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Abstract

Advanced type system features, such as GADTs, type classes and type families, have proven

to be invaluable language extensions for ensuring data invariants and program correctness.

Unfortunately, they pose a tough problem for type inference when they are used as local

type assumptions. Local type assumptions often result in the lack of principal types and

cast the generalisation of local let-bindings prohibitively difficult to implement and specify.

User-declared axioms only make this situation worse. In this paper, we explain the problems

and – perhaps controversially – argue for abandoning local let-binding generalisation. We

give empirical results that local let generalisation is only sporadically used by Haskell

programmers. Moving on, we present a novel constraint-based type inference approach for

local type assumptions. Our system, called OutsideIn(X), is parameterised over the particular

underlying constraint domain X, in the same way as HM(X). This stratification allows us to

use a common metatheory and inference algorithm. OutsideIn(X) extends the constraints of

X by introducing implication constraints on top. We describe the strategy for solving these

implication constraints, which, in turn, relies on a constraint solver for X. We characterise the

properties of the constraint solver for X so that the resulting algorithm only accepts programs

with principal types, even when the type system specification accepts programs that do not

enjoy principal types. Going beyond the general framework, we give a particular constraint

solver for X = type classes + GADTs + type families, a non-trivial challenge in its own right.

This constraint solver has been implemented and distributed as part of GHC 7.

1 Introduction

The Hindley–Milner type system (Milner, 1978; Damas & Milner, 1982) is a

masterpiece of design. It offered a big step forward in expressiveness (parametric

polymorphism) at very low cost. The cost is low in several dimensions: the type

system is technically easy to describe, and a straightforward inference algorithm is
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both sound and complete with respect to the specification, and it does all this for

programs with no type annotations at all!

Over the following 30 years, type systems have advanced rapidly, both in

expressiveness and (less happily) in complexity. One particular direction in which

they have advanced lies in the type constraints that they admit, such as type classes,

implicit parameters, record constraints, subtype constraints and non-structural

equality constraints. Type inference obviously involves constraint solving, but it

is natural to ask whether one can design a system that is somehow independent

of the particular constraint system. The HM(X) system embodies precisely such an

approach, by abstracting over the constraint domain ‘X’ (Odersky et al., 1999).

However, HM(X) is not expressive enough to describe the type system features

we need. The principal difficulty is caused by so-called local constraints. By local

constraints, we mean type constraints that hold in some parts of the program but

not others. Consider, for example the following program, which uses a Generalised

Algebraic Data Type (GADT), a recently introduced and wildly popular feature of

Haskell (Peyton Jones et al., 2006):

data T :: * -> * where

T1 :: Int -> T Bool

T2 :: T a

test (T1 n) _ = n > 0

test T2 r = r

The pattern match on T1 introduces a local constraint that the type of (T1 n) be

equal to T1 Bool inside the body n > 0. But that constraint need not hold outside

that first pattern match. In fact, the second line for test allows any type T a for its

first argument.

What type should be inferred for function test? Alas, there are two possible

most-general System F types, neither of which is an instance of the other1:

test :: ∀a . T a → Bool → Bool

test :: ∀a . T a → a → a

The second type for test arises from the fact that if its first argument has type

T a then the first branch allows the return type Bool to be replaced with a, since

the local constraint that T a is equal to T Bool holds in that branch (although not

elsewhere). The loss of principal types is both well known and unavoidable (Cheney

& Hinze, 2003).

A variety of papers have tackled the problem of local constraints in the specific

context of GADTs, by a combination of user-supplied type annotations and/or

constraint-based inference (Peyton Jones et al., 2006; Pottier & Régis-Gianas, 2006;

Simonet & Pottier, 2007; Sulzmann et al., 2008). Unfortunately, none of these

approaches is satisfying, even to their originators, for a variety of reasons (Section 9).

1 We write ‘System F’ since the answer to this question varies when more or less expressive type systems
are considered.
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Simonet and Pottier give an excellent summary in the closing sentences of their paper

(Simonet & Pottier, 2007):

We believe that one should, instead, strive to produce simpler constraints, whose satisfiability

can be efficiently determined by a (correct and complete) solver. Inspired by Peyton Jones et al.’s

wobbly types (Peyton Jones et al. 2006), recent work by Pottier & Régis-Gianas (2006) proposes

one way of doing so, by relying on explicit, user-provided type annotations and on an ad hoc

local shape inference phase. It would be interesting to know whether it is possible to do better,

that is not to rely on an ad hoc preprocessing phase.

Our system produces simpler constraints than the constraints Simonet and Pottier

use and does not rely on an ad hoc local shape inference phase. Furthermore, it

does this not only for the specific case of GADTs, but for the general case of

an arbitrary constraint system in the style of HM(X). Specifically, we make the

following contributions:

• We describe a constraint-based type system that, like HM(X), is parameterised

over the underlying constraint system X (Section 4) and includes:

— Data constructors with existential type variables.

— Data constructors that introduce local constraints of which GADTs are a

special case.

— Type signatures on local let-bound definitions.

— Top-level axiom schemes (such as Haskell’s instance declarations).

These extensions offer substantially improved expressiveness, but at signif-

icant cost to the specification and implementation. Local constraints from

data constructors or signatures are certainly not part of HM(X); existential

variables can sometimes be accommodated by the techniques found in some

presentations (Pottier & Rémy, 2005), and top-level axiom schemes are only

part of Mark Jones’ qualified types (Jones, 1992).

• While developing our type system, we show a surprising result: while sound

and complete implicit generalisation for local let bindings is straightforward

in Hindley–Milner, it becomes prohibitively complicated when combined with

a rich constraint system that includes local assumptions (Section 4.2). Happily,

we demonstrate that local generalisation is almost never used, and when it

absolutely has to be used, a local type signature makes these complications

go away. Thus, motivated, albeit controversially, we propose to simplify the

language by removing implicit generalisation of local let bindings.

• We give an inference algorithm, OutsideIn(X), that is stratified into (a) an

inference engine that is independent of the constraint system X, and (b) a

constraint solver for X itself (Section 5). We show that our approach is not

ad hoc: any program accepted by our algorithm can be typed with a principal

type in the simple natural constraint-based type system. Previous work (Peyton

Jones et al., 2006; Pottier & Régis-Gianas, 2006) only infers principal types

with respect to specialised type systems, but not with respect to the natural

constraint-based type system.

• A particularly useful, but particularly delicate, class of constraints is type-

equality constraints, including those introduced by GADTs and by type-level
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functions (type families in the Haskell jargon). Section 7 gives a concrete

instantiation of X with the constraints arising from these features, as well

as with the more traditional Haskell type class constraints. Our concrete

solver subsumes and simplifies our previous work on solving constraints

involving type families (Schrijvers et al., 2008a) and is now part of the GHC

implementation.

This paper draws together, in a single uniform framework, the results of a multi-

year research project, documented in several earlier papers (Peyton Jones et al.,

2006; Schrijvers et al., 2007; Peyton Jones et al., 2004; Schrijvers et al., 2008a;

Schrijvers et al., 2009; Vytiniotis et al., 2010). By taking the broader perspective of

abstracting over the constraint domain ‘X’, we hope to bring out the core challenges

in higher relief and contribute towards building a single generic solution rather than

a multitude of ad hoc compromises.

The principal shortcoming of our system is shared by every other paper on

the subject: an unsatisfactory account of ambiguity, a notion first characterised by

Jones (1993). We discuss the issue, along with a detailed account of incompleteness,

in Section 6. There is also a good deal of related work, which we describe in

Section 9.

2 The challenge we address

We begin by briefly reviewing part of the type-system landscape, to identify the

problems that we tackle.

The vanilla Hindley–Milner system has just one form of type constraint, namely

the equality of two types, which we write τ1 ∼ τ2. For example, the application of a

function of type τ1 → τ2 to an argument of type τ3 gives rise to an equality constraint

τ1 ∼ τ3. These equality constraints are structural and hence can be solved easily by

unification, with unique most general solutions. However, subsequent developments

have added many new forms of type constraints:

• Haskell’s type classes add type-class constraints (Jones, 1992; Wadler & Blott,

1989; Hall et al., 1996). For example, the constraint Eq τ requires that the type

τ be an instance of the class Eq. Haskell also allows types that quantify over

constraints (often called qualified types in the HM(X) literature). For example,

the member function has type

member :: Eq a => a -> [a] -> Bool

which says that member may be called at any type τ, but that the constraint

Eq τ must be satisfied at the call site.

• An early extension to the original definition of Haskell 98 was to allow

multi-parameter type classes, which Mark Jones subsequently extended with

functional dependencies (Jones, 2000). This pair of features turned out to be

tremendously useful in practice and gave rise to a whole cottage industry of

programming techniques that amount to performing arbitrary computation

at the type level. We omit the details here but the underlying idea was that
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the conjunction of two class constraints C τ υ1 and C τ υ2 gives rise to an

additional equality constraint υ1 ∼ υ2.

• GADTs added a substantial new twist to equality constraints by supporting

local equalities introduced by pattern matching (Xi et al., 2003; Peyton Jones

et al., 2006). User type signatures with constrained types have a similar

effect, also introducing local assumptions. We will discuss GADTs further

in Section 2.

• Kennedy’s thesis (Kennedy, 1996) describes how to accommodate units of

measure in the type system so that one may write

calcDistance :: num (m/s) -> num s -> num m

calcDistance speed time = speed * time

thereby ensuring that the first argument is a speed in metres/second, and sim-

ilarly for the other argument and result. The system supports polymorphism,

for example

(*) :: num u1 -> num u2 -> num (u1*u2)

There is, necessarily, a non-structural notion of type equality. For example, to

type check the definition of calcDistance the type engine must reason that

(m/s)*s ∼ m. This is an ordinary equality constraint, but there is now a non-

standard equality theory so the constraint solver becomes more complicated.

• More recently, inspired by object-oriented languages, we have proposed and

implemented a notion of associated types in Haskell (Chakravarty et al. 2005a,

2005b). The core feature is that of a type family (Kiselyov et al., 2010). For

instance, the user may declare type family axioms:

type family F :: * -> *

type instance F [a] = F a

type instance F Bool = Int

In this example, F is a type family with two defining axioms, F [a] ∼ F a
and F Bool ∼ Int. This means that any expression of type F [Bool] can be

considered as an expression of type F Bool (using the first axiom), which, in

turn, can be considered as having type Int (using the second axiom). Hence,

like in the case of units of measure, equalities involving type families are also

non-structural.

Type inference for HM(X) is tractable: it boils down to constraint solving for

existentially quantified conjunctions of primitive constraints. However, the type

system features discussed above go beyond HM(X), in two particular ways. First,

GADTs bring into scope local type constraints, and existentially quantified variables

(Section 2.2). Second, we must allow top-level axiom schemes, such as Haskell’s

instance declarations (Section 2.3). In this paper, we address modular type inference

with principal types for the aforementioned type system features and beyond. In the

following sections, we explain the problem in more detail, but we begin with a brief

discussion of principal types to set the scene.
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2.1 Modular type inference and principal types

Consider this expression, which defines f without a type signature, expecting the

type inference engine to figure out a suitable type for f:

let f x = <rhs>

in <body>

It is very desirable that type inference should be modular; that is, it can infer a

type for f by looking only at f’s definition, and not at its uses in <body>. After

all, <body> might be very large or, in a system supporting separate compilation, f’s

definition might be in a library, while its call sites might be in other modules.

In a language supporting polymorphism, it is common for f to have many types;

for example reverse has types [Int] → [Int] and [Bool] → [Bool]. For modular

type inference to work, it is vital for f to have a unique principal type, that is more

general than all its other types. For example, reverse :: ∀a.[a] → [a].

When the programmer supplies an explicit type signature, the issue does not arise:

we should simply check that the function indeed has the specified type and use that

type at each call site. However, for modular type inference, we seek a type system

for which an un-annotated definition has a unique principal type – or else is rejected

altogether. The latter is acceptable because the programmer can always resolve the

ambiguity by adding a type signature.

2.2 The challenge of local constraints

GADTs have proved extremely popular with programmers, but they present the

type inference engine with tricky choices. Notably, as mentioned in the introduction,

functions involving GADTs may lack a principal type. Recall the example:

data T :: * -> * where

T1 :: Int -> T Bool

T2 :: T a

test (T1 n) _ = n > 0

test T2 r = r

One can see that test has two possible most-general System F types, neither of

which is an instance of the other:

test :: ∀a . T a → Bool → Bool

test :: ∀a . T a → a → a

Since test has no principal type we argue that, rather than making an arbitrary

choice, the type inference engine should reject the program. The programmer can fix

the problem by specifying the desired type with an explicit type signature, such as:

test :: T a -> Bool -> Bool

But exactly which GADT programs should be rejected? Consider test2:
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test2 (T1 n) _ = n > 0

test2 T2 r = not r

Since T2 is an ordinary (non-GADT) data constructor, the only possible type of r

is Bool, so the programmer might be confused at being required to say so.

2.3 The challenge of axiom schemes

A further challenge for type inference are top-level universally quantified constraints,

which we refer to as axiom schemes. Early work by Faxén (Faxén, 2003) already

shows how the interaction between type signatures and axiom schemes can lead to

the loss of principal types. Here is another example of the same phenomenon, taken

from (Sulzmann et al., 2006a):

class Foo a b where foo :: a -> b -> Int

instance Foo Int b

instance Foo a b => Foo [a] b

g y = let h :: forall c. c -> Int

h x = foo y x

in h True

In this example, the two instance declarations give rise to two axiom schemes. The

instance Foo Int b provides the constraint Foo Int b for any possible b. Similarly,

the second instance provides the constraint Foo [a] b for any possible a and b, as

long as we can show Foo a b.

Suppose now that y has type [Int]. Then, the inner expression foo y x gives

rise to the constraint Foo [Int] c. This constraint can be reduced via the above

instance declarations. and thus, the program type checks. We can generalise this

example and conclude that function g can be given the infinite set of types

g :: [Int] → Int

g :: [[Int]] → Int

g :: . . .

but there is no most general Haskell type for g.

Here is a similar example, this time showing the interaction of type families with

existential data types (Läufer & Odersky, 1994), yet another extension of vanilla

HM(X).

type family FB :: * -> * -> *

type instance FB Int b = Bool

type instance FB [a] b = FB a b

data Bar a where

K :: a -> b -> Bar a

h (K x y) = not (fb x y) -- Assume fb :: a -> b -> FB a b

-- not :: Bool -> Bool
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To type check the body of h, we must be able to determine some type variable αx

(for the type of x) such that, for any b (the type of y), the result type of the call to

fb is compatible with not, that is: FB αx b ∼ Bool. In combination with the above

type instances, function h can be given the infinite set of types

h :: Bar Int → Bool

h :: Bar [Int] → Bool

h :: Bar [[Int]] → Bool

h :: . . .

Unsurprisingly, axiom schemes combined with local assumptions are no better,

even in the absence of GADTs. Consider the following example, using only type

classes.

class C a

class B a b where op :: a -> b

instance C a => B a [a]

data R a where

MkR :: C a => a -> R a

k (MkR x) = op x

The function k has both these (incomparable) types:

k :: ∀ab . B a b ⇒ R a → b
k :: ∀a . R a → [a]

The first is straightforward; it makes no use of the local (C a) constraint in MkR’s

type. The second fixes the return type to be [a], but in return it can make use of

the local (C a) constraint to discharge the constraint arising from the call of op.

2.4 Recovering principal types by enriching the type syntax

There is a well-known recipe for recovering principal types (Simonet & Pottier,

2007): enrich the language of types to allow quantification over constraint schemes

and implications. To be concrete, here are the principal types of the problematic

functions in Sections 2.2 and 2.3 (we use ⊃ for implications):

test :: ∀ab . (a ∼ Bool ⊃ b ∼ Bool) ⇒ T a → b → b
g :: ∀b . (∀c . Foo b c) ⇒ b → Int

h :: ∀a . (∀b . (FB a b ∼ Bool)) ⇒ Bar a → Bool

k :: ∀ab . (C a ⊃ B a b) ⇒ R a → b

We have ourselves flirted with quantifying over (implication) constraint schemes, but

we will argue in 4.2 that this is not practical.

2.5 Summary

The message of this section is simple: by moving beyond HM(X) in terms of

expressiveness without enriching the type syntax, many programs no longer have
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principal types. Ideally, if a function definition does not have a principal type then

we would like to reject it. The challenge is to identify that definitions should be

accepted and should be rejected. Moreover, we want to do this generically, for any

X. In the rest of this paper, we explore a type system and type inference algorithm

that address these challenges.

3 Constraint-based type systems

To formally describe the problem and our solution in the rest of the paper, we

introduce notation and review constraint-based type inference (Jones, 1992; Odersky

et al., 1999; Pottier & Rémy, 2005). In constraint-based type inference, constraints

appear as part of the type system specification, and the implementation works by

generating and solving those constraints.

Although the material in this section is quite standard, our base system addi-

tionally supports case expressions, and top-level type signatures. Moreover, our

definitions and metatheory are carefully engineered so that they will later carry over

to the extensions outlined in the introduction.

Since our type system supports type signatures, there is one more difference.

Earlier work (Jones, 1992; Odersky et al., 1999; Pottier & Rémy, 2005) only considers

solving sets of primitive constraints, which we refer to as ‘wanted’ constraints. The

presence of type signatures forces us to consider a more general setting, where we

solve wanted constraints with respect to a set of ‘given’ constraint assumptions. For

example, given

palin :: Eq a => [a] -> Bool

palin xs = xs == reverse xs

Here, the wanted constraint arising from the use of (==) is (Eq [a]); it must be

solved from the given assumption (Eq a).

3.1 Syntax

Figure 1 gives a Haskell-like syntax for a language that includes constraints.

Programs simply consist of a sequence of top-level bindings that may or may not

be accompanied with type signatures. The expressions that may be bound consist

of the λ-calculus, together with case expressions to perform pattern matching. It

turns out that local let declarations are a tricky point, so we omit them altogether

for now, returning to them in Section 4.2. As a convention, we use term variables

f , g , h as identifiers for those top-level bindings, and x , y , z for identifiers bound by

λ-abstractions and case patterns.

