ll}
\text { 1. } u(X, h) \in S, & 0<h<c, X \in \mathbb{E}_{m} ; \\
\text { 2. } u(X, h) \geqslant 0, & 0<h<c, X \in \mathbb{E}_{m} ;
\end{array}
$$

then we have

$$
\begin{aligned}
& \int_{\mathfrak{E}_{m}} k\left(X-Y, \delta^{\prime}\right) u(Y, \delta) d Y \leqslant u\left(X, \delta^{\prime}+\delta\right) \\
& \qquad 0<\delta, 0<\delta^{\prime}, \delta+\delta^{\prime}<c, X \in \mathfrak{E}_{m}
\end{aligned}
$$

Consider the function

$$
v_{A}(X, h)=u(X, h+\delta)-\int_{|Y|<A} k(X-Y, h) u(Y, \delta) d Y
$$

where A is a positive constant. If $\delta^{\prime}<c^{\prime}<c-\delta$ then $v_{A}(X, h)$ belongs to S for $(X, h) \in D_{R c^{\prime}}$ for any R. Let $l>0$ be given. Using Lemmas 2 d and 2 e we see that, if R is sufficiently large,

$$
\varliminf_{X \rightarrow \overline{X_{0}, h \rightarrow h_{0}}} v_{A}(X, h) \geqslant-l, \quad\left(X_{0}, h_{0}\right) \in B_{R, c^{\prime}}
$$

Lemma 2a implies that $v_{A}(X, h) \geqslant-l$ for $(X, h) \in D_{R . c^{\prime}}$. Letting $l \rightarrow 0+$ and $R \rightarrow+\infty$, we find that $v_{A}(X, h) \geqslant 0$ for $X \in \mathfrak{E}_{m}, 0<h<c^{\prime}$. Setting $h=\delta^{\prime}$ we have

$$
\int_{|Y| \leqslant A} k\left(X-Y, \delta^{\prime}\right) u(Y, \delta) d Y \leqslant u\left(X, \delta^{\prime}+\delta\right)
$$

Letting A increase without limit, we obtain our desired result.
Lemma 2g. If

1. $u(X, h) \in S$,	$0 \leqslant h<c, X \in \mathbb{E}_{m} ;$
2. $u(X, h) \geqslant 0$,	$0 \leqslant h<c, X \in \mathbb{E}_{m} ;$
3. $u(X, 0)=0$,	$X \in \mathbb{E}_{m} ;$
$u(X, h)=0$	$0 \leqslant h<c, X \in \mathbb{E}_{m}$.

then

$$
w(X, h)=\int_{0}^{h} u(X, t) d t
$$

It is easily verified that $w(X, h) \in S$ for $0 \leqslant h<c, X \in \mathfrak{E}_{m}$. We have $w\left(X, h_{1}\right)$ $\geqslant w\left(X, h_{2}\right)$ if $c>h_{1} \geqslant h_{2} \geqslant 0$. It follows that

$$
\frac{\partial}{\partial h} w(X, h) \geqslant 0
$$

and hence that $\Delta w(X, h) \geqslant 0$ for $0 \leqslant h<c$; equivalently $w(X, h)$ is a subharmonic function of X for each value of $h, 0 \leqslant h<c$.

Let δ be an arbitrary number $0<\delta<c$ and let δ^{\prime} be such that $0<\delta^{\prime}<c-\delta$. By Lemma $2 f$ we have

$$
w\left(0, \delta^{\prime}+\delta\right) \geqslant(4 \pi \delta)^{-\frac{1}{2} m} \int_{\mathbb{E}_{m}} e^{-|Y|^{2} / 4 \delta} w\left(Y, \delta^{\prime}\right) d Y
$$

Again we have

$$
\int_{\mathfrak{E}_{m}} e^{-|Y|^{2} / 4 \delta} w\left(Y, \delta^{\prime}\right) d Y \geqslant M(X) \int_{|Y-X| \leqslant 1} w\left(Y, \delta^{\prime}\right) d Y
$$

where

$$
M(X)=\underset{. Y-X \mid \leqslant 1}{\text { g.l.b. }}\left[e^{-|Y| 2 / 4 \delta}\right]
$$

