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1. Introduction. Braid groups were introduced by Artin [1]. These groups have
been studied extensively—see [2], [9] and the references cited there. Recently work has
been done on "circular" braid groups and other "braid-like" groups [7], [10]. In this
paper we formulate the concept of a generalized braid group, and we begin a study of the
structure of such groups. In particular for such a group G, there is a homomorphism from
G onto the infinite cyclic group, the kernel of which is the derived group G' of G. We
study G'. Our results generalize results of Gorin and Lin [5], who considered the case
when G is a classical braid group Bn {n 3= 3). They showed that B'JB"n is free abelian
of rank 2 if n = 3, 4 and is trivial if n 5= 5. They also showed that B'n is finitely presented.

Our methods involve a rather geometric version of combinatorial group theory. We
have collected all the material needed into an Appendix, which the reader should refer to
for any unfamiliar terms or concepts. The Appendix is, of necessity, somewhat
condensed. Further details can be found in the books [4], [8], [12], [13], [14], or in a
forthcoming article [11] by the second author. As well as the material in the Appendix,
we will need a small amount of (very standard) graph theory. For this, we refer the reader
to [3].

Let F be a finite graph with vertex set x, and suppose that some edges of Y are
coloured red and the rest are coloured green. We assume that:

any two vertices of Y are joined by a path consisting entirely of green edges. (*)

We associate with the edge-coloured graph Y a presentation

X = <af; P(x, y) ({x, y} an edge of Y)),

where S£ is the bouquet with edges x, x~l (x ex), and where

j(xyx)(yxy)~] if ix> y} ' s a green edge,
\(xy)(yx)~l if {x, y) is a red edge.

The fundamental group ^,(3if) is a generalized braid group.
Note that B(y, x) is equal to j3(x, y)~\ so as far as ;r,(9if) is concerned, there is

actually no real need to include both J3(JC, y) and /3(y, x). However, for technical reasons
it is convenient to do so.

We remark that the classical braid group Bn is obtained by taking Y to be the
edge-coloured complete graph Kn_x, with vertices ax, . . . , an_u green edges
{a,, a2},. • • , {an-i, an-i}, and all other edges red.

There is a homomorphism from TZ^JK) onto Z which takes [JC] to 1 for each x e x.
Using (*), it is not difficult to show that the kernel of this homomorphism is nx{J{)'. Our
aim in this paper is to study the group
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Consider the subgraph rred of T consisting of all the vertices of T, together with all
the red edges. Suppose this graph has r components with vertex sets x,, x2,. . . , xr. We let
Tm denote the induced subgraph of T on the vertex set \m (m = 1, . . . , r). We let f
denote the graph obtained from F by identifying all elements of xm to a single vertex m
(m = 1, 2,. . . , r). Note that by (*), f is connected.

THEOREM 1. The abelianization (jr1($T)')ab of jr1(^f)' is free abelian of rank 2(r — 1).

THEOREM 2. The group n^ffi)' is finitely presented if the following conditions hold:
each rm (1 =£ m «= r) is a complete graph; t is a tree; if {m, n) is an edge oft then {x,y} is
an edge of T for all x e\m, y e \n.

Observe that when T is the edge-coloured graph #„_, described above, then T
satisfies the conditions of Theorem 2.

These theorems will be proved by considering the covering JC of X corresponding to
JZ^JK)'. The 1-skeleton of JC has vertex set Z and edge set {JC*1 :JC ex, / eZ}, where
i(xi) = i, T(XI) = i + l. The defining paths are indexed by ordered triples (x, y, i) where
{x, y} is an edge of T, and i e Z. The defining path fi(x, y, i) corresponding to (x, y, i) is
given by:

y,x,+1>',+2)"
1 if {x, y} is a green edge,

i)"1 if {x, y} is a red edge.

The following terminology will be useful for the proof of Theorem 2: xt (resp. y~x)
will be called the minimum x-edge (resp. y-edge) in P(x, y, i); xi+2 (resp. y~+2) will be
called the maximum x-edge (resp. y-edge) in fi(x, y, i) if {JC, y} is green, while xi+1 (resp.
y'+i) will be called the maximum x-edge (resp. y-edge) if {x, y} is red.

We will need the following notation: b{m) will denote a fixed but arbitrary element
of xm (m = 1, 2 , . . . , r), and b will denote the set {b(m): 1 =s m ^ /•}; for x e \m we define
b(x) to be b(m) (l^m^r).