Data constructors in Haskell or ML are introduced by algebraic data type

declarations. Instead of giving the syntax of such declarations, we simply assume an

initial type environment Γ0, populated by data type declarations, that gives the type

of each data constructor. Each such data constructor K has a type of form

K::∀a.υ → T a
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Term variables ∈ x , y , z , f , g , h
Type variables ∈ a, b, c
Data constructors ∈ K

ν ::= K | x
Programs prog ::= ε | f = e, prog | f ::σ = e, prog

Expressions e ::= ν | λx.e | e1 e2 | case e of{Kx → e}
Type schemes σ ::= ∀a.Q ⇒ τ
Constraints Q ::= ε | Q1∧Q2 | τ1 ∼ τ2 | . . .
Monotypes τ, υ ::= tv | Int | Bool | [τ ] | T τ | . . .

tv ::= a
Type environments Γ ::= ε | (ν:σ),Γ
Free type variables ftv(·)

Γ0 : Types of vanilla data constructors
K : ∀a.υ → T a

Top-level axiom schemes
Q ::= ε | Q ∧ Q | ∀a.Q ⇒ Q

Fig. 1. Syntax.

where a are the universally quantified variables of the constructor – the ones

appearing in the return type T a . Note that, for now, data constructors have

unconstrained types, unlike the GADT constructors of Section 2.2.

The syntax of types and constraints also appears in Figure 1. The syntax of

types is standard, and we use meta-variables τ and υ to denote types. We use tv
to denote type variables a , b, . . . (we will later on extend tv to include unification

variables introduced by an algorithm). Polymorphic (quantified) types σ may include

constraints and are of the form ∀a.Q ⇒ τ. In Figure 1, we have included types

Int, Bool and [τ], but they are nothing special compared to other type constructor

applications T τ. Just as we do for user-declared datatypes, we will assume data

constructors (from the alphabet K ) used to form values of these types. Hence, the

term syntax does not give explicit literals for integers or Booleans. We also treat

function arrow ((→)) as yet another type constructor.

Constraints Q include type equalities τ1 ∼ τ2 and conjunctions Q1 ∧ Q2. We treat

conjunction Q1 ∧ Q2 as an associative and commutative operator, as is conventional.

By design, we leave the syntax of constraints open; hence, the ‘. . . ’. This is the ‘X’

part of HM(X) and OutsideIn(X), to be presented later. Types are similarly open

(hence, ‘. . . ’ in τ) because a constraint system may involve new type forms. For

example, dimensional units involve types, such as Float (m/s).

A term is typed relative to a set of top-level axiom schemes Q, whose syntax is in

Figure 1. In Haskell type classes, for example an instance declaration corresponds

to an axiom scheme:

instance Eq a => Eq [a] where { ... }

As we mentioned in Section 2.4, types ∀a.Q ⇒ τ are quantified only over flat

constraints Q and not over constraint schemes Q. We noted in Section 2.4 that the
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Q ; Γ � e : τ

(ν:∀a.Q1 ⇒ υ) ∈ Γ Q � [a 	→ τ ]Q1

VarCon
Q ; Γ � ν : [a 	→ τ ]υ

Q ; Γ � e : τ1 Q � τ1 ∼ τ2
Eq

Q ; Γ � e : τ2

Q ; Γ, (x :τ1) � τ2
Abs

Q ; Γ � λx.e : τ1 → τ2

Q ; Γ � e1 : τ1 → τ2 Q ; Γ � e2 : τ1
App

Q ; Γ � e1 e2 : τ2

Q ; Γ � e : T τ
for each branch (Ki x i → ui) do

Ki :∀a.υi → T a ∈ Γ Q ; Γ↪ (xi :[a 	→ τ ]υi) � ui : τr
Case

Q ; Γ � case e of {Ki x i → ui} : τr

Q � Q

(constraint entailment judgement)

Fig. 2. Vanilla constraint-based type system.

latter choice would be more expressive but, as we explain in Section 4.2.1, we do

not believe it is feasible in practice. On the other hand, top-level axiom schemes are

essential to handle Haskell, so we are forced into stratifying the system.

3.2 Typing rules

In a constraint-based type system, the main typing relation takes the form

Q ; Γ 	 e : τ

meaning ‘in a context where the (flat) constraint Q is available, and in a type

environment Γ, the term e has type τ’. For example, here is a valid judgement:

(a ∼ Bool) ; (x:a , not : Bool → Bool) 	 not x : Bool

The judgement only holds because of the availability of the constraint a ∼ Bool.

Since x : a and a ∼ Bool we have that x : Bool, and hence, x is acceptable as an

argument to not.

Figure 2 shows a vanilla constraint-based type system for the language of Figure 1.

The Figure has two particularly interesting rules.

• Rule VarCon is used to instantiate the potentially constrained type of a term

variable or constructor. The constraint arising from the instantiation has to

be entailed by the available constraint, written Q � [a 
→ τ]Q1. For example,

if (==) : ∀a.Eq a ⇒ a → a → Bool, then rule VarCon can be used to

instantiate (==) to have type Int → Int → Bool if Q = Eq Int.
• The second interesting rule is Eq, where the entailment ‘meets’ the types of our

language. If an expression has type τ1 and the entailment relation can be used

to deduce that τ1 ∼ τ2 then we may conclude that the expression has type τ2.
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Reflexivity Q ∧ Q � Q (R1)
Transitivity Q ∧ Q1 � Q2 and Q ∧ Q2 � Q3 implies Q ∧ Q1 � Q3 (R2)
Substitution Q � Q2 implies θQ � θQ2 where θ is a type substitution (R3)

Type eq. reflexivity Q � τ ∼ τ (R4)
Type eq. symmetry Q � τ1 ∼ τ2 implies Q � τ2 ∼ τ1 (R5)
Type eq. transitivity Q � τ1 ∼ τ2 and Q � τ2 ∼ τ3 implies Q � τ1 ∼ τ3 (R6)
Conjunctions Q � Q1 and Q � Q2 implies Q � Q1 ∧ Q2 (R7)
Substitutivity Q � τ1 ∼ τ2 implies Q � [a 	→ τ1]τ ∼ [a 	→ τ2]τ (R8)

Fig. 3. Entailment requirements.

The judgement Q � Q is a constraint entailment relation and should be read as: from

the axiom schemes in Q, we can deduce Q . (In Figure 2, we only use flat constraints

on the left of the �, but we will use the more general form shortly, in Figure 4.)

We leave the details of entailment deliberately unspecified because it is a parameter

of the type system but we will see in Section 7 a concrete instantiation of such a

relation. As a notational convenience, we write

Q � Q1 ↔ Q2 iff Q ∧ Q1 � Q2 and Q ∧ Q2 � Q1

Although we do not give a precise definition of entailment here, in Figure 3,

we postulate certain properties, sufficient to establish that we can come up with

a sound implementation of type inference, which moreover infers principal types.

Conditions R1 and R2 state that the entailment relation is reflexive and transitive.

Condition R3 ensures that entailment is preserved under substitution. Conditions

R4, R5 and R6 ensure that the provable type equality is an equivalence relation,

and R7 asserts that conjunctions can be proved by proving each of the conjuncts.

Condition R8 asserts that provably equal types can be substituted in other types,

preserving equivalence. There is nothing surprising in the conditions mentioned in

Figure 3; for example Jones identifies similar conditions in his thesis (Jones, 1992),

except for the conditions related to type equalities.

Pattern matching is given with rule Case and is also straightforward since the types

of data constructors K do not include any constraints (as opposed to the constrained

type of the T1 constructor from the previous section), and hence, pattern matching

does not introduce any local assumptions.

We now specify a judgement for well-typed programs,

Q ; Γ 	 prog

in Figure 4. In a constraint-based type system users may declare top-level universally

quantified constraints, or axiom schemes, denoted with Q (Figure 1). These may

include, for example type class or type family instance declarations. The syntax of

axiom schemes Q, given in Figure 1, includes universally quantified constraints of

the form ∀a.Q1 ⇒ Q2, where Q1 is allowed to be ε, and a are the free variables

of Q1 and Q2. Ordinary Q constraints can be viewed as a degenerate form of Q
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Q ; Γ � prog

ftv(Γ,Q) = ∅
Empty

Q ; Γ � ε

Q1 ; Γ � e : τ a = ftv(Q ,τ ) Q ∧ Q � Q1

Q ; Γ, (f :∀a.Q ⇒ τ) � prog
Bind

Q ; Γ � f = e, prog

Q1 ; Γ � e : τ a = ftv(Q ,τ ) Q ∧ Q � Q1

Q ; Γ, (f :∀a.Q ⇒ τ) � prog
BindA

Q ; Γ � f :: (∀a.Q ⇒ τ) = e, prog

Fig. 4. Well-typed programs.

constraints. As an example, here is an axiom arising from an instance declaration:

∀a.Eq a ⇒ Eq [a]

Another one that binds no quantified variables and where Q1 is empty is simply

Eq Bool.

The judgement Q ; Γ 	 prog (Figure 4) can be read thus: ‘in the top-level axiom

scheme environment Q and environment Γ, prog is a well-typed program’.

Rule BindA deals with a top-level binding with a (closed) user-specified type

annotation. If the constraint required to type check e is Q1, then that constraint

must follow from (be entailed by) the top-level axiom set Q and the constraint Q
introduced by the type signature.

In the case of an un-annotated top-level binding, rule Bind, we appeal to Q1 ; Γ 	
e : τ to determine some constraint Q1 that is required to make e typeable with type

τ in Γ. Next, we may allow the possibility of quantifying over a simplified version

of Q1, namely Q . This is done with the condition Q ∧ Q � Q1. Intuitively, Q is

the ‘extra information’, not deducible from Q, that is needed to show the required

constraint Q1. We may then quantify over the free variables of Q and τ, and type

check the rest of the program prog , binding f to type ∀a.Q ⇒ τ.

3.3 Type soundness

Does this type system obey the mantra that ‘well typed programs do not go

wrong’? Yes, type safety typically follows under reasonable additional consistency

assumptions from the constraint theory.

Definition 3.1 (Top-level consistency) An axiom scheme Q is consistent iff it satisfies

the following: whenever we have Q � T1 τ1 ∼ T2 τ2, it is the case that T1 = T2 and

Q � τ1 ∼ τ2.

After all, if Q contained the assumption Int ∼ Bool, it would be unreasonable to

expect a ‘well-typed’ program not to crash. We refrain from discussing type soundness

in this paper, but we urge the reader to consult the literature on HM(X) (Sulzmann,

2000; Skalka & Pottier, 2003; Pottier & Rémy, 2005) for details.
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3.4 Type inference, informally

Type inference for type systems involving constraints is conventionally carried out

in two stages: first generate constraints from the program text, and then, solve

the constraints ignoring the program text (Pottier & Rémy, 2005). The generated

constraints involve unification variables, which stand for as-yet-unknown types, and

for which we use letters α, β, γ, . . .. Solving the constraints produces a substitution, θ,

that assigns a type to each unification variable. For example, consider the definition

data Pair :: * -> * -> * where

MkP :: a -> b -> Pair a b

f x = MkP x True

The data type declaration specifies the type of the constructor MkP, thus:

MkP : ∀ab.a → b → Pair a b

Now, consider the right-hand side of f. The constraint generator makes up unification

variables as follows:

α type of the entire right-hand side

β type of x

γ1, γ2 instantiate a , b respectively, when

instantiating the call of MkP

From the text, we can generate the following equalities:

β ∼ γ1 First argument of MkP

Bool ∼ γ2 Second argument of MkP

α ∼ Pair γ1 γ2 Result of MkP

These constraints can be solved by unification, yielding the substitution θ = [α 
→
Pair β Bool, γ2 
→ Bool, γ1 
→ β]. This substitution constitutes a ‘solution’ because

under that substitution, the constraints are all of form τ ∼ τ.

This two-step approach is very attractive as follows:

• The syntax of a real programming language is large, so the constraint

generation code has many cases. But each case is straightforward, and adding

a new case (if the language is extended) is easy.

• The syntax of constraints is small – certainly much smaller than that of the

programming language. Solving the constraints may be difficult, but at least

the language is small and stable.

3.5 Type inference, precisely

We now make precise our informal account of type inference. We first extend the

syntax of Figure 1 in Figure 5. Type variables tv now include rigid (skolem) variables

a , b, . . . as before, but also unification variables α, β, . . .. We use the letters θ, ϕ to

denote idempotent substitutions whose domain includes only unification variables;

these substitutions are called unifiers in the type inference jargon.
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Unification variables α, β, γ, . . .
Unifiers θ, ϕ ::= [α 	→ τ ]
Unification or rigid (skolem) variables tv ::= α | a
Algorithm-generated constraints C ::= Q
Free unification variables fuv(·)

Convert to Q-constraint simple[Q ] = Q

Fig. 5. Syntax extensions for the algorithm.

The constraints that arise during the operation of the algorithm will be denoted

with C . Later on, our inference algorithm will (unlike more traditional presentations

of HM(X)) gather and simplify constraints C that are somewhat richer than the

constraints Q that are allowed to appear in the type system and types. For now,

however, the constraints C generated by the algorithm have the same syntax as type

constraints Q . The function simple[·] accepts a C constraint and gives us back a Q
constraint. As Figure 5 shows, simple[·] is defined – for now – to just be the identity.

As mentioned in Section 3.4, type inference proceeds in two steps:

• Generate constraints with the judgement:

Γ 	� e : τ� C

which can be read: ‘in the environment Γ, we may infer type τ for the

expression e and generate constraint C ’ (Section 3.5.1).

• Solve constraints for each top-level binding separately, using a simplifier for

the constraint entailment relation 	�simp

(Section 3.5.2).

The two are combined by the top-level judgement

Q ; Γ 	� prog

which invokes constraint generation and solving, to check that in a closed, top-level

set of axiom schemes and a closed environment Γ the program prog is well typed

(Section 3.5.3). We remark that type annotations are closed and hence contain no

unification variables.

3.5.1 Generating constraints

Constraint generation for the language of Figure 1 is given in Figure 6, where τ

and C should be viewed as outputs. Rule VarCon instantiates the polymorphic

type of a variable or constructor with fresh unification variables and introduces the

instantiated constraint of that type. Rule App generates a fresh unification variable

for the return type of the application. Rule Abs is straightforward. Rule Case deals

with pattern matching. After inferring a constraint C and a type τ for the scrutinee of

the case expression, e , we check each branch of the case expression independently. In

every branch, we instantiate the universal variables of the constructor Ki to freshly

picked unification variables γ (those are picked once for all possible branches since

they have to be the same).
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Γ �� e : τ � C

α fresh (ν:∀a.Q1 ⇒ τ1) ∈ Γ
VarCon

Γ �� ν : [a 	→ α]τ1 � [a 	→ α]Q1

Γ �� e1 : τ1 � C1 Γ �� e2 : τ2 � C2 α fresh
App

Γ �� e1 e2 : α � C1 ∧ C2 ∧ (τ1 ∼ (τ2 → α))

α fresh Γ, (x :α) �� e : τ � C
Abs

Γ �� λx.e : α → τ � C

Γ �� e : τ � C β, γ fresh C ′ = (T γ ∼ τ) ∧ C
for each Ki x i → ei do

Ki :∀a.υi → T a ∈ Γ Γ, (xi :[a 	→ γ]υi) �� ei : τi � Ci

C ′
i = Ci ∧ τi ∼ β

Case
Γ �� case e of {Ki x i → ei} : β � C ′ ∧ (∧C ′

i )

Fig. 6. Constraint generation.

3.5.2 Solving constraints

The inference algorithm relies on a constraint solver (or, rather, simplifier). The

constraint simplifier is specific to the particular constraint system X, so all we can

give here is the form of the constraint-simplifier judgement; its implementation is

specific to X. The judgement takes the following form:

Q ; Qgiven 	�simp

Qwanted � Qresidual ; θ

It takes as input an axiom scheme set Q and some constraints Qgiven that may be

available and tries to simplify the wanted constraints Qwanted producing residual

constraints that could not be simplified further (such as unsolved class constraints

that may need to be quantified over) and a substitution θ that maps unification

variables to types.

For example, if Q includes the scheme (∀a . Eq a ⇒ Eq [a]), a constraint simplifier

for Haskell type classes may give

Q ; ε 	�simp

Eq α ∧ [β] ∼ α� Eq β ; [α 
→ [β]]

Naturally, the constraint simplifier must satisfy certain properties (Figure 8), which

we explore in Section 3.6.

3.5.3 The top-level inference algorithm

Now, we are ready to give the top-level inference algorithm, in Figure 7, which per-

forms type inference on whole programs. It treats each binding independently, using

rules Bind and BindA for un-annotated and type-annotated bindings, respectively.
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Q ; Γ �� prog

empty
Q ; Γ �� ε

Γ �� e : τ � Qwanted Q ; ε ��simp
Qwanted � Q ; θ

a fresh α = fuv(θτ,Q)
Q ; Γ, (f :∀a.[α 	→ a](Q ⇒ θτ)) �� prog

Bind
Q ; Γ �� f = e, prog

Γ �� e : υ � Qwanted

Q ; Q ��simp
Qwanted ∧ υ ∼ τ � ε ; θ

Q ; Γ, (f :∀a.Q ⇒ τ) �� prog
BindA

Q ; Γ �� f :: (∀a.Q ⇒ τ) = e, prog

Q ; Qgiven ��simp
Qwanted � Qresidual ; θ

(simplifier for �)

Fig. 7. Top-level algorithmic rules.

In the case of rule Bind, we first produce a constraint for the expression e ,

Qwanted , using the constraint-generation judgement. Next, we attempt to simplify

the constraint Qwanted , producing some residual constraint and a substitution for

unification variables. We may then generalise a type for f (which we have written

as ∀a.[α 
→ a](Q ⇒ θτ)), with the substitution [α 
→ a] distributing under ⇒) and

check the rest of the program. It is precisely this generalisation over Q constraints

that allows the simplifier to return a residual unsolved constraint to be quantified

over. There is no need to check that α#fuv (Γ) since this is a top-level judgement,

for which the environment contains no free unification variables. Note additionally

that the call to the simplifier is with Qgiven = ε, as there are no given constraints at

top level.

The case of annotated bindings is similar, but we call the simplifier considering

as given the constraint Q from the type signature, and requiring that no residual

constraint is returned with Q ; Q 	�simp

Qwanted ∧ υ ∼ τ � ε ; θ. Hence, the wanted

constraint C along with the equality between υ (the inferred type) and τ (the expected

type) must be fully solved by θ using the available axioms Q and given constraints

Q . We assume that type signatures do not contain any unification variables, and

hence, the annotation type cannot be affected by θ.

3.6 Soundness and principality of type inference

In this section, we show when the type inference algorithm enjoys soundness and

infers principal types. A third question that of completeness is particularly tricky

for constraint systems that, like ours, supports bindings with type signatures. We

discuss the issue in detail later, in Section 6. To address soundness and principality,

we first introduce an auxiliary definition:
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Q ; Qgiven ��simp
Qwanted � Qresidual ; θ

Simplifier soundness
(Qresidual ,θ ) is a sound solution for Qwanted under Qgiven and Q

Simplifier principality
(Qresidual ,θ ) is a guess-free solution for Qwanted under Qgiven and Q

Fig. 8. Simplifier conditions.