Since $w\left(Y, \delta^{\prime}\right)$ is subharmonic

It follows that

$$
\int_{|Y-X| \leqslant 1} w\left(Y, \delta^{\prime}\right) d Y \geqslant \pi v\left(X, \delta^{\prime}\right) .
$$

$$
w\left(X, \delta^{\prime}\right)=O\left(\exp a|X|^{2}\right)
$$

for $a>1 / 4 \delta$. Since

$$
\frac{\partial}{\partial h} w(X, h) \geqslant 0
$$

we find that

$$
\underset{0 \leqslant n \leqslant \delta^{\prime},|x|=R}{\text { l.u.b. }}|w(X, \delta)|=O\left(e^{a R^{2}}\right) .
$$

Applying Lemma 2 b we see that $w(X, h)=0$ for $0 \leqslant h \leqslant \delta^{\prime}, X \in \bigodot_{m}$. Since $\delta^{\prime}<c$ is arbitrary we have $w(X, h)=0$ for $0 \leqslant h<c, X \in \mathfrak{F}_{m}$. This in turn implies that $u(X, h)=0$ for $X \in \mathbb{E}_{m}, 0 \leqslant h<c$.

Theorem 2h. If

$$
\begin{array}{ll}
\text { 1. } u(X, h) \in S & \text { for } X \in \mathbb{E}_{m}, a<h<b ; \\
\text { 2. } u(X, h) \geqslant 0 & \text { for } X \in \mathbb{E}_{m}, a<h<b ; \\
\text { 3. } a<h^{\prime}, h^{\prime \prime}<b, h^{\prime \prime}>h^{\prime} ; &
\end{array}
$$

then

$$
u\left(X, h^{\prime \prime}\right)=\int_{\mathfrak{E}_{m}} k\left(X-Y, h^{\prime \prime}-h^{\prime}\right) u\left(Y, h^{\prime}\right) d Y
$$

By Lemma 2f we have

$$
\int_{\mathfrak{E}_{m}} k\left(X-Y, h-h^{\prime}\right) u\left(Y, h^{\prime}\right) \leqslant u(X, h)
$$

for $h^{\prime}<h<b$. This together with Lemma 2c implies that

$$
\int_{\mathfrak{E}_{m}} k\left(X-Y, h-h^{\prime}\right) u\left(Y, h^{\prime}\right) d Y \in S
$$

for $h^{\prime}<h<b, X \in \mathfrak{E}_{m}$. Thus

$$
v(X, h)=u(X, h)-\int_{\mathbb{E}_{m}} k\left(X-Y, h-h^{\prime}\right) u\left(Y, h^{\prime}\right) d Y
$$

belongs to S and is non-negative for $h^{\prime}<h<b, X \in \mathfrak{E}_{m}$. Moreover, by Lemma 2d,

$$
\lim _{h \rightarrow h^{\prime}, Y_{\rightarrow X} \rightarrow X_{0}} v(X, h)=0 .
$$

Lemma 2 g implies that $v(X, h) \equiv 0$. Setting $h=h^{\prime \prime}$, we obtain the desired result.
3. The main theorem. Let $T \in \mathfrak{I}_{\frac{1}{2} m(m+1)}$ be positive definite and let $X \in \mathfrak{E}_{m}$. We set

$$
k(X, T)=(2 \pi)^{-m} \int_{\mathfrak{E}_{m}} \exp \left[-Y^{*} T Y-i Y^{*} X\right] d Y
$$

Since T is positive definite, there exists a constant $\epsilon>0$ such that $Y^{*} T Y \geqslant$ $\epsilon|Y|^{2}$. This insures the validity of our definition. Let $\Phi=\left[\phi_{i j}\right]_{i, j=1, \ldots m}$ be a real unimodular matrix. We assert that

$$
3.2
$$

$$
k\left(\Phi^{-1} X, T\right)=k\left(X, \Phi T \Phi^{*}\right)
$$

We have

$$
k\left(\Phi^{-1} X, T\right)=(2 \pi)^{-m} \int_{\mathfrak{E}_{m}} \exp \left[-Y^{*} T Y-i Y^{*} \Phi^{-1} X\right] d Y
$$

Making the change of variable $Y=\Phi^{*} Z$ we obtain

$$
k\left(\Phi^{-1} X, T\right)=(2 \pi)^{-m} \int_{\mathscr{E}_{m}} \exp \left[-Z^{*} \Phi T \Phi^{*} Z-i Z X\right] d Z=k\left(X, \Phi T \Phi^{*}\right)
$$