ACKNOWLEDGEMENT. The authors thank R. J. Steiner for indicating how to simplify
our original homology calculation in the proof of Theorem 1. We also thank the referee
for comments which improved the Introduction.

2. Proof of Theorem 1. The group (^i(^f)')ab is isomorphic to the first integral
homology group Hx = Hx{yC;Z). We determine the structure of Hv

First observe that the group Zx of 1-cycles is generated by

{xi-yr-x, yex,iel}.

For let c = e1e1 + e2e2 + . . . + £/e; be a 1-cycle. Here each eK is ±1, and each eA is an
element of {xt:x e x , i e Z } . Thus each eA is an element of x with a subscript. Suppose k is
the highest subscript which occurs. Then one of the terms of c has the form exk for some
x ex. Now the only terms of c which contribute to the coefficient of k +1 in d(c) are
those with subscript k. Since the coefficient of k +1 in d(c) is 0, there must be a term
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-eyk with y ex. Then c = e(xk —yk) + c', where c' is a 1-cycle with fewer terms than c.
Now use induction.

Let Sm ( l « m « r ) be the abelian group with generators s(m), (/eZ) and defining
relations

s(m)i - s(m)i+1 + s(m)i+2 = 0 ( i e I),

and let S = 0 Sm. Note that 5m is free abelian of rank 2 (with free basis s(m)0, •S(TO),),
m

and so 5 is free abelian.
There is a homomorphism from the group Cx of 1-chains onto 5 defined by:

xt •-» S(TO), (x e xm, TO = 1, . . . , r, i e Z).

The image of the group Bt of 1-boundaries under this homomorphism is 0. The image of
Zj is sgp{s(m), — s(n), : l « m < n S r , i e Z } , which has free basis

s = {s(m)0 - s(l)0, S(TO), - 5(1),: 2 =£ TO *£ r).

There is thus a homomorphism 0 from Z^fl, (=HX) onto sgps induced by the
homomorphism Q-*S. We show that (j> is an isomorphism.

Define a homomorphism 0:sgps—^Z,//?! by

), + Bx (2 « w « r,; = 0, 1).

Clearly #0 is the identity on sgp s. Also, 00 fixes the elements

b(m)j - b(n)j + Bl (m, n = 1,2, . . . , r;j = 0, 1). (1)

Consequently 00 will be the identity, provided the elements in (1) generate ZXIBX. We
now show that this is the case.

Suppose x, y ex. Choose a path in T from x to y consisting of green edges, and let
the successive vertices of the path be x = °x, xx, 2x, . . . ,'x = y. Then for i e Z,

/-i

(x,-y,) - (xl+l ->>, + ,) + (xi+2-yl+2) = 2 S/8("x, "+1*. 0 6 5.- (2)

Suppose t, z e xm for some TO. By considering a path in F from / to z consisting of red
edges we show, in a similar way to the above, that for i e Z

(/,-+1 - z,+1) - (ti+2 - z,+2) e fl,.

Using (2), it then follows that
'••-z.-efl,. (3)

Now using (2) it is easily shown that ZXIB\ is generated by the elements

x , - yf + Bi (x, y e x , j = 0 , l ) .

But (3) implies that
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Hence the elements in (1) generate ZJBU as required.

3. Proof of Theorem 2. We choose a fixed but arbitrary spanning subforest $ of
rred. For x e x w e define d{x) to be the length of the (unique) path in <P from bix) to x.
For {x, y} an edge of F, we define wt{*, y} to be d{x) + d(y).

LEMMA 1. Let {m,n} be an edge of f. If xe\m, y exn, jeZ then fi{x,y,j) is a
consequence of

P(s, t, 0), P(s, t, 1), p(s, t, 2) (s e\m,texn),

P(b(m), b(n), i) ( i e Z ) ,

P(s, t, i) ({s, t} a red edge, i e Z).
Proof. By induction on wt{*, y). If wt{ ;̂, y) = 0 there is nothing to prove.
Suppose wt{jt, y) > 0. We may assume that d(x) > 0. Let z be the penultimate vertex

of the path in <t> from b(m) to x. Now we deduce from the van Kampen diagram in Figure
1:

Figure 1
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that for any [i e Z, fi(x, y, fx + 3) is a consequence of

p(x, y, n), 0(x, y,n + 1), p(x, y,n + 2),

P(z,y,i) (iel), (4)

P(s, t, i) ({s, t} a red edge, i e Z). (5)

Also, fi(x, y, fi) is a consequence of

P(x, y , f i + 1 ) , p ( x , y , n + 2 ) , p ( x , y , n + 3 ) ,

together with the defining paths (4), (5). It follows (by an easy induction on |/|) that
P(x> y> i) is a consequence of

P(x, y, 0), P(x, y, I), P(x, y, 2)

and the paths (4), (5).
Now since wt{z, y} < wt{x, y}, our inductive hypothesis applies to the paths (4), and

the lemma follows.