Definition 3.2 (Sound and guess-free solutions) A pair (Qr , θ) of a constraint Qr and

an (idempotent) unifier θ is a sound solution for Qw under given constraint Qg and

top-level axiom schemes Q when:

(S1) Q ∧ Qg ∧ Qr � θQw , and

(S2) dom(θ)#fuv (Qg ) and dom(θ)#fuv (Qr )

The pair (Qr , θ) is a guess-free solution if, in addition:

(P1) Q ∧ Qg ∧ Qw � Qr ∧ Eθ

where Eθ = {(α ∼ τ) | [α 
→ τ] ∈ θ} is the equational constraint induced by the

substitution θ.

In effect, a guess-free solution (Qr , θ) of Qw under Qg and Q is one where condition

S1 holds, and moreover:

Q ∧ Qg � Qw ↔ Qr ∧ Eθ

We elaborate on the notion of sound and guess-free solutions in Sections 3.6.1

and 3.6.2, respectively, where we discuss soundness and principality of type inference.

3.6.1 Soundness

How should a simplifier behave so that every accepted program in the algorithm

instantiated with the particular simplifier is also typeable in the specification?

Figure 8 requires the simplifier to return a sound solution. Condition S1 is the crux

of soundness and asserts that the original wanted constraint must be deducible, after

we have applied the substitution, from the given constraint Qg and Qr . Condition

S2 requires the domain of the returned substitution to be disjoint from Qg , which

is a trivial property (for now!) since given constraints Qg only arise from user

type annotations that contain no unification variables (rule BindA in Figure 7). In

addition, it requires that the domain of θ be disjoint from Qr . This requirement is

there mainly for technical convenience; we assert that the substitution has already

been applied to the residual returned constraint so that we do not have to re-apply

it (rule Bind in Figure 7).

Provided that the entailment relation satisfies Figure 3, and the constraint simplifier

satisfies the soundness condition in Figure 8, it is routine to show soundness of the

inference algorithm.
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Theorem 3.1 (Algorithm soundness) If the entailment satisfies the conditions of Fig-

ure 3 and the simplifier satisfies the soundness condition of Figure 8 then Q ; Γ 	� prog
implies Q ; Γ 	 prog in a closed environment Γ.

3.6.2 Principality

We now turn our attention to the principal types property, mentioned in Section 2.

We will show here that when the algorithm succeeds, it infers a principal type for

a program. For this to be true, Figure 8 requires a simplifier principality condition,

which we motivate and explain below.

In Hindley–Milner type systems the constraints consist of equations between

types and the requirement for principality is that the constraint simplifier computes

most-general unifiers of these constraints. Consider the constraints for the definition:

foo x = x

If the variable x gets type α and the return type of foo is β then the constraint for

foo is α ∼ β. Of course, the solution [α 
→ Int, β 
→ Int] is a sound one, but it is

not the most general one [α 
→ β]. The characteristic of the most general solution

is that it makes no guesses: the most general solution is entailed directly from the

wanted constraint α ∼ β (whereas (α ∼ β) 
� (α ∼ Int) ∧ (β ∼ Int)).

Our constraints are generalisations of Hindley–Milner constraints, so we need

to come up with an appropriate generalisation to the notion of most general

solution that ‘makes no guesses’. This generalisation is captured with condition P1

in the definition of guess-free solution (Definition 3.2) and is reminiscent of similar

conditions in abduction-based type inference (Maher, 2005; Sulzmann et al., 2008).

We require that the resulting Qresidual and θ must follow from the original Qwanted

constraint. To better illustrate this definition, consider an example that also involves

type classes:

Q = Eq Int

Qg = Eq a
The entailment relation we will use here is a standard entailment relation on

equalities, conjunctions and class constraints (we will give a concrete definition in

Section 7). If Qw = Eq β, then the solution (ε, [β 
→ Int]) is a sound but not

necessarily guess-free solution if the entailment cannot deduce that:

Q ∧ Qg ∧ Eq β � β ∼ Int

On the other hand, if:

Qw = Eq β ∧ [β] ∼ [a]

then (ε, [β 
→ a]) is a guess-free solution, provided that

Q ∧ Qg ∧ Eq β ∧ [β] ∼ [a] � β ∼ a

To formally state and prove principality, we first have to give a (standard) order

relation on constrained types, below. This relation captures when a type is more

general or more polymorphic than another.
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Definition 3.3 (More general quantified type) We say that type ∀a.Q1 ⇒ τ1 is more

general than ∀b.Q2 ⇒ τ2 under axiom scheme environment Q iff:

Q ∧ Q2 � [a 
→ τ]Q1 Q ∧ Q2 � [a 
→ τ]τ1 ∼ τ2 b#ftv (∀a.Q1 ⇒ τ1,Q)
subs

Q 	 ∀a.Q1 ⇒ τ1 � ∀b.Q2 ⇒ τ2

In other words, an instantiation of Q1 must follow from the axiom scheme

environment and Q2, and moreover, an instantiation of τ1 must be equal to τ2

given the axiom scheme environment Q and Q2. It is easy to show that this relation

is reflexive and transitive using the conditions of Figure 3.

To make the notation more compact in the following technical development, we

first abbreviate generalisation for a top-level binding with the following rule:

Q1 ; Γ 	 e : τ Q ∧ Q � Q1 a = ftv (Q , τ)
GenTop

Q ; Γ 	gen e : ∀a.Q ⇒ τ

Correspondingly, we may define algorithmically a generalisation step:

Γ 	� e : τ� Qwanted Q ; ε 	�simp

Qwanted � Q ; θ

a fresh α = fuv (θτ,Q)
GenTopAlg

Q ; Γ 	�gene : ∀a.[α 
→ a](Q ⇒ θτ)

Rules GenTop and GenTopAlg are the generalisation steps inlined in rules Bind

for top-level bindings in Figures 4 and 7. Since all the types in Γ are closed, we do

not have to assert that the unification variables α do not appear in Γ.

To show that the algorithm infers principal types, we first show that even when no

simplification happens at all, the inferred type for an un-annotated top-level binding

is the most general possible.

Lemma 3.1 (Principality of inferred constraint) If Q ; Γ 	 e : τ then Γ 	� e : υ � C ,

and there exists a θ with dom(θ)#fuv (Γ) such that Q � simple[θC ] and Q � θυ ∼ τ.

Proof

Easy induction appealing to the properties of Figure 3. �

Lemma 3.2 Let Q ; Γ 	� e : τ � C , a be fresh and corresponding to fuv (C , τ), and

ϕ = [fuv (C , τ) 
→ a]. If Q ; Γ 	gen e : σ then Q 	 ∀a.ϕ(simple[C ]) ⇒ ϕτ � σ.

Proof

Easy induction, appealing to Lemma 3.1. �

Theorem 3.2 (Algorithm infers principal types) If fuv (Γ) = ∅ and Q ;Γ 	�gene : σ0 then

for all σ such that Q ; Γ 	gen e : σ it is the case that Q 	 σ0 � σ.

Proof

Assume that Q ;Γ 	�gene : ∀a.[α 
→ a](Q ⇒ θτ), and by inversion on rule GenTopAlg,

we get:

Γ 	� e : τ� C (1)
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Q ; ε 	�simp

simple[C ]� Q ; θ (2)

α = fuv (θτ,Q) (3)

Now, appealing to Lemma 3.2 and transitivity of entailment (Condition R2) it

suffices to show that:

Q 	 ∀a.[α 
→ a]Q ⇒ [α 
→ a]θτ � ∀b.[fuv (C , τ) 
→ b](simple[C ] ⇒ τ)

where we assume without loss of generality that b are entirely fresh from any of

the type variables of the left-hand side. To show this, we need to find a substitution

[a 
→ υ] such that:

Q ∧ [fuv (C , τ) 
→ b](simple[C ]) � [a 
→ υ][α 
→ a]Q

Q ∧ [fuv (C , τ) 
→ b](simple[C ]) � ([fuv (C , τ) 
→ b]τ) ∼ [a 
→ υ][α 
→ a]θτ

Or, equivalently,

Q ∧ [fuv (C , τ) 
→ b](simple[C ]) � [α 
→ υ]Q (4)

Q ∧ [fuv (C , τ) 
→ b](simple[C ]) � [α 
→ υ]θτ ∼ ([fuv (C , τ) 
→ b]τ) (5)

But, from the simplifier principality condition and the properties of the entailment,

we get that Q ∧ simple[C ] � Q and Q ∧ simple[C ] � Eθ . From the former, Equation

(4) follows, by picking υ = [fuv (C , τ) 
→ b]α. For Equation (5), by the reflexivity

requirement of entailment, we know that Q ∧ simple[C ] � τ ∼ τ, and moreover, by

the simplifier principality requirement, we have Q ∧ simple[C ] � Eθ . By substitutivity

of entailment and the fact that type equality is an equivalence relation, we know

that Q ∧ simple[C ] � θτ ∼ τ and with the appropriate freshening of unification

variables (which uses property R3) we get the result. �

The fact that the algorithm infers principal types is important, but weaker than

the actual principal types property, which can be formally stated as follows.

Definition 3.4 (Principal types) If Q ; Γ 	gen e : σ then there exists a σ0 such that

Q ; Γ 	gen e : σ0, and for all σ1 with Q ; Γ 	gen e : σ1 it is the case that Q 	 σ0 � σ1.

In particular, Theorem 3.2 says nothing about the situation where the algorithm

fails to produce a type, or the simplifier does not terminate – that is, it says nothing

about completeness. Indeed, as we discuss in Section 6, any guess-free solver will

necessarily be incomplete with respect to a natural type system specification. In the

light of this observation, Theorem 3.2 is remarkable: even when the algorithm is

incomplete (and, as we will see later, even when the type system lacks principal types),

the aforementioned lightweight conditions on the simplifier and the entailment will

guarantee that un-annotated bindings that are accepted by the algorithm do have

principal types, as modularity mandates.

4 Constraint-based type systems with local assumptions

Now that we have established our baseline, we are ready to introduce local type

assumptions, the main focus of this paper. The changes appear modest, but have
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Expressions e ::= . . .

| let x::σ = e1 in e2

| let x = e1 in e2

. . .

Γ0 : Types of data constructors

K : ∀a b . Q ⇒ υ → T a

Fig. 9. Syntax extensions that introduce local assumptions.

a far-reaching impact. Figure 9 gives the extended syntax, highlighting the changes

compared to Figure 1, while Figure 10 does the same for the typing rules, again

highlighting the changes compared with Figure 2.

There are three main changes. First, we add local let-bound definitions that

are accompanied with user-supplied, potentially polymorphic type signatures. The

corresponding typing rule LetA is quite straightforward: it makes the constraint Q1

from the type signature of an annotated local let-bound definition available for

type checking the right-hand side of the definition, e1.

The second modification is an innocent-looking extension of the types of data

constructors, and the corresponding rule Case. This is where GADTs manifest

themselves, as we discuss in Section 4.1.

The third change is the addition of un-annotated let-bound definitions; that is

ones unaccompanied by a type signature. Rule Let is unusually simple because, in

contrast to a traditional Hindley–Milner type system, it performs no generalisation.

We devote the whole of Section 4.2 to an explanation of this unconventional design

choice.

4.1 Data constructors with local constraints

The key feature of GADTs is that a GADT pattern match brings local type-equality

constraints into scope. For example, given the GADT

data T :: * -> * where

T1 :: Int -> T Bool

T2 :: T a

when pattern matching on constructor T1, we know, in that case branch only, that

the scrutinee has type T Bool. While the declaration for the GADT T above is very

convenient for the programmer, it is helpful for our understanding to re-express it

with an explicit equality constraint, like this:

data T :: * -> * where

T1 :: (a ~ Bool) => Int -> T a

T2 :: T a
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Q ; Γ � e : τ

(ν:∀a.Q1 ⇒ υ) ∈ Γ Q � [a 	→ τ ]Q1

VarCon
Q ; Γ � ν : [a 	→ τ ]υ

Q ; Γ � e : τ1 Q � τ1 ∼ τ2
Eq

Q ; Γ � e : τ2

Q ; Γ, (x :τ1) � τ2
Abs

Q ; Γ � λx.e : τ1 → τ2

Q ; Γ � e1 : τ1 → τ2 Q ; Γ � e2 : τ1
App

Q ; Γ � e1 e2 : τ2

Q ; Γ � e1 : τ1
Q ; Γ, (x :τ1) � e2 : τ2

Let
Q ; Γ � let x = e1 in e2 : τ2

Q ∧ Q1 ; Γ � e1 : τ1 a#ftv(Q ,Γ)
Q ; Γ, (x :∀a.Q1⇒τ1) � e2 : τ2

LetA
Q ; Γ � let x::∀a.Q1⇒τ1 = e1 in e2 : τ2

Q ; Γ � e : T τ
for each branch (Ki x i → ui) do

Ki :∀a b . Qi ⇒ υi → T a ∈ Γ

ftv(Q ,Γ, τ ,τ r )#b Q ∧ ([a 	→ τ ]Qi) ; Γ, (xi :[a 	→ τ ]υi) � ui : τr
Case

Q ; Γ � case e of {Ki x i → ui} : τr

Q ; Γ � prog

ftv(Γ,Q) = ∅
Empty

Q ; Γ � ε

Q1 ; Γ � e : τ a = ftv(Q ,τ ) Q ∧ Q � Q1

Q ; Γ, (f :∀a.Q ⇒ τ) � prog
Bind

Q ; Γ � f = e, prog

Q1 ; Γ � e : τ a = ftv(Q ,τ ) Q ∧ Q � Q1

Q ; Γ, (f :∀a.Q ⇒ τ) � prog
BindA

Q ; Γ � f ::∀a.Q ⇒ τ = e, prog

Q � Q

(constraint entailment judgement)

Fig. 10. Natural but over-permissive typing rules.

(GHC allows both forms, and treats them as equivalent.) You may imagine a value

of type T τ, built with T1, as a heap-allocated object with two fields: a value of type

Int and some evidence that τ ∼ Bool. When the value is constructed, the evidence

must be supplied; when the value is de-constructed (i.e. matched in a pattern), the

evidence becomes available in the body of the pattern match. While in many systems,

including GHC, this ‘evidence’ has no runtime existence, the vocabulary can still

be helpful and GHC does use explicit evidence-passing in its intermediate language

(Section 8).

In general (see Figure 9), the type of a data constructor K in a data type T must

take the form

K:∀a b . Q ⇒ υ → T a
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Compared with Figure 1, constructor types have two new features, each of which is

reflected in rule Case:

1. The type variables b are the existential variables of the constructor that, unlike

the a , do not appear in the return type of the constructor.2 For instance, the

b variable in the following definition is one such variable:

data X where

Pack :: forall b. b -> (b -> Int) -> X

The side condition ftv (Q ,Γ, τ, τr )#b in rule Case checks that the existential

variables do not escape in the environment Q ,Γ, or the scrutinee type T τ, or

the result type τr . In the following example, fx1 is well typed, but fx2 is not,

because the existential variable b escapes:

fx1 (Pack x f) = f x

fx2 (Pack x f) = x

2. The constraint Q in K ’s type must be satisfied at calls of K , but becomes

available when pattern matching against K . So, in rule Case, the constraint Qi

from Ki ’s type, suitably instantiated, is added to the ambient constraints used

for typing the case alternative ui . Note that there is no need for a consistency

requirement in the constraint Q ∧ ([a 
→ τ]Qi ), since an inconsistent constraint

simply means unreachable code operationally. Unreachable code is always safe,

no matter how it is typed.

So far we have focused on GADTs, but it is completely natural to generalise

the idea of GADTs in which constructors can have a type involving an equality

constraint, to allow arbitrary constraints in the type of data constructors. Indeed,

we would have to go to extra trouble to prevent such a possibility. For example, we

might write

data Showable where

MkShowable :: (Show a) => a -> Showable

display :: Showable -> String

display (MkShowable x) = show x ++ "\n"

-- Recall that show :: Show a => a -> String

Here, Showable is an existential package, pairing a value of type a with a dictionary

for (Show a). Pattern matching on a Showable gives access to the dictionary:

display does not have a Show constraint, despite the use of show in its body,

because the constraint is discharged by the pattern match.

In Showable, the class constraint affected the existential variable. But in this

generalised setting, we may also constrain the type parameter of the data type:

2 They are called existential, despite their apparent quantification with ∀, because the constructor’s type
would be logically isomorphic to ∀a . (∃b . Qi × υi ) → T a if our type syntax allowed existential
quantification alongside universal.

https://doi.org/10.1017/S0956796811000098 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000098


Modular type inference with local assumptions 357

data Set :: * -> * where

MkSet :: (Ord a) => [a] -> Set a

union :: Set a -> Set a -> Set a

union (MkSet xs1) (MkSet xs2) = MkSet (merge xs1 xs2)

-- Assume merge :: Ord a => [a] -> [a] -> [a]

empty :: Ord a => Set a

empty = MkSet []

A MkSet constructor packages an Ord a dictionary with the list. This dictionary is

used to discharge the Ord constraint required by merge. Older GHC type inference

implementations did not support this very natural generalisation of type inference

for type classes due to the absence of more expressive constraint forms (implications)

that we will discuss later in this paper.

4.2 let should not be generalised

A central feature of the Hindley-Milner system is that let-bound definitions are

generalised. For example, consider the slightly artificial definition

f x = let g y = (x,y) in (g 3, g False)

The definition for g is typed in an environment in which x : a , and the inferred type

for g is ∀b . b → (a , b). This type is polymorphic in b, but not in a , because the latter

is free in the type environment at the definition of g. This side condition, that g

should be generalised only over variables that are not free in the type environment,

is the only tricky point in the entire Hindley-Milner type system.

Recall now the GADT of Section 2:

data T :: * -> * where

T1 :: Int -> T Bool

T2 :: T a

and consider the following function definition:

fr :: a -> T a -> Bool

fr x y = let gr z = not x -- not :: Bool -> Bool

in case y of

T1 _ -> gr ()

T2 -> True

The reader is urged to pause for a moment to consider whether fr’s definition is

type-safe. After all, x clearly has type a, and it is passed as an argument to the

boolean function not. Any normal Hindley-Milner type checker would unify a with

Bool and produce a type error and reject the program.

Yet the program is type safe – there is a type for gr that makes the program type

check, namely
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gr :: forall b. (a ~ Bool) => b -> Bool

Rather than rejecting the constraint a ∼ Bool, we abstract over it, thereby deferring

the (potential) type error to gr’s call site. At any such call site, we must provide

evidence that a ∼ Bool, and indeed we can do so in this case, since we are in the T1

branch of the match on y. In short, to find the most general type for gr, we must

abstract over the equality constraints that arise in gr’s right hand side.