This formula may be used to compute $k(X, T)$ explicitly, see [1, p. 185]. By this method, Czüber has shown that
3.3

$$
k(X, T)=\frac{\exp \left(\left|\begin{array}{cc}
0 & X^{*} \\
X & T
\end{array}\right| / 4|T|\right)}{(4 \pi)^{3 m}|T|^{\frac{3}{2}}}
$$

In particular if T is a diagonal matrix with equal entries,

$$
T=\left(\begin{array}{cccc}
\tau & 0 & \ldots & 0 \\
0 & \tau & \ldots & 0 \\
\hdashline & \ldots & \ldots & \\
0 & 0 & \ldots & \tau
\end{array}\right)
$$

then $k(X, T)$ is equal to $k(X, \tau)$.
Consider the system of partial differential equations
3.4

$$
\frac{\partial u}{\partial h_{l}}=\sum_{i, j=1}^{m} \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} a_{i j}^{l} \quad\left(a_{i j}^{l}=a_{j i}^{l} ; \quad l=1, \ldots, n\right)
$$

where the a 's are real constants. The function $u(X, H)$ is said to belong to $S(a)$ at (X_{0}, H_{0}) if there exists an open set in $E_{m} \times H_{n}$ containing (X_{0}, H_{0}) throughout which the partial derivatives

$$
\frac{\partial u}{\partial h_{l}}(l=1, \ldots, n), \quad \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}(i, j=1, \ldots, m)
$$

are continuous and if equation 3.4 holds for $X=X_{0}, H=H_{0}$.
Lémma 3a. If:

1. $u(X, H) \in S(a)$, where \mathfrak{N} is an open subset of $\mathfrak{S}_{n}, X \in \mathfrak{F}_{m}, H \in \mathfrak{R}$;
2. $\Phi=\left[\phi_{i j}\right]_{i, j=1, \ldots,}, \ldots$ is a real unimodular matrix;
3. $w(X, h)=u\left(\Phi^{-1} X, h\right)$;

- then
3.5

$$
\frac{\partial w}{\partial h_{l}}=\sum_{\alpha, \beta=1}^{m} \frac{\partial^{2} w}{\partial x_{\alpha} \partial x_{\beta}} b_{\alpha, \beta}^{l}
$$

for $X \in \mathfrak{E}_{m}, H \in \mathfrak{N}$, where

$$
b_{\alpha, \beta}^{l}=\sum_{i, j=1}^{m} a_{i j}^{l} \phi_{\alpha i} \phi_{\beta j} .
$$

(Briefly we have $w(X, H) \in S(b)$ for $X \in \mathbb{E}_{m}, H \in \mathfrak{N}$.)
We have $w(X, H)=u(Y, H)$ where $X=\Phi Y$. Now

$$
\frac{\partial u}{\partial h_{l}}=\frac{\partial w}{\partial h_{l}}, \quad \frac{\partial^{2} u}{\partial y_{i} \partial y_{j}}=\sum_{\alpha, \beta=1}^{m} \frac{\partial^{2} w}{\partial x_{\alpha} \partial x_{\beta}} \phi_{\alpha i} \phi_{\beta j} .
$$

Substituting in 3.4 we obtain 3.5 .
If $H \in \mathfrak{S}_{n}$, then $H \rightarrow H_{b}$ is a mapping of \mathfrak{S}_{n} into $\mathfrak{T}_{\mathfrak{l}^{2} m(m+1)}$, the (i, j) entry of H_{b} being

$$
\sum_{l=1}^{n} h_{l} b_{i, j}^{l}
$$

It is easily verified that

$$
\Phi H_{a} \Phi^{*}=H_{b}
$$

Lemma 3b. If:

1. $u(X, H)$ is continuous for $X \in \mathfrak{E}_{m}, H \in \mathfrak{\Re}$ where $\mathfrak{\Re}$ is an open subset of \mathfrak{S}_{n},
2. $H^{\prime}, H^{\prime \prime} \in \mathfrak{N}, H^{\prime \prime}{ }_{a}>H_{a}^{\prime}$,
3. $u\left(X, H^{\prime \prime}\right)=\int_{\mathfrak{E}_{m}} k\left(Y-X, H^{\prime \prime}{ }_{a}-H_{a}^{\prime}\right) u\left(Y, H^{\prime}\right) d Y$,
4. $w(X, H)=u\left(\Phi^{-1} X, H\right)$,
then $w(X, H)$ is defined and continuous for $X \in E_{m}, H \in N, H^{\prime \prime}{ }_{b}-H^{\prime}{ }_{b}>0$, and

$$
w\left(X, H^{\prime \prime}\right)=\int_{\mathfrak{F}_{m}} k\left(Y-X, H_{b}^{\prime \prime}-H_{b}^{\prime}\right) w\left(Y, H_{r}\right) d Y
$$

In 3, replace X by $\Phi^{-1} X$ and make the change of variable $Y=\Phi^{-1} Z$ to obtain

$$
\begin{aligned}
u\left(\Phi^{-1} X, H^{\prime \prime}\right) & =\int_{\mathscr{E}_{m}} k\left(\Phi^{-1} Z-\Phi^{-1} X, H_{a}^{\prime \prime}-H_{a}^{\prime}\right) u\left(\Phi^{-1} Z, H^{\prime}\right) d Z \\
w\left(X, H^{\prime \prime}\right) & =\int_{\mathscr{E}_{m}} k\left(\Phi^{-1} Z-\Phi^{-1} X, H_{a}^{\prime \prime}-H_{a}^{\prime}\right) w\left(Z, H^{\prime}\right) d Z
\end{aligned}
$$

By 3.2 and 3.6 we have

$$
\begin{aligned}
k\left(\Phi^{-1} Z-\Phi^{-1} X, H_{a}^{\prime \prime}-H_{a}^{\prime}\right) & =k\left(Z-X, \Phi H_{a}^{\prime \prime} \Phi^{*}-\Phi H_{a}^{\prime} \Phi^{*}\right) \\
& =k\left(Z-X, H_{b}^{\prime \prime}-H_{b}^{\prime}\right)
\end{aligned}
$$

Our lemma follows.

Theorem 3c. If:

1. $u(X, H) \in S(a), X \in E_{m}, H \in \mathfrak{\Re}$, where $\mathfrak{\Re}$ is an open convex subset of \mathfrak{S}_{n},
2. $u(X, H) \geqslant 0$,
3. $H^{\prime}, H^{\prime \prime} \in \mathfrak{\Re}$,

$$
\begin{array}{r}
X \in \mathfrak{E}_{m}, H \in \mathfrak{R} \\
H^{\prime \prime}{ }_{a}>H_{a}^{\prime},
\end{array}
$$

then

$$
u\left(X, H^{\prime \prime}\right)=\int_{\mathfrak{E}_{m}} k\left(Y-X, H_{a}^{\prime \prime}-H_{a}^{\prime}\right) u\left(Y, H^{\prime}\right) d Y
$$

Let Φ be a real unimodular $m \times m$ matrix. Because of Lemmas 3a and 3b, it is sufficient to establish the corresponding relation for $w(X, H)=u\left(\Phi^{-1} X, H\right)$,

$$
w\left(X, H^{\prime \prime}\right)=\int_{\mathbb{E}_{m}} k\left(Y-X, H_{b}^{\prime \prime}-H_{b}^{\prime}\right) w\left(Y, H^{\prime}\right) d Y .
$$

By 3.6 we have

$$
H_{b}^{\prime \prime}-H_{b}^{\prime}=\Phi\left(H_{a}^{\prime \prime}-H_{a}\right) \Phi^{*}
$$

It is possible to choose Φ so that $H^{\prime \prime}{ }_{b}-H^{\prime}{ }_{b}$ is a diagonal matrix with equal entries, i.e.,

$$
H_{b}^{\prime \prime}-H_{b}^{\prime}=\left(\begin{array}{cccc}
\tau & 0 & \ldots & 0 \\
0 & \tau & \ldots & 0 \\
0 & 0 & \ldots & \tau
\end{array}\right) .
$$

Having chosen Φ in this manner, we consider

$$
w\left[X,\left(1-\frac{t}{\tau}\right) H^{\prime}+\frac{t}{\tau} H^{\prime \prime}\right]=v(X, t) .
$$