LEMMA 2. If x, y e\m (l^m^r, x^y) and j e Z, then fi(x, y, j) is a consequence of
the paths

P(s,b(m),i) (sexm,s±b(m),ieZ),

together with the paths

P(s, t, i) (s, texm,s± t),

where i e {0, 1} if {s, t} is a red edge and i e {0, 1, 2} if {s, t} is a green edge.

Proof. By induction on wt{x, y}. If wt{*, y} = 1, or more generally, if one of x, y is
b{m), then the result holds trivially. Thus, for the induction step we may assume that
0 < d(x) =£ d(y). Let z be the penultimate vertex of the path in $ from b{m) to x. Note
that

wt{z, x) = d(z) + d(x) = (d(x) - 1) + d(x) < wt{x, y}.

Note also that wt{z, y} < v/t{x, y}.
Suppose {x,y} is a green edge. Then using Figure 1 (if {z, y} is a green edge), or

Figure 2 (if {z, y) is a red edge), we find, using arguments like those in the proof of
Lemma 1, that in both cases P{x, y, j) is a consequence of (at most)

P(x, y, 0), p(x, y, 1), P(x, y, 2),

P(z,y,i) (icZ), (6)

P(z,x,i) (iel). (7)

On the other hand, if {x, y} is a red edge then we find, using Figure 3 (if {z, y} is a green
edge), or Figure 4 (if {z, y} is a red edge) that P(x, y, j) is a consequence of (at most)
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\ /

"V+2

Figure 4

j8(jc, y, 0), /8(JC, y, 1)

and the paths (6), (7); now applying the inductive hypothesis to the paths (6), (7) gives
the result.

We deduce from Lemmas 1 and 2 that n^JC) = Jii(J£), where i? is the complex with
the same 1-skeleton as X and with defining paths /?(A), where A ranges over the elements

{s, t, 0), (s, t, 1), {s, t, 2) {{s, t} a green edge), (8)

(s, t, 0), (s, t, 1) ({*, t} a red edge), (9)

(b(m),b(n),i) (1 « m <n « r , {m, n) an edge of f, i e Z), (10)

( J , 6 W , i) ( s e x - b , / e Z ) . (11)

To proceed further, we need the following general result.
Let M = (<3/; /3(A) (A e A)). Suppose that A is expressed as a disjoint union

A=UA,.
/ = (!

An element of A/ will be said to be of level I. Assume that the following is satisfied: if A
has level / > 0, then some cyclic permutation of /3(A) has the form e(A)a/(A), where e(A) is
an edge, and e(A)*1 does not occur in a(k) or in any /?(/z) (jU^A) with ft of level k
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1 =£ k *£ /. We call e(A) the edge corresponding to A. Let

% = W ~ MA)*1: A has level greater than 0}.

Then there are closed paths y(A) (A e AQ) in % such that (%; y(A) (A e AQ) ) is equivalent to
M\ moreover, y(A) = /3(A) if /3(A) is a path in %. A proof of this result, together with
further applications (for example, to surfaces), can be found in [11]. The result can be
stated more precisely, but the above formulation is adequate for present purposes.
(However, if one wants to use the proof of Theorem 2 given here to obtain an explicit
finite presentation for nx(3C)', then a more precise version of the above result, giving
details of the y(A)'s, is needed.)

We now obtain a succession of equivalences of if.
Define an index A of S£ to have:
level 0 if A is as in (8), (9) or (10);
level I (I > 0) if A = (s, b(s\ e(l - 1)), s e x - b , £ = ±l .

Take the edge corresponding to A = (s, 6(i), e ( / - l ) ) of level / > 0 to be the maximum
i-edge in /?(A) if e = 1, or the minimum s-edge in /3(A) if e = — 1. (If / = 1 we can take
either the maximum or the minimum s-edge; for definiteness, we choose the maximum
s-edge.) Then the conditions of our general result above are satisfied, so £ is equivalent
to a 2-complex S£o with edge set

{fcj^fceb.ieZjUs,
where

s = {s$l: {s, 6W} a red edge} U {s?, sf1: {s, 6W} a green edge},

and defining paths y(A) where A ranges over the elements (8), (9), (10). If A is an element
in (10) then y(A) = /3(A).