However, we do not seek this outcome: in our opinion, most programmers would

expect fr’s definition to be rejected. But the fact is that in a system admitting

equality constraints, and which allows quantification over constraints, the principal

type for gr is the one written above.

The very same issue arises with type-class constraints. Consider this definition of

fs, which uses the data type Set from Section 4.1:

fs :: a -> Set a -> Bool

fs x y = let gs z = x > z

in case y of

MkSet vs -> gs (head vs)

Again, the most general type of gs is

gs :: (Ord a) => a -> Bool -- Not polymorphic in a

where we abstract over the (Ord a) constraint even though gs is not polymorphic

in a. Given this type, the call to gs is well typed, as is the whole definition of fs. It

should be obvious that the two examples differ only in the kind of constraint that

is involved.

So what is the problem? Typically, for a let binding, we infer the type τ1 of the

right-hand side, gathering its type constraints Q1 at the same time. Then we may

generalise the type, by universally quantifying over the type variables a that are

free in τ1 but are not mentioned in the type environment. But what about Q1? We

discuss next the various ways in which it can be treated.

For the sake of simplicity, in the discussion below we will ignore the top-level

axiom set Q: it only makes things more problematic still.

4.2.1 GenAll: abstract over all the constraints

One robust and consistent choice (made, for example, by Pottier (Pottier & Rémy,

2005; Simonet & Pottier, 2007)) is to abstract over the whole constraint Q1, regardless

of whether the constraint mentions the quantified type variables a , to form the type

∀a.Q1 ⇒ τ1. Here is the typing rule for let under the GenAll approach:

Qualified types: Yes,Generalization: Yes

Q1 ; Γ 	 e1 : τ1 a = ftv (Q1, τ1) − ftv (Q ,Γ)

Q ; Γ, (x :∀a . Q1 ⇒ τ1) 	 e2 : τ2
let

Q ; Γ 	 let x = e1 in e2 : τ2
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However GenAll has serious disadvantages, of two kinds. First, and most important,

there are costs to the programmer:

• It leads to unexpectedly complicated types, such as those for function gr.

The larger the right-hand side, the more type constraints will be gathered

and abstracted over. For type-class constraints this might be acceptable, but

equality constraints are generated in large numbers by ordinary unification.

Although they do not appear in the program text, these types may be shown

to the programmer by an IDE; and must be understood by the programmer if

she is to know which programs will typecheck and which will not.

• There are strong software-engineering reasons not to generalise constraints

unnecessarily, because doing so postpones type errors from the definition of

gr to (each of) its occurrences. If, for example, gr had been called in the

T2 branch of fr, as well as the T1 branch, a mystifying error would ensue:

“Cannot unify a with Bool”. Why? Because the call to gr would require

a ∼ Bool to be satisfied, and in the T2 branch no local knowledge is available

about a , yielding the constraint unsatisfiable. To understand such errors the

programmer will have to construct in her head the principal type for gr, which

is no easy matter. Moreover, one such incomprehensible error will be reported

for each call to gr.
• In an inference algorithm, it turns out that we need a new form of constraint,

an implication constraint, that embodies deferred typing problems (Section 5).

Under GenAll it is necessary to abstract over implication constraints too, which

further complicates the programmer’s life (because she sees these weird types).

This raises the question of whether implication constraints should additionally

be allowed in valid type signatures, which in turn leads to open research

problems in tractable solver procedures for constraints with implications in

their assumptions (Simonet & Pottier, 2007).

Second, there are costs to the type inference engine:

• At each call site of a generalised expression, the previously abstracted large

constraints have to be solved separately. This makes efficient type inference

harder to implement.

• Almost all existing Haskell type inference engines (with the exception of

Helium (Heeren et al., 2003)) use the standard Hindley-Milner algorithm,

whereby unification (equality) constraints are solved “on the fly” using in-place

update of mutable type variables (Peyton Jones et al., 2007). This is simple

and efficient, which is important since equality constraints are numerous. (In

contrast the less-common type-class constraints are gathered separately, and

solved later.)

Under GenAll, we can no longer eagerly solve any unification constraint

whatsoever on the fly. An equality a ∼ τ must be suspended (i.e. not solved) if

a is free in the environment at some enclosing let declaration.

Moreover, in compilers with a typed intermediate language, such as GHC,

each abstracted constraint leads to an extra type or value parameter to the

function, and an extra type or value argument at its occurrences.
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These costs might be worth bearing if there was a payoff. But in fact the payoff is

close to zero:

• Programmers do not expect fr and fs to typecheck, and will hardly be

deliriously happy if they do so in the future. Indeed, GHC currently rejects

both fr and fs, with no user complaints.

• The generality of gr and gs made a difference only because their occurrences

were under a pattern-match that bound a new, local constraint. Such pattern

matches are rare, so in almost all cases the additional generalisation is fruitless.

But it cannot be omitted (at least not without a rather ad hoc pre-pass) because

when processing the perfectly vanilla definition of gr the type checker does

not know whether or not gr’s occurrences are under pattern-matches that bind

constraints.

In short, we claim that generalising over all constraints carries significant costs,

and negligible benefits. Probably the only true benefit is that GenAll validates let-

expansion; that is, let x = e in u typechecks if and only if [x 
→ e]u typechecks.

The reader is invited to return to fr and fs and observe that both do typecheck

with no complications if gr (resp gs) is simply inlined. Let-expansion is a property

cherished by type theorists and sometimes useful for automatic code refactoring

tools, but we believe that its price has become too high.

4.2.2 NoQual: Generalization without qualified types

The undesirability of GenAll concerned the abstraction of constraints, rather than

generalisation per se. What if the specification simply insisted that the type inferred

for a let binding was always of the form ∀a . τ, with no “Q ⇒” part? This is easy

to specify:

Qualified types: No,Generalization: Yes

Q ; Γ 	 e1 : τ1 a = ftv (τ1) − ftv (Q ,Γ)

Q ; Γ, (x :∀a.τ1) 	 e2 : τ2
let

Q ; Γ 	 let x = e1 in e2 : τ2

When Q is empty, this becomes the usual rule for the Hindley-Milner system. In

terms of an inference algorithm, what happens in Hindley-Milner is this: Equality

constraints are gathered from the right-hand side, but are completely solved before

generalisation. A unique solution is guaranteed to exist, namely the most general

unifier. (In Hindley-Milner the constraints are typically solved on-the-fly but that is

incidental.)

As previous work shows (Schrijvers et al., 2009), this approach continues to work

for a system that has GADTs only. Again, a given set of constraints can always be

uniquely solved (if a solution exists) by first-order unification.

Alas, adding type classes makes the system fail, in the sense of lacking principal

types, because type-class constraints do not have unique solutions in the way that

equality constraints do. For example, suppose that in the definition let x = e1 in e2

we have:
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• The type of e1 is b → b.

• b is not free in the type environment.

• The constraints arising from e1 are Eq b.

We cannot solve the constraint without knowing more about b – but in this case we

propose to quantify over b. If we quantify over b the only reasonable type to assign

to x is

x :: ∀b . Eq b ⇒ b → b

That is illegal under NoQual. As a result, x has many incomparable types, such as

Int → Int and Bool → Bool, but no principal type.

4.2.3 PartQual: Restricted qualified types and generalization

We have learned that, if we are to generalise let-bound variables we must quantify

over their type-class constraints (NoQual did not work); but we have argued that it

is undesirable to quantify over all constraints (i.e. GenAll). The obvious alternative

is to quantify over type-class constraints, but not over equality constraints. More

generally, can we identify a particular kind of constraints over which the specification

is allowed to abstract? We call this choice PartQual, and use a predicate good (Q)

to identify abstractable constraints:

Qualified types: Restricted,Generalization: Yes

Q ,Q1 ; Γ 	 e1 : τ1 a = ftv (Q1, τ1) − ftv (Q ,Γ)

good (Q1) Q ; Γ, (x :∀a.Q1 ⇒ τ1) 	 e2 : τ2
let

Q ; Γ 	 let x = e1 in e2 : τ2

The problem with this approach is that it is not clear what such class of constraints

would be. It is not enough to pick out equality constraints, because some class

constraints may behave like equality constraints, such as type classes with equality

superclasses as:

class (a ~ b) => REq a b

Worse, some class constraints with functional dependencies may give rise to extra

equality constraints, only when found in certain contexts:

class C a b | a -> b

If two constraints C Int b and C Int Char appear in the same context, a new

equality must hold, namely that b ~ Char.

4.2.4 NoGen: no generalization!

It seems clear that NoQual and PartQual are non-starters, and we have argued that

GenAll, while technically straightforward is practically undesirable. The last, and

much the simplest choice, is to perform no generalisation whatsoever for inferred
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let bindings. The typing rule for our option, NoGen, is very simple:

Qualified types: No,Generalization: No

Q ; Γ 	 e1 : τ1 Q ; Γ, (x :τ1) 	 e2 : τ2
let

Q ; Γ 	 let x = e1 in e2 : τ2

Hence NoGen omits the entire generalization step; the definition becomes com-

pletely monomorphic. Notice though that NoGen applies only for local and un-

annotated let-bindings. For annotated local let-bindings, let x::σ = e1 in e2,

where the programmer supplies a (possibly polymorphic) type signature σ, the type

system may use that type signature (rule LetA in Figure 10). For top-level bindings

generalization poses no difficulties since there are no free type variables in a top-level

environment (rule Bind, Figure 10).

Under NoGen, both fr and fs are rejected, which is fine; we did not seek to

accept them in the first place. But hang on! NoGen means that some vanilla ML or

Haskell 98 functions that use polymorphic local definitions, such as the f function

in the very beginning of Section 4.2, will be rejected. That is, NoGen is not a

conservative extension of Haskell. Surely programmers will hate that? Actually not.

In the next Section (4.3.1) we will present evidence that programmers almost never

use locally-defined values in a polymorphic way (without having provided a type

signature). In the rare cases where a local value has to be used polymorphically, the

programmer can readily evade NoGen by simply supplying a type signature.

In summary, generalisation of local let bindings (without annotations) is a

device that is almost never used, and its abolition yields a dramatic simplification

in both the specification and implementation of a typechecker. The situation is

strongly reminiscent of the debate over ML’s value restriction. In conjunction with

assignment, unconditional generalisation is unsound. Tofte proposed a sophisticated

work-around (Tofte, 1990). But Wright subsequently proposed the value restriction,

whereby only syntactic values are generalised (Wright, 1995). The reduction in

complexity was substantial, and the loss of expressiveness was minor, and Wright’s

proposal was adopted.

4.3 Let (non)-generalization in practice

We discuss now our practical experience with disabling local let generalization.

4.3.1 Impact on existing Haskell programs

Our NoGen proposal will reject some programs that would be accepted by any

Haskell or ML compiler. This is bad in two ways:

Backward compatibility. Existing programs will break. But how many programs

break? And how easy is it to fix them?

Convenience. Even for newly-written programs, automatic generalisation is conve-

nient. But how inconvenient is programming without it?
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To get some quantitative handle on these questions we added a flag to GHC that

implements NoGen, and performed the following two experiments.

The libraries. We compiled all of the Haskell libraries that are built as part of the

standard GHC build process, and fixed all failures due to NoGen. These libraries

comprise some 30 packages, containing 533 modules, and 94,954 lines of Haskell

code (including comments). In total we found that 20 modules (3.7%) needed

modification. The changes affected a total of 127 lines of code (0.13%), and were of

three main kinds:

• There are a few occurrences of a polymorphic function that could be defined at

top level, but was actually defined locally. For example Control.Arrow.second

has a local definition for

swap ~(x,y) = (y,x)

• One programmer made repeated use of the following pattern

mappend a b = ConfigFlags {

profLib = combine profLib,

constraints = combine constraints,

...

}

where combine :: Monoid t => (ConfigFlags->t) -> t

combine field = field a ‘mappend‘ field b

(The type signature was added by ourselves.) Notice that a and b are free

in combine, but that combine is used for fields of many different types;

for example, profLib::Flag Bool, but constraints::[Dependency]. This

pattern was repeated in many functions. We fixed the code by adding a

type signature, but it would arguably be nicer to make combine a top-level

function, and pass a and b to it.

• The third pattern was this:

let { k = ...blah... } in gmapT k z xs

where gmapT is a function with a rank-2 type:

gmapT :: ∀a . Data a ⇒ (∀b . Data b ⇒ b → b) → a → a

Here, k really must be polymorphic, because it is passed to gmapT. GHC’s

libraries include the Scrap Your Boilerplate library of generic-programming

(Lämmel & Peyton Jones, 2003; Lämmel & Peyton Jones, 2005) functions that

make heavy use of higher rank functions (Peyton Jones et al., 2007), but in

vanilla Haskell code one would expect them to be much less common. Still,

such errors can be fixed by providing a type signature for k.

Packages on Hackage. As a second, and much larger-scale, experiment we compiled

all of the third-party Haskell packages on the Hackage library, both with and without

NoGen, and recorded whether or not the package compiled successfully with the

NoGen flag on. We found 793 packages that compiled faultlessly with the baseline
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compiler that we used. When we disabled generalisation for local let bindings, 95 of

the 793 (12%) failed to compile. We made no attempt to investigate what individual

changes would be needed to make the failed ones compile. Since the chances of an

entire package compiling without modification decreases exponentially with the size

of the package, so one would expect a much larger proportion of packages to fail

than of modules (c.f. the 3.7% of base-package modules that required modification).

Summary. Although there is more work to do, to see how many type signatures

are required to fix the failing third-party packages, we regard these numbers as

very promising: even in the higher-rank-rich base library, only a vanishingly small

number of lines needed changing. We conclude that local let generalisation is rarely

used. Moreover, as a matter of taste, in almost all cases we believe that the extra

type signatures in the modified base-library code have improved readability. Finally,

although our experiments involve Haskell programs, we conjecture that the situation

is similar for ML variants.

4.3.2 Generalization heuristics

To recover backwards compatibility for Haskell programs without imposing type

annotation requirements to programmers, we have actually implemented a flag in

GHC that re-enables let generalization, using a heuristic variant of PartQual. This

variant quantifies over some of the inferred constraints based not on their kind

(equality or class constraints), but rather on whether they mention any quantifiable

variables or not. Quantifiable variables are simply the variables of the type of the

let-bound expression which do not appear in the environment. Constraints are split

and simplified according to this criterion, followed by yet another splitting (since the

simplified constraints may mention different sets of variables). Though this heuristic

appears to be effective in practice, we do not know how to declarative specify it.

4.4 The lack of principal types

We have seen how local assumptions may be treated in the typing rules and how

they affect local let generalisation in Figure 10. However, as discussed in Section 2,

the addition of local assumptions means that the system now lacks principal types.

Recall the test function from Section 1:

data T :: * -> * where test (T1 n) _ = n > 0

T1 :: Int -> T Bool test T2 r = r

T2 :: T a

Rule Bind of Figure 10 allows test to enter the environment with either type

∀a.T a → Bool → Bool or ∀a.T a → a → a , depending on whether the local

assumptions from the pattern matching are used or not. In this case, there is no

type (quantified or not) that can be assigned to test and that is more general

than the other two. Our natural type system for local assumptions accepts programs

https://doi.org/10.1017/S0956796811000098 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000098


Modular type inference with local assumptions 365

that have no principal types3 (despite the lack of local let generalisation, which is

irrelevant here).

Sadly, we do not know how to devise a simple declarative type system without

these problems (Section 6), and hence, we embark in the rest of the paper to the

detailed description of an algorithmic strategy that type checks fewer programs –

but only ones that can be assigned principal types. Principal types seem important

for software engineering, but Section 9.7 also presents some subtle points related to

this design choice. Still, we regard Figure 10 as the natural type system for local

assumptions against which any such algorithm or restricted type system should be

compared.

5 Type inference with OutsideIn(X)

We are after a type inference algorithm that accepts only programs with principal

types in the natural type system of Figure 10. We describe such an algorithm in this

section.

5.1 Type inference, informally

Let us consider what happens in terms of constraint generation and solving when

local assumptions from GADTs enter the picture. Here is an example function:

\x -> case x of { T1 n -> n > 0 }

Recall the type of T1:

T1 : ∀a . (Bool ∼ a) ⇒ Int → T a

We make up fresh unification variables for any unknown types:

α type of the entire body of the function

βx type of x

Matching x against a constructor from type T imposes the constraint βx ∼ T γ,

for some new unification variable γ. From the term n > 0, we get the constraint

α ∼ Bool, but that arises inside the branch of a case that brings into scope the

constraint γ ∼ Bool. We combine these two into a new sort of constraint, called an

implication constraint:

γ ∼ Bool ⊃ α ∼ Bool

Now, our difficulty becomes clear: there is no most-general unifier for implication

constraints. The substitutions

[α 
→ Bool] and [α 
→ γ]

are both solutions, but neither is more general than the other. Each solution leads

to a distinct incomparable type for the expression.

3 Equally badly, it admits programs that exhibit the ambiguity problem that we explain in Section 6.
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On the other hand, sometimes there obviously is a unique solution. Consider

test2 from Section 2:

\x -> case x of { T1 n -> n > 0; T2 -> True }

From the two alternatives of the case, we get two constraints, respectively:

(γ ∼ Bool ⊃ α ∼ Bool) ∧ (α ∼ Bool)

Since the second constraint can be solved only by [α 
→ Bool], there is a unique

most-general unifier to this system of constraints.

In general, multiple pattern clauses give rise to a conjunction of implication

constraints and the task of type inference is to find a substitution that solves each of

the conjunctions. In the next section, we sketch our idea of how to get a decidable

algorithm that infers most general solutions (and, ultimately, principal types), by

considering a restricted implication solver.

5.2 Overview of the OutsideIn(X) solving algorithm

Our idea is a simple one: we must refrain from unifying a global unification variable

under a local equality constraint. By ‘global’, we mean ‘free in the type environment’.

Notably, we must treat the result type or the type of the expression we are pattern

matching against as part of the ‘environment’. In the example

(γ ∼ Bool ⊃ α ∼ Bool)

both α and γ are global unification variables and we must refrain from unifying

them when solving the constraint. Hence, the constraint by itself is insoluble. It can

be solved only if there is some other constraint that fixes α.