Since \mathfrak{N} is convex and open, $v(X, t)$ is defined for $a<t<b$ where $a<0$, $b>\tau$. We have

$$
\frac{\partial v}{\partial t}=\sum_{l=1}^{n} \frac{\partial w}{\partial h_{l}}\left[\frac{1}{\tau}\left(h^{\prime \prime}{ }_{l}-h^{\prime}{ }_{l}\right)\right] .
$$

Since

$$
\frac{\partial w}{\partial h_{l}}=\sum_{i, j=1}^{m} \frac{\partial^{2} w}{\partial x_{i} \partial x_{j}} b_{i j}^{l}=\sum_{i, j=1}^{m} \frac{\partial^{2} v}{\partial x_{i} \partial x_{j}} b_{i j}^{l}
$$

we find that

$$
\begin{aligned}
& \frac{\partial v}{\partial t}=\frac{1}{\tau} \quad \sum_{i, j=1}^{m}\left[\sum_{i=1}^{n} b_{i j}^{l}\left({h^{\prime \prime}}_{i}-{h^{\prime}}^{\prime}\right)\right] \frac{\partial^{2} v}{\partial x_{i} \partial x_{j}} \\
& \frac{\partial v}{\partial t}=\Delta v .
\end{aligned}
$$

Thus $v(X, t) \in S$ for $X \in \mathfrak{E}_{m}, a<t<b$ where $a<0, b>\tau$. Applying Theorem 2 h we have

$$
v(X, \tau)=\int_{\mathbb{E}_{m}} k(X-Y, \tau) v(Y, 0) d Y
$$

Now

$$
v(X, \tau)=w\left(X, H^{\prime \prime}\right), v(X, O)=w\left(X, H^{\prime}\right)
$$

Thus

$$
\begin{aligned}
w\left(X, H^{\prime \prime}\right) & =\int_{\mathfrak{E}_{m}} k(X-Y, \tau) w\left(Y, H^{\prime}\right) d Y \\
w\left(X, H^{\prime \prime}\right) & =\int_{\mathfrak{E}_{m}} k\left(X-Y, H_{b}^{\prime \prime}-H_{b}^{\prime}\right) w\left(Y, H^{\prime}\right) d Y,
\end{aligned}
$$

a relation which we have seen to be quivalent to our theorem.
There are some systems of equations 3.4 for which Theorem 3c gives no information. This is because there do not exist real vectors H^{\prime} and $H^{\prime \prime}$ such that $H^{\prime \prime}{ }_{a}>H_{a}^{\prime}$. The system consisting of the single equation

$$
\frac{\partial u}{\partial h}=\frac{\partial^{2} u}{\partial x_{1}^{2}}-\frac{\partial^{2} u}{\partial x_{2}^{2}}
$$

is of this type.
Making use of Theorem 3c and the concept of weak compactness, we may demonstrate the following result.

Theorem 3d. Let \mathfrak{N} be an open subset of \mathfrak{S}_{n} such that $H^{\prime}, H^{\prime \prime} \in \mathfrak{N}$ imply $\lambda^{\prime \prime} H^{\prime \prime}+\lambda^{\prime} H^{\prime} \in \mathfrak{\Re}$ for $0<\lambda^{\prime}, 0<\lambda^{\prime \prime}, \lambda^{\prime}+\lambda^{\prime \prime} \leqslant 1$, and such that $H \in \mathfrak{\Re}$ implies that H_{a} is positive definite. If:

$$
\begin{array}{ll}
\text { 1. } u(X, H) \in S(a), & X \in \mathbb{E}_{m}, H \in \mathfrak{N} \\
\text { 2. } u(X, H) \geqslant 0, & X \in \mathbb{E}_{m}, H \in \mathfrak{R}
\end{array}
$$

then

$$
u(X, H)=\int_{\mathfrak{F}_{m}} k\left(X-Y, H_{a}\right) d m(Y) \quad X \in \mathfrak{E}_{m}, H \in \mathfrak{N}
$$

where $m(Y)$ is a non-negative measure defined in the σ-field of Borel sets of E_{m}.

References

1. S. Bochner, Fouriersche Integrale (Leipzig, 1932).
2. G. N. Watson, A Treatise on the theory of Bessel functions (Cambridge, 1922).
3. D. V. Widder, Positive temperatures in an infinite rod, Trans. Amer. Math. Soc., 55 (1944), 85-95.

Washington University, Saint Louis