To obtain a further equivalence, choose an extremal vertex of the tree F. By
relabelling vertices if necessary, we may assume that this extremal vertex is 1. Let {1, p}
be the unique edge of f incident with 1. Define an index A of 5£0 to have:

level 0 if A is an element (8), (9), or is an element (10) not involving 6(1);
level I (I >0) if A = (6(1), 6(/>), e ( / - l ) ) , e = ±l .

Take the edge corresponding to A = (6(1), b{p), e(l-1)) of level / > 0 to be the
maximum 6(l)-edge in /3(A) if e = 1 or if / = 1, and the minimum 6(l)-edge in /3(A) if
e = - 1 and / > 1. Then by our general result above, ^ is equivalent to a 2-complex SBX

with edge set

{ b { \ ) t \ b ( \ ) t 1 } U {bf\ b e b - { b ( \ ) } , i e l } U s ,

and defining paths 6(A) where A ranges over the elements (8), (9), and the elements (10)
not involving 6(1). If A is an element (10) not involving 6(1) then 6(A) = y(A) - /J(A).

Now consider the tree f - { l , { l , p } } . We can assume (relabelling vertices if
necessary) that 2 is an extremal vertex of this tree, and we let {2, q) be the unique edge
in this tree incident with 2. Define an index A of 5£x to have:

level 0 if A is an element (8), (9), or is an element (10) not involving 6(1) or 6(2);
level I (I > 0) if A = (6(2), b{q), e(l - 1)), e = ±1.
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Then an argument like that in the previous paragraph shows that if, is equivalent to a
2-complex with edge set

{6(1)0*', b(l)f \ 6(2)0*', 6(2)*'} U {&,=":6 e b - {b(l), b(2)}, ieI}U s,

and defining paths indexed by the elements (8), (9), and the elements (10) not involving
6(1), 6(2).

Continuing this procedure, we eventually arrive at a 2-complex with edge set

{b(m)S\ 6 (m)j t l : 1 =£ m « r - 1} U {b{r)fx: i e Z} U s,

and defining paths indexed by the elements (8), (9). The edges {6(r),±l: i e Z} give rise to
a maximal subtree of this complex. Collapsing this maximal subtree then gives a finite
presentation.

APPENDIX

Geometric aspects of combinatorial group theory

A 1-complex #f consists of two disjoint sets V (vertices), E (edges) together with three
functions i : £ - » V , x:E^>V, ~l :E->E satisfying: t(e~') = r(e), (e~1)~1 = e, e~'=f efor
all e e E. A non-empty path a in $£ is a sequence eie2. • • en (n s= 1) of edges with
r(e,) = i(e1+1) (l^i<n). We define i(a), r(a) to be t(e,), r(en) respectively. The path
is said to be closed if i(a) = r(a). The path is said to be reduced if e,+) =f e~

l (1 =s i < n).
The inverse a-"1 of a is the path e~x. . . ej'ei"1-

With each vertex v of %! we associate an empty path \v (or simply 1). This path has
no edges. Moreover, i{\v) = x{\v) = v and I"1 = 1^.

We say that the product $y of two paths /?, y is defined if T(J8) = i(y). Then )3y is the
path consisting of the edges of /3 followed by the edges of y. We have i(/3y) = i(/3),

A 1-complex is said to be connected if, given any two vertices u, v, there is a path a
with i(a) = u, T(a) = v. A 1-complex with a single vertex is called a bouquet. A
connected 1-complex is said to be a tree if it has no non-empty reduced closed paths. For
a 1-complex %, a maximal element of {3~\ 3~ is a tree contained in %} (which exists by
Zorn's lemma) is called a maximal subtree of 3£.

Let SC, "3/ be 1-complexes. A mapping (of 1-complexes) <£:#?-»• "3/ is a function
sending vertices of #f to vertices of fy, and paths in #?to paths in ty, and satisfying: <f>(lv) = l^(u)

for all vertices v of Sf; (^(ff"1) = <l>((x)~l for all paths a- in $?; whenever a , ^ is defined
(au a2 paths in $£) (p{ai)(p{a2) is also defined, and <p(aia2) = <j>{a\)<p{a2).

A 2-complex 3K is an object (#?; j3(A) (Ae A)) where f is a 1-complex (called the
l-skeleton of 3if) and each /3(A) is a closed path in #?. The /3(A) are called defining paths.
The elements of A are called indices. The 2-complex JK is said to be connected if $? is
connected. If % is a bouquet then 3ST is called a presentation.