On the other hand, some of the unification variables in an implication may be

entirely local to this implication. Consider the following variation:

\x -> case x of { T3 n -> null n }

where T3 is yet another data constructor of type:

T3 : ∀a . (Bool ∼ a) ⇒ [Int] → T a

By the same reasoning as before, we’d get that, from the given assumption γ ∼ Bool,

it must follow that α ∼ Bool, where α is the return type of the branch. However,

from the instantiation of the null function of type ∀d . [d ] → Bool with a fresh

unification variable δ and the application null n, we get an additional constraint

δ ∼ Int. In total, we have4:

γ ∼ Bool ⊃ (α ∼ Bool ∧ δ ∼ Int)

Now, δ is an entirely local variable to this implication constraint, and hence (unlike

α and γ), it does not matter what type we unify it with. We record this information

4 We will treat ⊃ as a very low precedence operator, so the parentheses are redundant.
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Unification variables α, β, γ, . . .
Unification or skolem variables tv ::= α | a
Algorithm-generated constraints C ::= Q | C1∧C2 | ∃α.(Q⊃C )

Free unification variables fuv(·)

simple[Q ] = Q
simple[C1∧C2] = simple[C1]∧simple[C2]
simple[∃α.(Q⊃C )] = ε

implic[Q ] = ε
implic[C1∧C2] = implic[C1]∧implic[C2]
implic[∃α.(Q⊃C )] = ∃α.(Q⊃C )

Fig. 11. Syntax extensions for OutsideIn(X).

in the syntax of implications, using an existential quantifier that binds these local

unification variables:

∃δ.(γ ∼ Bool ⊃ α ∼ Bool ∧ δ ∼ Int)

When solving this constraint, we are free to unify [δ 
→ Int] but not α nor γ.

The formal syntax of the constraints generated by the algorithm, C , is now given

in Figure 11, which is identical to Figure 5, except for the new highlighted form of

implication constraint. An implication constraint is of the form ∃α.(Q ⊃ C ), where

we call the α variables the touchables of the constraint. These are the variables

that we are allowed to unify when solving the implication constraint. Note that the

assumption of the implication constraint is always a Q constraint, as an implication

enters life by a pattern match against a constructor or a type signature – which

both introduce Q constraints (not C constraints). As a convenience, we will often

omit the ∃α part of an implication if it α is empty. The function simple[C ] returns

the simple (that is non-implication) constraints of C , whereas implic[C ] returns the

implications so that C = simple[C ] ∧ implic[C ].

To solve a constraint C , we may proceed as follows:

1. Split C into the implications of C , implic[C ], and the rest, simple[C ].

2. We solve the simple constraints by using some solver for X, which takes care

of the Q constraints.

3. We use the information generated by solving the simple constraints (such as a

substitution for unification variables) to solve each implication, one at a time,

taking care to allow only unification of its touchable variables.

This algorithm is conservative: there may exist constraints that admit a unique

solution, which it may fail to solve.

Example 5.1 (OutsideIn(X) conservativity) The algorithm fails to solve the constraint

(γ ∼ Bool ⊃ α ∼ Int)
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because α is not a touchable variable, but the constraint actually has a unique solution,

namely [α 
→ Int].

We did not use the term incompleteness but rather conservativity because we argue

that failing to solve Example 5.1 is actually acceptable. For, in the presence of a

top-level axiom F Bool ∼ Int, the constraint would be ambiguous after all: there

would exist an incomparable solution, [α 
→ F γ]. Hence, our design decision to not

unify global variables under a local constraint in fact makes the algorithm robust

with respect to an open world where new axioms can be added at any time. Any

unique principal solution obtained by our algorithm remains a unique principal

solution with respect to any consistent extension of the axiom set.

Does the design decision make sense for a constraint like

(Eq γ ⊃ α ∼ Int)

where the local constraint is not an equality constraint? Surely, Eq γ cannot

contribute to solving α ∼ Int, and the only sensible solution is [α 
→ Int]?

Indeed, this is the case for all choices of the constraint language X that have

been extensively studied in the literature. However, OutsideIn(X ) is parameteric in

the particular choice of X and thus prepared for all possible shapes of axioms, even

less obvious ones. In the current example, for instance the unusually shaped axiom

∀x.Eq x ⇒ F x ∼ Int would give rise to an alternate solution [α 
→ F γ]. Besides,

Schrijvers et al. (2008b) have already argued for the merits of this shape of axiom.

OutsideIn(X ) already comes prepared for this and other, as of yet unanticipated,

extensions of the constraint language.

5.3 Top-level algorithmic rules

As in the vanilla language of Section 3, our approach relies on constraint generation

and solving, for expressions and top-level bindings, with the judgements

Γ 	� e : τ� C Q ; Γ 	� prog

The top-level algorithmic rules are given in Figure 12. The judgement Q ;Γ 	� prog
looks very much like the vanilla judgement in Figure 7, but notice the highlighted

differences – since OutsideIn(X) has to deal with implication constraints and

touchable variables, it is natural to rely on a different, more elaborate solver,

which we present in Section 5.5.

5.4 Generating constraints

Constraint generation is the same as Figure 6, with extensions for the new syntax

forms and modifications shown in Figure 13.

Note that Let does not generalise the binding, according to the discussion in

Section 4.2. For annotated let-bound definitions, we consider two cases:

• The first case (rule LetA) triggers when the annotation is monomorphic. In

that case, we have to gather the constraints but also record the fact that the
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Q ; Γ �� prog

empty
Q ; Γ �� ε

Γ �� e : τ � C Q ; ε ; fuv(τ,C ) ��solvC � Q ; θ

a fresh α = fuv(θτ,Q)
Q ; Γ, (f :∀a.[α 	→ a](Q ⇒ θτ)) �� prog

Bind
Q ; Γ �� f = e, prog

Γ �� e : υ � C

Q ; Q ; fuv(υ,C ) ��solvC ∧ υ ∼ τ � ε ; θ

Q ; Γ, (f :∀a.Q ⇒ τ) �� prog
BindA

Q ; Γ �� f :: (∀a.Q ⇒ τ) = e, prog

Q ; Qgiven ; αtch ��solvCwanted � Qresidual ; θ

(see Figure 14)

Fig. 12. Top-level algorithmic rules.

Γ �� e : τ � C

. . .

Γ �� e1 : τ1 � C1 Γ, (x :τ1) �� e2 : τ2 � C2

Let
Γ �� let x = e1 in e2 : τ2 � C1 ∧ C2

Γ �� e1 : τ � C1 Γ, (x :τ1) �� e2 : τ2 � C2

LetA
Γ �� let x :: τ1 = e1 in e2 : τ2 � C1 ∧ C2 ∧ τ ∼ τ1

σ1 = ∀a.Q1 ⇒ τ1 Q1 
= ε or a 
= ε Γ �� e1 : τ � C β = fuv(τ,C )−fuv(Γ)

C1 = ∃β.(Q1 ⊃ C ∧ τ ∼ τ1) Γ↪ (x :σ1) �� e2 : τ2 � C2
GLetA

Γ �� let x ::σ1 = e1 in e2 : τ2 � C1 ∧ C2

Γ �� e : τ � C β, γ fresh

Ki :∀abi.Qi ⇒ υi → T a bi fresh

Γ, (xi :[a 	→ γ]υi) �� ei : τi � Ci δi = fuv(τi ,Ci)−fuv(Γ, γ)

C ′
i =

Ci ∧ τi ∼ β if bi = ε and Qi = ε

∃δi.([a 	→ γ]Qi ⊃ Ci ∧ τi ∼ β) otherwise
Case

Γ �� case e of {Ki x i → ei} : β � C ∧ (T γ ∼ τ) ∧ (∧C ′
i )

Fig. 13. Constraint generation.

inferred type for the let-bound definition, τ, is equal to the required type τ1,

with the constraint τ ∼ τ1.

• In the case where the annotation is polymorphic (rule GLetA) and hence

introduces some quantified variables a and potentially some constraint Q1, we

must first infer a type τ and constraint C for e1. At this point, the constraint
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C must be provable by the local assumption Q1 introduced by the type

annotation, and hence, we emit an implication constraint ∃β.(Q1 ⊃ C ∧ τ ∼
τ1), where β are the variables that we are allowed to unify. We then proceed

to check e2 using the annotation signature for the let-bound definition.

The reader may be surprised to see that the quantified variables a do not explicitly

appear in the emitted constraints in rule GLetA. After all, for type safety, we

should be preventing any variable from the environment to be unified with those

quantified variables. But note that we are only allowed to unify the local variables

of the implication, β. Hence, it is plainly impossible to unify some variable from the

environment to any type at all, including a! This behaviour is more strict than the

current Haskell implementations of polymorphic signatures, an issue that we return

to in Section 5.6.1.

Rule Case deals with pattern matching. First, we generate a type τ and constraint

C for the scrutinee of the case expression e . We also generate a constraint (T γ ∼ τ),

for fresh unification variables γ, to reflect the fact that the scrutinee’s must match

the return type constructor T of the patterns. Now, contrary to the vanilla rule of

Figure 6, the modified rule considers two cases:

• If constructor Ki brings no existential variables or constraints into scope

(b = ε and Qi = ε) then all is straightforward, as in rule Case of Figure 6.

• However, if the data constructor K does bring some constraints or existential

variables in scope (Qi 
= ε or b 
= ε) then we may treat this branch as a GADT

branch, by introducing an implication constraint that records the touchable

variables of the branch, δi , and the local assumptions [a 
→ γ]Qi .

Once again, the careful reader may be surprised to see that the existential variables

b are not mentioned explicitly somewhere in the resulting constraint. For type safety,

we must make sure that they do not escape in the return type of the branch or the

environment. But, as in the case of rule GLetA, any environment variable is entirely

untouchable, which prevents their unification from inside the implication constraint

with any type at all, including b. Once again, this behaviour is more strict than

the current Haskell implementations of pattern matching against constructors with

existential variables, an issue that we return to in Section 5.6.1.

5.5 Solving constraints

We now turn to the internals of the main solver judgement, which has signature

Q ; Qgiven ; αtch 	�solvCwanted � Qresidual ; θ

In this signature, the inputs are as follows:

• the top-level axiom set Q,

• the given (simple) constraints Qgiven that arise from type annotations (or

pattern matching),

• the touchable unification variables αtch that the solver is allowed to unify, and

• the constraint Cwanted that the solver is requested to solve.
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Q ; Qgiven ; αtch ��solvCwanted � Qresidual ; θ

Q ; Qg ; α ��simp
simple[C ] � Qr ; θ

∀(∃αi.(Qi ⊃ Ci) ∈ implic[θC ]),

Q ; Qg ∧ Qr ∧ Qi ; αi ��solvCi � ε ; θi
solve

Q ; Qg ; α ��solvC � Qr ; θ

Q ; Qgiven ; αtch ��simp
Qwanted � Qresidual ; θ

(solver for �)

Fig. 14. Solver infrastructure.

The outputs are as follows:

• a set of (simple) constraints Qresidual that the solver did not solve, and

• a substitution θ, with dom(θ) ⊆ αtch .

As before, note that the solver is not required to always fully discharge Cwanted

via a substitution for the touchable unification variables; but it may instead return

a residual Qresidual . Note though that Qresidual is a Q constraint, which means that,

at the very least, we must have discharged all the implication constraints in Cwanted .

On the other hand, in the case of annotated bindings (rule BindA), we have to fully

solve the wanted constraint, producing no residual constraints whatsoever.

As before, we assume a constraint simplifier for the underlying constraint domain

X . However, our constraints C are richer than X : they include implications. Our

algorithm provides a single simplifier for C constraints; this simplifier deals with

the implications and, in turn, relies on a provided solver for flat X constraints. This

algorithm is given by rule solve in Figure 14. The judgement first appeals to the

domain-specific simplifier for the simple part of the constraint simple[C ], producing

a residual constraint Qr and a substitution θ. Subsequently, it applies θ to each of

the implication constraints in C . This operation may be simply defined as:

θ(∃α.(Q ⊃ C ) ≡ ∃α.(θQ ⊃ θC ) where α#fuv (θ)

The side-condition is not significant algorithmically. The reason is that algorithmi-

cally, there is no need for renaming of α, since α cannot possibly appear inside θ

(they were generated after all the variables of θ have been generated). Finally, we

may recursively solve each of the implications having updated the given constraints.

Each constraint Ci in a recursive call to solve must be completely solved (which

is ensured with the condition Q ; Qg ∧ Qr ∧ Qi ; αi 	�solvCi � ε ; θi in rule solve).

The reason is that the residual constraint returned from solve may only be a simple

(non-implication) constraint, since we are not allowed to quantify over implication

constraints. Moreover, the domain of each θi only involves internal touchable

variables of the implication constraint we are solving, and hence, there is no point

in returning those θi substitutions along with θ in the conclusion of rule solve.
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Q ; Qgiven ; αtch ��simp
Qwanted � Qresidual ; θ

Simplifier soundness
(Qresidual , θ) is a sound solution for Qwanted under Qgiven and Q,

and dom(θ) ⊆ αtch

Simplifier principality
(Qresidual , θ) is a guess-free solution for Qwanted under Qgiven and Q

Fig. 15. Touchable-aware simplifier conditions.

Finally, note the invariant that in all the calls to the solver it is the case that

αtch#fuv (Qgiven ).

The main solver appeals to a domain-specific simplifier for the X theory, with the

following signature:

Q ; Qgiven ; αtch 	�simp

Qwanted � Qresidual ; θ

Its signature is the same as the signature of the simplifier from Figure 7, except for

the extra input αtch , which records the touchable variables – those that may appear

in the domain of θ.

To describe the desired interface, we may extend the conditions of Figure 8 to the

touchable-aware simplifier, highlighting the differences in Figure 15. The conditions

are almost unchanged, except for a new highlighted soundness condition that only

allows touchables αtch in the domain of θ.

5.6 Variations on the design

5.6.1 Design choice: Skolem escape checks

Consider the program:

data Ex where

Ex :: forall b. b -> Ex

f = case (Ex 3) of Ex _ -> False

Since there is an existential variable introduced by the constructor Ex, we would

create a (degenerate) implication constraint (ε ⊃ α ∼ Bool), where α is the return

type of the branch. Using OutsideIn(X), since α is an untouchable variable, the

constraint is not solvable, and hence, the only way to make this program type check

is by adding a type signature to f :: Bool. This is somewhat unsatisfactory, since

the constructor does not bring any constraints in scope, and hence, there is ‘obviously’

only one solution for the right-hand side, namely that α 
→ Bool. Furthermore, one

can then easily check this solution to make sure that the existential variable b did

not escape in the type of the scrutinee or in the return type of the branch.
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A possible extension is this: when the ‘given’ constraints of an implication do

not entail any equalities, any ‘wanted’ equalities that do not mention the existential

variables can be floated outside the implication. In the example above, we could float

out the wanted equality α ∼ Bool, thereby moving it into the outer scope, where α

is touchable. (This strategy is a slight generalisation of the original OutsideIn(X)

presentation (Schrijvers et al., 2009), which defined simple implications whose given

constraints are ε.)

Although this extension seems important in practice, and it forms part of our

released implementation, it also seems somewhat ad hoc, so we have refrained from

formalising it here, instead leaving it as future work.

5.6.2 Design choice: Which constraints are really implications

If an implication has originally been generated as (α ∼ Bool ⊃ β ∼ Int) then it

will still be treated as an implication – even in the presence of another constraint

α ∼ Bool. However, if we had used that information to simplify the givens of the

implication constraint, we’d see that we could treat it as a simple constraint β ∼ Int,

which would allow the unification of β 
→ Int. Here is a concrete example:

bar :: forall a. T a -> [a] -> ()

f t xs z = let z1 = bar t xs -- forces t :: T a, xs :: [a]

z2 = True:xs -- generates (a ~ Bool)

z3 = case t of -- generates (a ~ Bool => b ~ Int)

T1 _ -> z + 1

in ()

The code in the definition of z1 forces t to get type T α and xs to get type [α],

where T is the GADT from Section 1. The definition of z2 generates α ∼ Bool. The

case expression generates a constraint α ∼ Bool ⊃ β ∼ Int, where β is the type of

z. However, β is not touchable for this implication, and hence, we can’t unify it to

anything. If instead we had used the fact that the outer constraint is solvable with

θ = [α 
→ Bool], we could transform the implication to a simple constraint β ∼ Int,

which we could solve.

Such a modification is conceivable. We did not follow this path because our

current story gives the programmer a purely syntactic understanding of which parts

of their programs are treated as implications and which not. Allowing simplifications

on the givens to determine, which constraints are ‘really’ implications and which

not, would arguably make this reasoning potentially more complicated (still, entirely

possible).

5.7 Soundness and principality of type inference

We now return to the properties shown in Section 3.6 for the simpler version of

our system that did not include local assumptions and show that the same results

are true for the OutsideIn(X) algorithm with respect to the natural type system for

local assumptions.
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We will assume in this section that the entailment satisfies the conditions of

Figure 3 and the simplifier satisfies the conditions of Figure 15. We start with

soundness of the OutsideIn(X) algorithm (in analogy with Theorem 3.1).

Theorem 5.1 (Algorithm soundness) If Q ; Γ 	� prog then Q ; Γ 	 prog in a closed

top-level Γ.

Proof

Straightforward induction relying on Lemma 5.1. �

This theorem relies on the following auxiliary lemma.

Lemma 5.1 Assume that Γ 	� e : τ � C . Then, for all Cext , if Q ; Qg ; β 	�solvC ∧
Cext � Qr ; θ then there exists Q such that Q ; θΓ 	 e : θτ and Q ∧ Qg ∧ Qr � Q .

Proof

By induction on the size of the term e . We consider cases corresponding to which

rule was used to derive Γ 	� e : τ� C .

• Case VarCon. We have in this case that Γ 	� ν : [a 
→ α]τ1 � [a 
→ α]Q1 given

that ν:∀a.Q1 ⇒ τ1 ∈ Γ. Moreover, Q ; Qg ; β 	�solv [a 
→ α]Q1 ∧ Cext � Qr ; θ.

Hence, ν:∀a.θQ1 ⇒ θτ1 ∈ θΓ (without loss of generality assume that a do not

appear in the domain or range of θ). Consider the substitution [a 
→ θα]. Then,

using rule VarCon and reflexivity of entailment, we get [a 
→ θα]θQ1 ; θΓ 	
ν : [a 
→ θα]θτ1, or, equivalently: [a 
→ θα]θQ1 ; θΓ 	 ν : θ([a 
→ α]τ1). By

soundness of the simplifier, we additionally get Q ∧ Qg ∧ Qr � θ([a 
→ α]Q1)

as required.

• Case App. We have that Γ 	� e1 e2 : α � C1 ∧ C2 ∧ (τ1 ∼ τ2 → α) given that

Γ 	� e1 : τ1 � C1 and Γ 	� e2 : τ2 � C2. Moreover, we know that Q ; Qg ;

β 	�solvC1 ∧ C2 ∧ (τ1 ∼ τ2 → α) ∧ Cext � Qr ;θ. Hence, by induction hypothesis,

there exist Q1 and Q2 such that Q1 ; θΓ 	 e1 : θτ1 and Q2 ; θΓ 	 e2 : θτ2, and

Q ∧ Qg ∧ Qr � Q1 ∧ Q2. By the soundness of the simplifier, we additionally

have Q ∧ Qg ∧ Qr � θτ1 ∼ θτ2 → θα. Let Q = Q1 ∧ Q2 ∧ θτ1 ∼ θτ2 → θα. It

follows that Q ∧ Qg ∧ Qr � Q . Furthermore, it must be that Q ; θΓ 	 e1 : θτ1

and Q ; θΓ 	 e2 : θτ2, which by rule Eq gives Q ; θΓ 	 e2 : θτ1 → θα. Applying

rule App gives that Q ; θΓ 	 e1 e2 : θα as required.