We define an equivalence relation ~ T (or simply ~ ) on paths in % as follows. An
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elementary reduction of a path a is a transformation of a to (Xia2 if oc has one of the
forms alyY~1a2, alf}(k)ea2 (A e A, £ = ±1). A pair of paths is called a reduction pair if
one of the paths is obtained from the other by an elementary reduction. Then for two
paths a, a', we define a~xa' if and only if there is a sequence of paths a =
a0, ot\, a2, . . . , am = a' with {ah ai+l} a reduction pair for i = 0, . . . , m — 1. The
—equivalence class containing a is denoted by [a]x (or simply by [a-]). A path which is
—-equivalent to an empty path is said to be contractible. (We also say that such a path is a
consequence of the paths /3(A) (A e A).)

Contractible paths can be looked at pictorially using van Kampen diagrams. These
are discussed in [8, Chapter V] for presentations, but the theory for 2-complexes (or even
generalized 2-complexes) is entirely similar [6]. Put briefly and roughly, if one has a
tessellation of the surface of a sphere with each region except one having its boundary
labelled by an element of {/J(A):AeA}, then the boundary label of the exceptional
region is contractible.

For a fixed vertex v of "3C, the fundamental group nx{3C, v) has underlying set

and binary operation [yi][y2] = [7172]- H % is connected then the isomorphism type of this
group is independent of the choice of v. We can then refer to the fundamental group of
VC, which we denote by nx(%).

Suppose that X is connected and that H is a subgroup of n^W). Then we can
construct from 35f another connected 2-complex J£ (called the covering of 3C corresponding
to H) with nx{JC) = H. (We have no need to describe the general construction here.)

Let JC, !£ be 2-complexes. A mapping (of 2-complexes) (j>: JC-* S£ is a mapping of
1-complexes from the 1-skeleton of % to the 1-skeleton of X such that the image of each
contractible path in X is a contractible path in =2*. We say that <j> is an equivalence if there
is another mapping ty:!£-^'X such that

xp4>(a) -*• a (11)

for each path a in X,

zjB (12)

for each path /S in Z£. Two 2-complexes are said to be equivalent if there is an equivalence
between them.

We also have the idea of a based mapping # : (%, u)-> {££, <p{u)). Here u is a vertex
of 3K and </> is a mapping from % to SE. We say that <p is a based equivalence if there is a
based mapping ip: {!£, (f)(u))-*(3f{, u) such that (11) and (12) hold for all paths a, /3 with
i(a) = r(oe) = u, i(/3) = T(/3) = #(w). Obviously an equivalence gives rise to a based
equivalence for any choice of u. If #:(3if, u)-^>(£, <t>(u)) is a based equivalence then
nx(%, u) = n-fJE, <j)(u)) (an isomorphism being given by [y]x-» [<p(y)h, [Y]X e JTI(3ST, U)).

Given a connected 2-complex %= (#?; /3(A) (A e A)) and a vertex u, there is a based
equivalence from (X, u) to a presentation, as follows. Let ST be a maximal subtree of 9£,
and let Z*1 (f e f) be the edges of % lying outside 5". Let 58 be the bouquet with vertex v
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and edges f±l (f e f). Define <p: #f-> 38 by

eeST,
1 e=f£(fe(,e = ±l).

Let 9°= <S8; <H/3(A)) (A e A)) . Then tf>:(3if, M ) - » ( ^ , U) is a based equivalence. We say
that ^ is obtained from 3if by collapsing the maximal subtree ST.

Finally we discuss homology. Consider a connected 2-complex

Let E+ consist of exactly one of e, e~x for each pair of edges {e, e~1} of 3£. Let Cx

be the free abelian group on E+ (the group of l-chains) and let Q, be the free abelian
group on the vertex set of $£. There is a homomorphism 9: Q —* Q defined by
3(e) = r(e) — i(e) (e e E+). The kernel of this homomorphism is the group Zx of 1-cycles.
Now let Ci be the free abelian group on A. There is a homomorphism 3: Cj—» Q defined
by d(k) = J5(k), where, for a path a = efef2. . . e£r (e, e £ + , e, = ±1 ( l ^ i ^ m ) ) ,
a = Ejej + e2e2 + . . . + £mem. The group Im d = Bx is called the group of 1-boundaries.
We have flt« Zj. The quotient ZXIBX is the first integral homology group Hx = Hx{3(; Z)
of jfc. It can be shown [14, p. 46] that Hx is isomorphic to the abelianization ;r1(3if)ab of
nAX).
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