• Case Abs. We have that Γ 	� λx.e : α → τ � C given that Γ, (x :α) 	� e : τ �
C . Moreover, Q ; Qg ; β 	�solvC ∧ Cext � Qr ; θ. By induction hypothesis, there

exists a Q1 such that Q ∧ Qg ∧ Qr � Q1 and Q1 ; θΓ, (x :θα) 	 e : θτ. Applying

rule Abs gives Q1 ; θΓ 	 λx.e : θ(α → τ), which finishes this case.

• Case Let. Similar to the cases App and Abs.

• Case LetA. Similar to the cases App and Abs.

• Case Case. We have in this case that Γ 	� case e of {Ki x i → ei} : β � C ′ ∧
(
∧

C ′
i ) given that

Γ 	� e : τ� C (6)
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Moreover, for each branch Ki x i → ei , we have that:

Ki :∀ab.Qi ⇒ υi → T a (7)

Γ, (xi :[a 
→ γ]υi ) 	� ei : τi � Ci (8)

if Qi 
= ε or b 
= ε then C ′
i = ∃δi.([a 
→ γ]Qi ⊃ Ci ∧ τi ∼ β) (9)

else C ′
i = Ci ∧ τi ∼ β

Finally, from the assumptions we have that:

Q ; Qg ; β 	�solvC ∧ (T γ ∼ τ) ∧ (
∧

C ′
i ) ∧ Cext � Qr ; θ (10)

Using Equations (6) and (10) and the induction hypothesis, we get that there

exists a Qe such that

Qe ; θΓ 	 e : θτ (11)

Q ∧ Qg ∧ Qr � Qe (12)

By the soundness of the simplifier, it follows that

Q ∧ Qg ∧ Qr � T θγ ∼ θτ (13)

Let Q�
e be Qg ∧ Qr ∧ Qinst , where Qinst is the finite set of instances from Q

used in the derivations of Equations (11) and (13). It must be that Q�
e ; θΓ 	

e : θτ and Q�
e � T θγ ∼ θτ, and hence, by rule Eq also

Q�
e ; θΓ 	 e : T θγ (14)

We now need to consider each branch. Branches with both b = ε and Qi = ε

are easy and we omit showing the case for those (they are treated essentially

as in Abs). Assume now that either b 
= ε or Qi 
= ε. By an easy substitutivity

lemma for the algorithm and Equation (8), we get that

θΓ, (xi :[a 
→ θγ]υi ) 	� ei : θτi � θCi (15)

In this case, C ′
i is an implication constraint, and by the definition of the solver,

it must be that

Q ; Qg∧[a 
→θγ]Qi∧Qr ; δi 	�solvθCi ∧ θτi ∼ θβ � ε ; θi (16)

By Equations (15) and (16) and the induction hypothesis, there exists a Q ′
i

such that Q ′
i ; θi (θΓ, (xi :[a 
→ θγ]υ)) 	 ei : θiθτi . By using Equation (16)

and the fact that the simplifier only unifies from δi , we rewrite this as:

Q ′
i ; θΓ, (xi :[a 
→ θγ]υi ) 	 ei : θiθτi . Moreover, from the induction hypothesis,

we learn that Q ∧ Qg ∧ Qr ∧ [a 
→ θΓ]Qi � Q ′
i , which, in turn, means that

Q�
e ∧ [a 
→ θγ]Qi � Q ′

i . Hence

Q�
e ∧ [a 
→ θγ]Qi ; θΓ, (xi :[a 
→ θγ]υi ) 	 ei : θiθτi (17)

By Equation (16), we have that Q ∧ Qg ∧ Qr ∧ [a 
→ θγ]Qi � θiθτi ∼ θiθβ,

and using the fact that the simplifier only unifies from δi , we have that

Q�
e ∧ [a 
→ θγ]Qi � θiθτ ∼ θβ. From this, Equation (17) and rule Eq, we have

that Q�
e ∧ [a 
→ θγ]Qi ; θΓ, (xi :[a 
→ θγ]υi ) 	 ei : θβ. Likewise we can show
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that each branch (implication or not) is well typed. Hence, with Equation (14),

Case becomes applicable and the case is finished.

• Case GLetA. This case is similar (only simpler) than the case for rule Case.

�

We have seen that the natural type system for local assumptions in Figure 10

lacks principal types – nevertheless, the next theorem asserts that our algorithm

accepts only programs with principal types.

Lemma 5.2 (Principality of inferred constraint) If Q ; Γ 	 e : τ then Γ 	� e : υ � C ,

and there exists a θ with dom(θ)#fuv (Γ) such that Q � simple[θC ] and Q � θυ ∼ τ.

Proof

Easy induction. �

Using this property, the corresponding versions of Lemma 3.2 and Theorem 3.2

are proved similarly to the vanilla constraint-based system in Section 3. We repeat

the statement of the final theorem.

Theorem 5.2 (Algorithm infers principal types) If fuv (Γ) = ∅ and Q ;Γ 	�gene : σ0 then

for all σ such that Q ; Γ 	gen e : σ, it is the case that Q 	 σ0 � σ.5

Proof

Similar to the proof of Theorem 3.2 appealing to Lemma 5.2. �

6 Incompleteness and ambiguity

We now return to the issue of completeness and we introduce yet another problem

inherent in most constraint-based type systems that of ambiguity. In the type-system

community, it is traditional to supply the following:

• A (relatively simple) declarative specification of the type system that nails down

exactly, which programs are well typed and which are not.

• A (more complicated) type inference algorithm that decides whether a given

program is well typed or not.

• A proof that the algorithm is sound (if it succeeds, then the program is well

typed according to the specification) and complete (if a program is well typed

according to the specification then the inference algorithm succeeds).

The soundness and principality conditions that we have presented so far do

not guarantee completeness. Some of the problems have to do with the algorithm

accepting too few programs, and some with the type system accepting too many

programs. In this section, we explain how the problems with completeness arise, why

we do not believe that the traditional approach can succeed, and our approach to

resolving the difficulty.

5 Where 	�gen refers to the generalisation step of rule Bind in Figure 12.
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6.1 Incompleteness due to ambiguity

The simplifier soundness and principality conditions are unfortunately not sufficient

to guarantee completeness for annotated top-level bindings (even in the absence of

local constraints), as the type class example below demonstrates.

Example 6.1 (Type class incompleteness due to ambiguity)

show :: forall a. Show a => a -> String

read :: forall a. Show a => String -> a

flop :: String -> String

flop s = show (read s)

When type checking the top-level binding flop, the constraint solver would be left

with a type class constraint Show α that it cannot discharge, where α is otherwise

unconstrained. However, flop is typeable in the specification, which simply guesses

α to be Int or Bool – either will do if there exist instance declarations Show Int and

Show Bool. Example 6.1 demonstrates incompleteness associated with the celebrated

ambiguity problem (Jones, 1992).

Such programs must be rejected because ambiguity possibly implies that the

meaning of a program may be affected by the arbitrary choices the type checker

makes, and indeed, every type inference algorithm for Haskell does reject such

programs. However, the program is accepted by the ‘natural’ type system of Section 3.

This is a bug in the type system, but it is not an easy one to fix: we know of no

elegant type system that excludes such typings (but see Section 9.6).

Furthermore, even if we were to allow ambiguity, a complete algorithm would

have to search in the top-level axiom scheme environment for instance declarations

matching unsolved constraints. Search is undesirable as it may be (i) prohibitively

expensive (there may be many interacting choices to be made, so backtracking seems

unavoidable), and (ii) contradictory to Haskell’s open-world assumption, where the

set of declared instances is considered open to extension (from different modules,

introduced at link time).

It is worth noting that ambiguity-like problems also arise with equalities involving

type families. Suppose there is a wanted constraint F β ∼ Int with the top-level

axioms F Int ∼ Int and F Bool ∼ Int; then the constraint could be solved

with [β 
→ Int] or [β 
→ Bool], but doing so involves a search. Even if there

is only one declared axiom for F , for example F Int ∼ Int, we should not

expect the algorithm to deduce that [β 
→ Int]. Under an open-world assumption,

new axioms could later (at link time) be introduced that no longer justify our

choice to make β equal to Int. Even more worryingly for completeness, such

ambiguous constraints may additionally appear nested inside implication constraints,

for example ∃β.(Q ⊃ . . . ∧ F β ∼ Int ∧ . . .).
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6.2 Incompleteness due to inconsistency

Consider the following GADT example.

data R a where

R1 :: (a ~ Int) => a -> R a

R2 :: (a ~ Bool) => a -> R a

foo :: R Int -> Int

foo x = case x of

R1 y -> y

R2 y -> False

Note that the local assumption introduced in the second branch, matching construc-

tor R2 amounts to the equality Int ∼ Bool, which is inconsistent. However, nothing

prevents the typing rules of Figure 10 from accepting this program, if the entailment

relation is allowed to use inconsistent assumptions. Inconsistent assumptions like

this, operationally, imply that the branch R2 is unreachable, since it will be impossible

to construct evidence of the equality Int ∼ Bool. Hence, the right-hand side of the

R2 branch is dead code. It is therefore type-safe to accept the program, even without

requiring that the right-hand side of the R2 branch is well typed.

From a software engineering point of view, however, rejecting the program is

more desirable than accepting it, for early detection of dead code, and hence, an

algorithm that exhibits this behaviour would necessarily be incomplete.

We could attempt to remedy this situation by requiring in the specification that

every local assumption introduced is consistent when combined with the top-level

axiom schemes. To express this, we extend our definition of top-level consistency

from Section 3.3 to deal with local assumptions.

Definition 6.1 (Consistency with local assumptions) A constraint Q is consistent with

respect to Q iff there exists a ground substitution θ for all the free variables of Q such

that whenever Q ∧ θQ � T1 τ1 ∼ T2 τ2 then T1 = T2 and Q ∧ θQ � τ1 ∼ τ2.

However, in the presence of type family axioms, a simplifier would generally

have to perform theorem proving to detect inconsistencies. Consider a function foo

with signature Add a (S Z) ~ a => a -> a, where Add is a type family encoding

addition. It is clear that the local assumption Add a (S Z) ∼ a is inconsistent

(for example consider the ground substitution [a 
→ Z]), but an algorithm can only

detect this by employing theorem proving techniques. What this means is that, were

we to require that the local assumptions be consistent in our specification, the

algorithm, unable to always detect inconsistency, would be unsound with respect to

the specification. (i.e. it would accept programs, which the specification would reject,

such as the definition of foo.)

Our conclusion is this: the specification remains as it stands, accepting some

programs with unreachable branches because we’d rather have an algorithm that is

incomplete than an algorithm that is neither complete nor sound with respect to the

specification.
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all programs

well-typed in Fig. 10

having principal type 
in Fig. 10

well-typed in 
OUTSIDEIN(X)

Fig. 16. The space of programs.

6.3 Incompleteness of the OutsideIn(X) strategy

Even if we disregard the incompleteness due to ambiguity and inconsistency, there is

still a completeness gap between the OutsideIn(X) algorithm and the specification

of Figure 10. Although the OutsideIn(X) algorithm accepts only programs with

principal types in the specification of Figure 10 (Theorem 5.2), it does not accept all

of them:

Example 6.2 (OutsideIn(X) incompleteness) Consider the following GADT program:

data R a where

RBool :: (a ~ Bool) => R a

foo rx = case rx of

RBool -> 42

The return type of foo can only be Int and the program has a principal type;

nevertheless, the OutsideIn(X) strategy will reject it because the return type of

the branch is not fixed from outside (although it can only be Int). In terms of

constraints, the constraint arising from the definition of foo is precisely the one

described in Example 5.1, so one might argue that despite the incompleteness

rejecting the program is more robust in an open world than accepting it.

Overall, the space of typeable programs looks like Figure 16, with a big complete-

ness gap between the programs typed by the algorithm and those accepted by the

specification (which accepts too many programs).

6.4 Guess-free completeness

Finally, there is yet another potential threat to completeness: perhaps the constraint

simplifier does not try hard enough. In particular, the no-op simplifier, which

merely returns Qresidual = Qwanted and θ = ε, satisfies the conditions of Figure 15.
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Instantiating, our algorithm with the no-op simplifier would be terrible: almost every

top-level annotated binding would be rejected! For example:

f :: Eq a => a -> Bool

f x = (x == x)

We get a Qwanted = Eq a and our given constraint is Qgiven = Eq a , but the no-op

simplifier does not discharge Qwanted !

Happily, in this case, we can express an intuitive completeness property: given a

consistent set of assumptions, if a constraint can be solved without guessing then

the algorithm should solve it. It is easy to formalise what we mean by ‘guessing’:

Definition 6.2 (Guess-free completeness requirement) A simplifier is guess-free com-

plete iff the following holds for any Qwanted , Qgiven and Q: If (ε, θ) is a guess-free

solution of Qwanted under Qgiven , Qgiven is consistent with respect to Q, and Q and

dom(θ) ⊆ αtch , then the simplifier will return a guess-free solution of the form (ε, ϕ),

where dom(ϕ) ⊆ αtch .

To see what restrictions this condition imposes on the simplifier, consider first the

wanted constraint Eq α. This constraint does not imply that [α 
→ Int], and hence,

a guess-free complete solver is allowed to fail on it (in fact, it must fail on it,

to satisfy the simplifier principality condition). On the other hand, the constraint

Eq α ∧ [α] ∼ [Int] is solvable by [α 
→ Int] and a guess-free complete simplifier must

be able to solve it. The consistency assumption in Definition 6.2 is only making our

requirements more realistic, since inconsistent assumptions often can lead solvers to

non-termination (we will see how this may happen in Section 7.7) and are extremely

difficult or impossible to detect without arbitrarily complex theorem proving (we

have seen this already with the Add example in Section 6.2).

Unfortunately, Definition 6.2 characterises algorithms, not type systems. But at the

very least, a guess-free complete algorithm clearly rejects all ambiguous programs.

Moreover, guess-free completeness can, under some circumstances, give us some

completeness guarantees with respect to the natural type system of Figure 10.

Assume that a program prog is well typed in the type system of Figure 10, and we

have a way to add enough annotations on the program to fix all unification variables

(for instance, we would need ways to bind the existential variables of constructors,

and open type annotations). Let us call the annotated program prog ′. Moreover,

assume that in the typing derivation of prog ′, all the constraints appearing in the

left of 	 are consistent with respect to Q. If all these conditions are met, and the

algorithm satisfies the guess-free completeness requirement then it follows that the

annotated program prog ′ will be accepted by the algorithm.

6.5 Our position on incompleteness and ambiguity

To sum up, our specification accepts some ‘bad’ programs (ones that are ambiguous,

or lack a principal type), and the OutsideIn(X) algorithm rejects some ‘good’ ones.

The latter is no great surprise. For example, the Hindley–Milner algorithm accepts

only λ-abstractions whose binder has a monotype. We accept that a tractable
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algorithm cannot work magic, so instead we tighten the specification so that it

matches what the algorithm can achieve.

The obvious way to restore completeness is to tighten up the specification, so

that it rejects both (a) bad programs and (b) programs that the inference algorithm

cannot type. The trouble is that the cure is worse than the disease: the specification

becomes as complicated and hard to understand as the algorithm. For one such

attempt, the reader is encouraged to read our earlier version of the OutsideIn(X)

algorithm, which had a fairly complicated specification, and one that worked only

for the special case of GADTs in (Schrijvers et al., 2009), and neglected ambiguity

entirely. For the general case of arbitrary constraint domains and local constraints,

we are not optimistic about this approach.

In this paper, we have taken a different tack:

• We give a specification that is simple, general and comprehensible, but which

types too many programs (Section 4). For example, it regards the read/show

example as well typed.

• We give an inference algorithm that is sound, but not complete, with respect

to this specification (Section 5). That is, if the algorithm accepts the program,

then the program is indeed well typed according to the specification, but not

vice versa. The absence of completeness is by design: for example we positively

want to reject the read/show example, and the examples from Section 2 that

lack principal types.

• Although the algorithm is incomplete, we can still offer the following guaran-

tee: if the algorithm accepts a definition, then that definition has a principal

type and that type is what the algorithm finds (Theorem 5.2 in Section 5.7).

A consequence is this: the precise details of which programs are accepted by the

specification but rejected by the algorithm is given only by the algorithm itself.

While this is unsatisfying in principle, we are willing to live with it for two reasons.

First, we know of no better alternative. Second, by explaining that the inference

algorithm does not ‘guess’ types, or ‘search’ among possible substitutions, we have

found that programmers can, after some experience, accurately predict what should

and should not type-check. We offer the whole question as a challenge to others for

further work.

7 Instantiating X for GADTs, type classes and type families

Our general claim is that the algorithm of Section 5 will infer principal types for an

arbitrary underlying constraint domain X, provided:

• the entailment relation of X satisfies the properties of Figure 3,

• a sound and guess-free simplifier is used to solve constraint problems in X.

Kennedy’s units of measure is a well understood and tractable example of just such

a domain (Kennedy, 1996). Type inference and principal types in that system follow

because of a clever domain-specific extension to unification that Kennedy devised.

Haskell needs a rather more complicated domain. Indeed, our main purpose was to

provide a type inference framework that can accommodate
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Syntactic extensions

τ ::= . . . | F τ Type family applications

Q ::= . . . | D τ Type class constraints

Q ::= Q | Q ∧ Q | ∀a.Q ⇒ D τ | ∀a.F ξ ∼ τ

Auxiliary syntactic definitions
ζ, ξ ∈ {τ | τ contains no type families }
T ::= T T | F | T → T | tv | •
F ::= F T

D ::= D T

Fig. 17. Syntactic extensions for type classes and type families.

• multi-parameter type classes,

• GADTs and

• type families.

While Kennedy relies on unification in an abelian group, type families introduce

arbitrary equational theories, and hence, similar domain-specific techniques do not

seem to be directly applicable.

In this section, we describe the entailment relation (Section 7.1) and the simplifier

procedure (Section 7.3) for these features. We do not discuss overlapping instances,

implicit parameters, superclasses or functional dependencies although our imple-

mentation deals with all of these (Section 8). Even so, describing the solver is a

fairly challenging task, and this section is a long one – but it is a task that is clearly

separable from the rest of the paper.

7.1 The entailment relation

We already have enough syntax to describe GADT equalities, so the required

extensions for type classes and type families are given in Figure 17.

The syntax of types is extended with type families of the form F τ. The syntax

of constraints is extended with type class constraints of the form D τ. The top-level

axioms contain constraints Q as before, and two forms of axiom schemes:

• Class instance axioms of the form ∀a.Q ⇒ D τ. Those are brought into Q by

a user instance declaration, such as

instance Eq a => Eq [a] where ...

which gives rise to ∀a.Eq a ⇒ Eq [a].

• Type family instance declarations of the form ∀a.Fξ ∼ τ. Such axiom schemes

enter Q with a type instance declaration. For example,

type instance F Int = Bool

type instance F [a] = a
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Q � Q

Q � Q1 Q � Q2

conj
Q � Q1 ∧ Q2

refl
Q � τ ∼ τ

Q � τ1 ∼ τ2
sym

Q � τ2 ∼ τ1

Q � τ1 ∼ τ2 Q � τ2 ∼ τ3
trans

Q � τ1 ∼ τ3

Q � T τ1 ∼ T τ2

decomp
Q �∧ τ1 ∼ τ2

Q �∧ τ1 ∼ τ2
comp

Q � T τ1 ∼ T τ2

Q �∧ τ1 ∼ τ2
fcomp

Q � F τ1 ∼ F τ2

(∀a.Q1 ⇒ Q2) ∈ Q Q � [a 	→ τ ]Q1

axiom
Q � [a 	→ τ ]Q2

Q � D τ1 Q �∧ τ1 ∼ τ2
dicteq

Q � D τ2

Fig. 18. Concrete entailment.

gives rise to F Int ∼ Bool ∧ ∀a.F [a] ∼ a . GHC enforces that type family

instance declarations involve only type families applied to types that contain

no type families (type-family-free), and we follow here this restriction (hence,

ξ and not simply τ in type family axiom schemes of Figure 17).

Finally, in the rest of this section, we will use �, � and � for type, type family

and type class contexts with holes. For example, writing �[τ] gives a type family

application with τ in the hole of �.

Given this syntax of constraints, Figure 18 gives their entailment relation, which

is entirely standard. We have merged the cases for type class instance axioms and

type family instance axioms in the common rule axiom. Notice rule dicteq, which

allows the rewriting of a type class constraint using a deducible equality.

It is routine induction to confirm that the entailment relation of Figure 18 is well

behaved for type inference purposes.

Lemma 7.1 The � relation in Figure 18 satisfies the conditions of Figure 3.

Proof

Easy induction. �

7.2 Solving equality constraints is tricky

At first, it may seem that a constraint solver for type classes, GADTs and type

families is relatively simple. After all, type classes have been with us for 20 years, and

we can deal with type families by using the top-level type instance declarations as

left-to-right rewrite rules. The tricky case comes with local assumptions that involve

type families.
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Example 7.1 Consider this contrived example:

type instance F [Int] = Int

type instance G [a] = Bool

-- Assume g :: forall b. b -> G b

f :: forall a. (a ~ [F a]) => a -> Bool

f x = g x

When type checking f we see that, since (g x) must return Bool, we get the

wanted constraint G a ∼ Bool. Using the assumption a ∼ [F a], we can rewrite the

wanted constraint to G [F a]∼Bool. Aha! Now we can apply the top-level instance

for G and we are done.

The trick here is that we had to replace a by [F a], a process that would go

on forever if iterated, so the solver clearly has to be rather careful. Moreover, the

assumptions might look like (F a ∼ G a) or even (F (G a) ∼ G a), which look

nothing like left-to-right rewrite rules, and cannot be used in this way. We discussed

these and other issues in an earlier work (Schrijvers et al., 2008a), where we gave a

solver for type equalities alone. In the rest of this section, we give a solver that is

simpler than our earlier one and handles type classes as well.

7.3 The simplifier

We now proceed to the details of a concrete simplifier for the entailment judgement

of Figure 18. Our goal is to implement a procedure with the signature:

Q ; Qgiven ; αtch 	�simp

Qwanted � Qresidual ; θ

This procedure will be used to instantiate the solver of Figure 14. Recall that

the properties we have postulated for soundness and principality of type inference

(Figure 15) give:

Q ∧ Qgiven ∧ Qresidual � θQwanted

Q ∧ Qgiven ∧ Qwanted � Qresidual ∧ Eθ

In addition, we must have dom(θ) ⊆ αtch , dom(θ)#fuv (Qg ,Qr ). The way we are

going to attack this problem is by discovering a constraint Qresidual ∧ Eθ that is

equivalent to Qwanted , that is it satisfies:

Q ∧ Qgiven � Qwanted ↔ (Qresidual ∧ Eθ)

Soundness and principality will then follow from this and the observation that

fuv (Qgiven )#αtch at the call sites of the simplifier. Of course, a trivial solution to

our problem is to return θ = ε and Qresidual = Qwanted , but that would be terrible

from a completeness point of view: the golden standard that we aim for is guess-free

completeness, described in Section 6.4.

Following previous work (Schrijvers et al., 2008a), we may implement such a

simplifier, as the fixpoint of a set of rewrite rules that at each step transform our

wanted constraint into a simpler, equivalent constraint. Once no more rewriting is

possible, we may extract a substitution θ for the touchable unification variables from
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Q ; Qgiven ; αtch ��simp
Qwanted � Qresidual ; θ

Q �� 〈α, ε,Qg ,Qw 〉 ↪→� 〈α′, ϕ,Q ′
g ,Q

′
w 〉 
↪→

ϕQ ′
w = E ∧ Qr

E = {β ∼ τ | ((β ∼ τ) ∈ ϕQ ′
w or (τ ∼ β) ∈ ϕQ ′

w ), β ∈ α′, β /∈ fuv(τ)}
θ = [β 	→ θτ | (β ∼ τ) ∈ E ] β distinct

simples
Q ; Qg ; α ��simp

Qw � θQr ; θ|α

Q �� 〈α,ϕ,Qg ,Qw 〉 ↪→ 〈α′, ϕ′,Q ′
g ,Q

′
w 〉⊥

canon[g ] (Q1) = {β, ϕ2,Q2}⊥
cang

Q �� 〈α,ϕ1,Qg∧Q1,Qw 〉 ↪→ 〈αβ, ϕ1 � ϕ2,Qg∧Q2,Qw 〉⊥
canon[w ] (Q1) = {β, ϕ2,Q2}⊥

canw
Q �� 〈α,ϕ1,Qg ,Qw∧Q1〉 ↪→ 〈αβ, ϕ1 � ϕ2,Qg ,Qw∧Q2〉⊥

interact [g ](Q1, Q2) = Q3

intg
Q �� 〈α,ϕ,Qg ∧ Q1∧Q2,Qw 〉 ↪→ 〈α,ϕ,Qg∧Q3,Qw 〉⊥

interact [w ](Q1, Q2) = Q3

intw
Q �� 〈α,ϕ,Qg ,Qw∧Q1∧Q2〉 ↪→ 〈α,ϕ,Qg ,Qw∧Q3〉⊥

(Q) simplifies (Q1) = Q2

simpl
Q �� 〈α,ϕ,Qg∧Q ,Qw∧Q1〉 ↪→ 〈α,ϕ,Qg∧Q ,Qw∧Q2〉⊥

topreact [g ](Q, Q1) = {ε,Q2}⊥
topg

Q �� 〈α,ϕ,Qg∧Q1,Qw 〉 ↪→ 〈α,ϕ,Qg∧Q2,Qw 〉⊥
topreact [w ](Q, Q1) = {β,Q2}⊥

topw
Q �� 〈α,ϕ,Qg ,Qw∧Q1〉 ↪→ 〈αβ, ϕ,Qg ,Qw∧Q2〉⊥

Fig. 19. Main simplifier structure.

that simplified constraint and keep the remaining residual constraint, Qresidual . If

the remaining constraint is simply empty then we have managed to fully solve our

wanted Qwanted by producing a substitution θ. The structure of a simplifier based

on this idea appears in Figure 19, and rule simples implements this strategy.

Rule simples appeals to the auxiliary judgment ↪→, whose signature is:

Q 	� 〈α, ϕ,Qg ,Qw 〉 ↪→ 〈α′, ϕ′,Q ′
g ,Q

′
w 〉⊥

The purpose of this judgement is to rewrite an input quadruple into an output

quadruple. The inputs to this judgement are as follows:
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• The top-level axioms Q.

• An input quadruple, 〈α, ϕ,Qg ,Qw 〉, which consists of a set of touchable

variables, α, a substitution for some unification variables, ϕ, a set of given

constraints Qg and a set of wanted constraints Qw . We will refer to the

substitution ϕ as the flattening substitution because it undoes the so-called

flattening operation that we apply to canonicalise constraints (see Section 7.4.1

that will give the details).

The output of this judgement is then a new quadruple, consisting of a new set of

touchable variables, α′, a new flattening substitution ϕ′, a new set of givens Q ′
g as

a result of massaging the original givens and a new set of wanteds Q ′
w that record

any remaining goals to be shown that we were not able to deduce. The returned set

of touchable variables is always a superset of the input and will include any new

unification variables that have been allocated during simplification (we will see how

this may happen in Sections 7.4.1 and 7.4.4).

Returning to rule simples, the idea is to repeatedly apply ↪→ (hence ↪→∗) until it

no longer applies (hence, 
↪→). Then, we massage the results to extract a substitution

θ and residual constraint Qr . The details are best understood after we introduce the

constraint rewrite relation, in the next section. We then return to demystify the rest

of simples in Section 7.5.

The ⊥ symbol in the signature of ↪→ should be understood as syntactic sugar

for the possibility that rewriting might fail. That is, every rule with a conclusion of

the form Q 	� 〈α, ϕ,Qg ,Qw 〉 ↪→ 〈α′, ϕ′,Q ′
g ,Q

′
w 〉⊥ abbreviates two rules, one of which

simply returns ⊥ if one of the premises rewrites to ⊥. For instance, if we encounter

the constraint Int ∼ Bool, our solver immediately returns ⊥, instead of keeping

the constraint in the quadruple. The possibility of returning ⊥ amounts to a check

for inconsistent constraints. Although such a check is necessarily incomplete (see

Section 6.2), we still desire it for three reasons:

• We do not want to quantify over obviously inconsistent constraints. For

example, it would be stupid (although sound) to infer the type (Int ∼ Bool) ⇒
Int → Bool for

f x = (not x) + 3

because f could never be called.

• Where possible, we would like to detect unreachable case alternatives, as we

discussed in Section 6.2.

• In general, we would like definite errors to be reported as early as possible.

7.4 Rewriting constraints

We turn our attention now to the internals of the judgement

Q 	� 〈α, ϕ,Qg ,Qw 〉 ↪→ 〈α′, ϕ′,Q ′
g ,Q

′
w 〉⊥

given in Figure 19. As we have seen, it transforms quadruples consisting of

some touchable variables, a substitution, some given constraints and some wanted

constraints. It does this by appealing to simpler rewrite rules, of four categories:
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Canonicalisation (Section 7.4.1) is used in rules cang and canw. They both call

function canon , whose signature is:

canon[�] (Q1) = {β, ϕ2,Q2}⊥

where � is either wanted (w ) or given (g). The canonicalisation function transforms

a single atomic6 constraint Q1 to a simpler form. Constraints that canon does not

transform are canonical. An example of canonicalisation would be to transform

[α] ∼ [Int] to the simpler form α ∼ Int. The canonicalisation rules may need to

create new touchable variables β, or new flattening substitutions ϕ. Finally, note

that those rules can fail returning ⊥ in which case rule cang and canw should

also fail returning ⊥.

Binary interaction (Section 7.4.2) is used in intg and intw, which both appeal to

the function interact:

interact[�](Q1, Q2) = Q3

where � can be either given (g) or wanted (w ). Interaction combines two atomic

constraints (both given or both wanted), producing new wanted or new given

constraints, respectively. For example, if we are given two constraints α ∼ β and

β ∼ Int, we would get a new given that α ∼ Int.

Simplification (Section 7.4.3) is used in rule simpl, which invokes

(Q) simplifies (Q1) = Q2

This function uses an atomic given constraint Q to simplify an atomic wanted

constraint Q1, producing a transformed wanted Q2. It will often be the case that

this rule completely discharges the wanted constraint Q1 producing ε. A typical

reaction with given α ∼ Int and wanted α ∼ Int would produce Int ∼ Int

(which could then be discharged by a canonicalisation rule).

Top-level reactions (Section 7.4.4) appear in rules topg and topw, using function

topreact[�](Q, Q1) = {β,Q2}⊥

This function uses the top-level axioms Q to transform an atomic given or wanted

constraint Q1. For example, they may be used to deduce a wanted type class

constraint Eq Int from an axiom for Eq Int introduced by some class instance

declaration. We will see that these rules may create new touchable variables.

Our intention is that the rewrite relation induced by these rules is confluent and

terminating (under certain conditions on the axiom schemes). Though we do not

present a detailed confluence proof, we discuss several design decisions motivated

by keeping the algorithm independent of the order that the rules will be applied in

the next sections; Section 7.7 discusses termination. For the rest of this section, we

6 An atomic constraint is one that does not involve conjunctions.
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�can Q

tv ≺ ξ tv /∈ ftv(ξ)
ceq

�can tv∼ξ
cfeq

�can F ξ∼ξ
cdict

�can D ξ

τ1 ≺ τ2

F τ ≺ τ when τ 
= G υ
α ≺ b

tv1 ≺ tv2 when tv1 ≤ tv2 lexicographically
tv ≺ ξ

Fig. 20. Auxiliary definitions for canonicalisation.

will cover a concrete instantiation of those four kinds of rules that give rise to a

simplifier for the entailment of Figure 18.

7.4.1 Canonicalisation rules

The purpose of canonicalisation is to transform a single constraint, given or wanted,

to a simpler form. These simple forms that we will be using throughout will be

called canonical constraints and are specified in Figure 20 with the judgement

	can Q

There exist two rules for equality in this figure:

• Rule ceq asserts that a constraint of the form tv ∼ ξ is canonical when tv /∈ ξ –

otherwise, this must be an occurs check error. We also remind the reader at

this point that ξ-types are function free.

• Rule cfeq asserts that the only constraint that may contain a function symbol

should be of the form Fξ ∼ ξ. There is no occurs check condition in

canonical equalities that involve function symbols. It is perfectly valid to

have a constraint of the form F α ∼ α, contrary to, say α ∼ [α].

Finally, a canonical type class constraint may also never mention any function

symbols and rule cdict asserts that it is of the form D ξ.

We now turn to the actual canonicalisation rules, in Figure 21. Their purpose is

to convert any constraint (given or wanted) to a set of canonical constraints. Rule

refl simply removes a given or wanted reflexive equality. The rest of the rules can

be grouped according to their functionality.

Occurs check. Rule occcheck fails in the case, where a type variable tv is equal

to a type that may contain the very same variable. Since in rule occcheck, the

constraint is of the form tv ∼ ξ, ξ contains no function symbols, and hence, we

are not in danger of raising an erroneous occur check violation for a perfectly

valid constraint of the form a ∼ F [a].
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canon[�] (Q1) = {β, ϕ,Q2}⊥

refl canon[�] (τ ∼ τ =) {ε, ε, ε}
tdec canon[�] (T τ1 ∼ T τ2) = {ε, ε,∧ τ1 ∼ τ2}
faildec canon[�] (T τ1 ∼ S τ2) = ⊥
occcheck canon[�] (tv ∼ ξ)

where tv ∈ ξ, ξ �= tv = ⊥
orient canon[�] (τ1 ∼ τ2)

where τ2 ≺ τ1 = {ε, ε, τ2 ∼ τ1}
dflatw canon[w ] (D[G ξ]) = {β, ε,D[β] ∧ (G ξ ∼ β)}
dflatg canon[g] (D[G ξ]) = {ε, [β �→ G ξ],D[β] ∧ (G ξ ∼ β)}
fflatwl canon[w ] (F[G ξ] ∼ τ) = {β, ε, (F[β] ∼ τ) ∧ (G ξ ∼ β)}
fflatwr canon[w ] (τ ∼ T[G ξ])

where (τ = F ξ
′
or τ = tv), β fresh = {β, ε, (τ ∼ T[β]) ∧ (G ξ ∼ β)}

fflatgl canon[g] (F[G ξ] ∼ τ) = {ε, [β �→ G ξ], (F[β] ∼ τ) ∧ (G ξ ∼ β)}
fflatgr canon[g] (τ ∼ T[G ξ])

where (τ = F ξ
′
or τ = tv), β fresh = {ε, [β �→ G ξ], (τ ∼ T[β]) ∧ (G ξ ∼ β)}

Fig. 21. Canonicalisation rules.

Decomposition rules. Rule tdec decomposes an equality between two types with

the same head constructor, and rule faildec fails in the case where the head

constructors are different.

It is worth noticing that rules faildec (and occcheck) may fail even for given

constraints. Whereas failure for wanted constraints amount to an unsatisfiable

constraint, failure in the given constraint amounts to inconsistency detection (see

related discussion in Section 6.2). For example, assume the following code:

f :: (Bool ~ Char) => Bool -> Char

f x = x && ’c’

Since rule faildec applies to both given and wanted constraints, it will result in

rejecting f.

Orientation. We’ve seen in Figure 20 that canonical equality constraints must have

a very particular shape. This means that sometimes equality constraints may need

to be oriented to prefer unifiable variables or function applications on the left.

This is achieved with rule orient, which orients an equality constraint according

to the ≺ function defined in Figure 20. For example, rule orient will fire for a

constraint of the form a ∼ F [a], to transform it to F [a] ∼ a . Orientation prefers

unification variables on the left of equality constraints over skolem variables, but

that is just so that the shape of constraints looks more like a substitution, and

does not have any deep consequences. Finally, for two variables that are both

unification variables or skolems, we simply impose an orientation based on the

lexicographic ordering of the names of those variables – this has to do with

termination and will be explained in Section 7.4.2.

Flattening (and the role of the flattening substitution). We’ve also seen in Figure 20

that canonical constraints mention function applications only as left-hand sides

of equalities. Transforming a constraint to do this is achieved with the flattening

rules in Figure 21, dflatw, dflatg, fflatwl, fflatwr, fflatgl and fflatgr.

https://doi.org/10.1017/S0956796811000098 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000098


390 D. Vytiniotis et al.

Their behaviour is similar: in all cases, a fresh variable β is generated and the

nested function application is lifted out as an extra equality. For instance, for a

constraint:

F (G Int) ∼ Int

we would get two new constraints:

F β ∼ Int ∧ G Int ∼ β

Notice though the difference between the wanted and given cases. If the original

constraint is given then we are emitting a new given constraint Gξ ∼ β. But what

is the evidence that justifies this? This is where the flattening substitutions come

into play: we record in the flattening substitution that β is equal to Gξ, hence

establishing evidence (the identity) that justifies the new given constraint Gξ ∼ β.

The fresh variable β is carefully not recorded as touchable, since we already have

a substitution for it.

The role of flattening, often used in completion-based term rewriting (Kapur,

1997), is essential in many dimensions.

• As we will see in Sections 7.4.2 and 7.4.3 having type family symbols appearing

only to the left of equations restricts the number of possible interactions

between those equations and other constraints.

• Flat equations involving type functions of the form Fξ ∼ ξ are helpful in

ensuring termination of simplification. Recall Example 7.1, and the possibility

for non-termination if we simply view the constraint a ∼ [F a] as a left-to-right

substitution. Flattening comes into play here. Instead of viewing a ∼ [F a] as

a left-to-right substitution, we will first flatten the equation introducing a new

flatten skolem β to get new givens a ∼ [β] ∧ F a ∼ β along with the flattening

substitution [β 
→ F a]. In this way, we have broken the vicious substitution

cycle for variable a . We may now use a ∼ [β] to rewrite our goal G a ∼
Int to G [β] ∼ Int, which can be readily solved from the top-level axiom

for G!

Finally, note that flattening for wanted constraints (rule dflatw) generates a new

wanted goal that Gξ ∼ β, without binding β in the flattening substitution. Instead,

it must record the fresh β variable as touchable – we will be seeking evidence that

Gξ ∼ β and that evidence may (but not need to) be found by unifying β 
→ Gξ

later on.

It is very important that we treat the given and wanted case differently. We explain

the reasons below:

• Why don’t we simply create wanted Gξ ∼ β in the given case? Because we can

create evidence for Gξ ∼ β on the spot, namely by simply setting [β 
→ Gξ].

• Why don’t we create given Gξ ∼ β and update the flattening substitution

[β 
→ Gξ] in the wanted case? A superficial reason is that our rules allow

canonicalisation of wanteds to wanteds, and of givens to givens, but not

canonicalisation of wanteds to givens. But the real reason is that Gξ arises

in the context of a wanted constraint and hence may contain touchable
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interact [�](Q1, Q2) = Q3

eqsame interact [�](tv ∼ ξ1, tv ∼ ξ2)
where 
can tv ∼ ξ1,
can tv ∼ ξ2 = (tv ∼ ξ1) ∧ (ξ1 ∼ ξ2)

eqdiff interact [�](tv1 ∼ ξ1, tv2 ∼ ξ2)
where 
can tvi ∼ ξi , tv1 ∈ ftv(ξ2) = (tv1 ∼ ξ1) ∧ (tv2 ∼ [tv1 �→ ξ1]τ2)

eqfeq interact [�](tv ∼ ξ1, F ξ ∼ ξ)

where 
can tv ∼ ξ1, tv ∈ ftv(ξ, ξ) = (tv ∼ ξ1) ∧ (F [tv �→ ξ1]ξ ∼ [tv �→ ξ1]ξ)

eqdict interact [�](tv ∼ ξ, D ξ)

where 
can tv ∼ ξ, tv ∈ ftv(ξ) = (tv ∼ ξ1) ∧ (D [tv �→ ξ]ξ)

feqfeq interact [�](F ξ ∼ ξ1, F ξ ∼ ξ2) = (F ξ ∼ ξ1) ∧ (ξ1 ∼ ξ2)

ddict interact [�](D ξ, D ξ) = D ξ

Fig. 22. Binary interaction rules.

variables. By creating a given Gξ ∼ β, we are ‘polluting’ our given constraints

with touchable variables.

To see why this is dangerous, consider the original wanted constraints with

touchable α:

F (G [α]) ∼ Int (18)

G [α] ∼ α (19)

along with a given G [α] ∼ γ for an untouchable γ. Suppose that constraint

(18) canonicalises to F β ∼ Int (wanted), and G [α] ∼ β (given), with the

flattening substitution being [β 
→ G [α]]. From these and the given G [α] ∼ γ,

we can deduce the given constraint γ ∼ β. To solve Equation (19), and using

the given G [α] ∼ β, it suffices to solve α ∼ β. One may think that α ∼ β can be

readily solved by setting [α 
→ β], but that does not work because β is already

unified to G [α], and hence, we will get a non-idempotent unifier [α 
→ G [α]]!

Alas, we could instead have tried to solve α ∼ γ, which surprisingly is solvable

by setting [α 
→ γ] since we have a given constraint γ ∼ β.

To summarise, the presence of touchable variables in the givens makes the

algorithm sensitive to the order that the rewrite rules fire.

7.4.2 Binary interaction rules

Binary interaction rules transform two canonical constraints that are either both

given or both wanted to a new given or wanted constraint, respectively. Figure 22

gives the details.

Rule eqsame reacts two equalities with the same variable on the left-hand side,

producing a new equality equating the right-hand sides.

Rule eqdiff reacts canonical equalities but where one of the left-hand side variables

appears in the right-hand-side type of the other equality. This rule is the reason for

requiring a lexicographic ordering between variables in the syntax of the canonical

constraints. Consider the example:

α ∼ β ∧ β ∼ γ ∧ γ ∼ β

https://doi.org/10.1017/S0956796811000098 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000098


392 D. Vytiniotis et al.

where all variables are touchables. After one step of rewriting using eqdiff, we may

substitute β in the first constraint and end up with:

α ∼ γ ∧ β ∼ γ ∧ γ ∼ β

Now, we may substitute again in the first constraint variable γ to get

α ∼ β ∧ β ∼ γ ∧ γ ∼ β

which is the original constraint we started with. We see that there is a danger for

non-termination. Imposing a lexicographic ordering of variables and reacting only

canonical ones would mean that it would be impossible to have both β ∼ γ and

γ ∼ β able to react with another constraint using eqdiff.

The returned constraint from an eqdiff interaction could possibly violate an

occurs check condition. Such a violation will be detected by a canonicalisation

reaction occcheck later on. For instance:

α ∼ [β] ∧ β ∼ [α]

may react to α ∼ [[α]] ∧ β ∼ [α]. Rule eqdiff does not apply to this new constraint,

since the equality α ∼ [[α]] is not canonical. Canonicalisation will detect and report

the occurs check violation.

Rule eqfeq reacts a canonical equality with a function equality, and rule eqdict

reacts a canonical equality with a type class constraint. In both cases, the equality

is used to rewrite the other constraint. For instance, Eq α ∧ α ∼ Int rewrites to

Eq Int. Rule eqfeq rewrites a type family equality using an equality. Finally, rule

feqfeq reacts two canonical function equalities, which have the same left-hand sides.

Rule ddict deals with interacting two identical type class constraints. A situation

with two identical class constraints may well happen, both in the given and the

wanted case. Consider the code below:

data T a where

K :: Eq a => a -> T a

f :: Eq a => T a -> a -> Bool

f (K y) x = (x == y)

In the body of f, we see that Eq a is available from the type signature, but also

from the pattern matching against K. Moreover, the code (x == y) gives rise to a

wanted constraint Eq a. We could resolve the wanted constraint from one of the

two givens, but which one? We can think about this problem in terms of evidence:

Since each class constraint is associated with a runtime dictionary equipped with

operations, such a situation amounts to the presence of two dictionaries for the

same type. The semantics of Haskell requires dictionaries of the same type to be

contextually equivalent, and hence, it does not matter which of the two we will

choose to solve the wanted constraint Eq a. Hence, rule ddict drops one of two

identical given constraints. On the other hand, if we have two identical wanted type

class constraints in our goal, we may simply try to solve one of them – if we have

evidence for one, this will immediately be evidence for the other as well.
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(Q1) simplifies (Q2) = Q3

seqsame (tv ∼ ξ1) simplifies (tv ∼ ξ2)
where �can tv ∼ ξi = ξ1 ∼ ξ2

seqdiff (tv1 ∼ ξ1) simplifies (tv2 ∼ ξ2)
where �can tv ∼ ξi , tv1 ∈ ξ2 = tv2 ∼ [tv1 	→ ξ1]τ2

seqfeq (tv ∼ ξ1) simplifies (F ξ ∼ ξ)

where �can tv ∼ ξ1, tv ∈ ftv(ξ) = F [tv 	→ ξ1]ξ ∼ ξ

seqdict (tv ∼ ξ) simplifies (D ξ)

where �can tv ∼ ξ, tv ∈ ξ = D [tv 	→ ξ]ξ

sfeqfeq (F ξ ∼ ξ1) simplifies (F ξ ∼ ξ2) = ξ1 ∼ ξ2
sddictg (D ξ) simplifies (D ξ) = ε

Fig. 23. Simplification rules.

Finally, observe that the ability to rewrite both given and wanted constraints is

essential:

Reacting givens. Assume that we have two given constraints F a ∼ Int ∧ F a ∼ a
and a wanted constraint F Int ∼ a . How can we possibly solve the wanted

constraints? By first reacting the givens, to get a ∼ Int. Then, we may rewrite

the givens again to get F Int ∼ Int as given, which can then be used to solve

the wanted goal, in a way that will be described in the next section.

Reacting wanteds. Assume that we have two wanted equations F γ ∼ γ ∧ F γ ∼ Int.

If we react them, we may get that γ ∼ Int ∧ F γ ∼ Int, which can react again to

get F Int ∼ Int, which, in turn, may be solvable by a top-level axiom for F .

7.4.3 Simplification rules

The simplification rules resemble the binary interaction rules; they are however

directional: one of the constraints is always a wanted and the other a given. The

simplification rules are given in Figure 23.

The reader can confirm that these rules are simple variants of the binary interaction

rules we have already seen previously in Figure 22. However, some rules are missing.

For example, there is no rule with a type family equality on the left (as a given) and

an ordinary equality on the right (as a wanted):

(Fξ ∼ ξ) simplifies (tv ∼ ξ1) = . . .

If there were such a rule, what could be in place of . . .? It is tempting to produce

a new wanted constraint (tv ∼ ξ1) ∧ (F [tv 
→ ξ1]ξ ∼ [tv 
→ ξ1]ξ). This is certainly

sound but produces an entirely new goal, which – after all – is already deducible if

we can solve our original goal tv ∼ ξ1. Polluting our constraints with such useless

goals seems dangerous for termination and leads to larger constraints to quantify

over when we are inferring types for expressions. On the other hand, we certainly

cannot produce a new given constraint (F [tv 
→ ξ1]ξ ∼ [tv 
→ ξ1]ξ) since the

evidence of that constraint will rely on the wanted evidence for tv ∼ ξ1.
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topreact [�](Q, Q1) = {β,Q2}⊥

∀a.Q ⇒ D ξ0 ∈ Q
b = ftv(ξ0) c = a − b γ fresh θ = [b 	→ ξb , c 	→ γ] θξ0 = ξ

dinstw
topreact [w ](Q, D ξ) = {γ, θQ}

∀a.Q ⇒ D ξ0 ∈ Q θ = [a 	→ ξa ] θξ0 = ξ
dinstg

topreact [g ](Q, D ξ) = ⊥

∀a.F ξ0 ∼ ξ0 ∈ Q
b = ftv(ξ0) c = a − b γ fresh θ = [b 	→ τa , c 	→ γ] θξ0 = ξ

if (� = w) then δ = γ else δ = ε
finst

topreact [�](Q, F ξ ∼ ξ) = {δ, θξ0 ∼ ξ}

Fig. 24. Top-level reaction rules.

More generally, allowing given constraints to contain evidence from wanted

constraints can easily make the algorithm sensitive to the order in which the rewrite

rules fire. Consider the given constraint F a ∼ Int and wanted constraint F a ∼ Int.

If, instead of deciding to simplify the wanted using the given, we chose to simplify

the given using the wanted, we’d get a new given Int ∼ Int and a remaining wanted

goal of F a ∼ Int that would now be unsolvable.

7.4.4 Top-level reaction rules

Finally, we reach the top-level reaction rules. These rules apply top-level axioms for

type families or type classes and are given in Figure 24. In the case of a wanted

type class constraint (rule dinstw), we produce new wanted goals using the instance

declaration. Suppose that we have an axiom scheme ∀a.Eq a ⇒ Eq [a] in Q. This

may react with a wanted Eq [Bool] as follows:

topreact[w ](Q, Eq [Bool]) = {ε, Eq Bool}

We get a new wanted constraint Eq Bool. Note that new unification variables (γ) may

be introduced. These variables should be considered touchables for simplification

purposes.

In the case of a given type class constraint (rule dinstg), we disallow application of

matching top-level axioms, so we simply return ⊥. The reason behind this reaction,

which is reminiscent of an overlapping instance check, is to keep the simplifier

strategy simple. Consider the following situation:

class D a where

d :: a -> Bool

instance C a => D [a] where ...
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f :: forall a. D [a] => [a] -> Bool

f x = d x

The resulting wanted constraint D [a] in the body of f could be discharged either

by the local given constraint D [a] from the signature, or by using the top-level

axiom scheme ∀a.C a ⇒ D [a]. However, since there is no instance for C a available,

accidentally preferring the top-level axiom scheme would mean that f would be

rejected. Hence, the solving algorithm is non-deterministic.

We may attempt to improve the situation by preferring reaction with local given

constraints over reaction with top-level axioms. Yet, this does not resolve the issue

altogether. Consider this example:

instance P x => Q [x] where ...

instance x ~ y => R [x] y

-- Assume wob :: forall a b. (Q [b], R b a) => a -> Int

g :: forall a. Q [a] => [a] -> Int

g x = wob x

From g, we get the implication constraint Q [a] ⊃ (Q [β] ∧ R β [a]). At this point,

we can only react with one of the two top-level axioms. If we choose to react (Q [β])

with the first one, we end up with (P β), which we have no way of discharging. If,

in contrast, we react with the second top-level axiom, we get Q [β] ∧ β ∼ a . After

substituting the equality in the type class constraint (with rule eqdict), we obtain

the wanted constraint Q [a] that is readily discharged with the local given. Hence,

even if we defer applying top-level axioms as long as possible, the behaviour of the

solving algorithm remains non-deterministic. This might be fixable by refraining from

applying dinstw if a local given could match with the wanted constraint (perhaps

after instantiating unification variables), but it is all getting rather complicated.

Our compromise, in favour of simplicity and determinism, is to reject all situations

where a given constraint overlaps with a top-level type class axiom scheme, and that

is what dinstg says.

For type family equations, independently of whether they are given or wanted,

we may rewrite them by looking for a top-level type family instance that matches

(rule finst). This is possible because evidence construction under type family

instance reductions works in both directions (Sulzmann et al., 2007a). For instance, if

we are given an axiom ∀a.F [a] ∼ a in Q and a wanted constraint F [Bool] ∼ β

then we may have the reaction:

topreact[w ](Q, F [Bool] ∼ β) = {ε, Bool ∼ β}

As in the case for wanted class constraints, rule finst must return new touchable

variables in the wanted case (δ).
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7.5 The rule SIMPLES

We now return to the heart of the simplifier, rule simples, which we repeat below:

(1) Q 	� 〈α, ε,Qg ,Qw 〉 ↪→� 〈α′, ϕ,Q ′
g ,Q

′
w 〉 
↪→

(2) ϕQ ′
w = E ∧ Qr

(3) E = {β ∼ τ | ((β ∼ τ) ∈ ϕQ ′
w or (τ ∼ β) ∈ ϕQ ′

w ), β ∈ α′, β /∈ fuv (τ)}
(4) θ = [β 
→ θτ | (β ∼ τ) ∈ E] β distinct

simples

Q ; Qg ; α 	�simp
Qw � θQr ; θ|α

Rule simples first rewrites a constraint as much as possible with condition (1), using

the rewrite relation of the previous section. The output quadruple 〈α′, ϕ,Q ′
g ,Q

′
w 〉

contains an extended set of touchables α′ and a flattening substitution ϕ. Condition

(2) applies the flattening substitution to the residual constraint Q ′
w , to obtain ϕQ ′

w .

The flattening substitution cannot mention any touchable unification variables in its

domain or range, as the canonicalisation rules reveal. The constraint ϕQ ′
w is then

syntactically split into an equational part E in conjunction with a constraint Qr so

that E satisfies certain properties. The properties that E must satisfy are given with

conditions (3) and (4). The constraint E must contain constraints of the form (β ∼ τ),

drawn from ϕQ ′
w , such that β is a touchable variable not in the free unification

variables of τ. We then require that there exists an idempotent substitution induced

by E, which we write with the ‘lazy’ notation: θ = [β 
→ θτ | (β ∼ τ) ∈ E]. Once the

substitution θ is extracted, we return the appropriate restriction of θ to the original

touchables α along with θQr as the residual constraint, since soundness requires that

dom(θ) ⊆ α and dom(θ)#fuv (θQr ).

To see an example of the operations in rule simples, suppose that, after the

flattening substitution has been applied, our constraint ϕQ ′
w looks like:

F Int β ∧ F Int γ ∧ δ ∼ γ

where β, γ, δ are all touchable variables. Observe that this constraint is indeed

normal with respect to the rewrite rules. We may then take E = (β ∼ F Int) ∧
(γ ∼ F Int) ∧ (δ ∼ γ) from which we can extract the idempotent substitution

θ = [β 
→ F Int, γ 
→ F Int, δ 
→ F Int]. The residual constraint in this case is just

the empty constraint ε.

The equational constraint E need not contain all equations that involve touchable

unification variables. Consider the following constraint ϕQ ′
w :

F Int ∼ β ∧ F Char ∼ β

where β is touchable. Once again, this constraint is normal with respect to the rewrite

relation. We can pick E = (β ∼ F Char) (but not E = (β ∼ F Char) ∧ (β ∼ F Int),

since β have to be distinct) and θ = [β 
→ F Char]. In this case, the residual

constraint will be F Char ∼ F Int, which we may quantify over, if we are inferring

a type.

7.6 Soundness and principality

We now show that rewriting preserves constraint equivalence, as expected.
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Lemma 7.2 If Q 	� 〈α, ϕ,Qg ,Qw 〉 ↪→ 〈α′, ϕ′,Q ′
g ,Q

′
w 〉⊥ and α#fuv (Qg ) and dom(ϕ) ⊆

α then:

1. Q � ϕQg ↔ ϕ′Q ′
g , and

2. Q ∧ ϕ′Q ′
g � ϕQw ↔ ϕ′Q ′

w

Moreover, α′ ⊇ α, dom(ϕ′) ⊆ α′ and α′#fuv (Q ′
g ,Qg ).

Proof

This can be done with a simple case analysis on the rewrite rules. �

From this, it is a small step to conclude that the simplifier satisfies the conditions

for soundness and principality.

Theorem 7.1 The simplifier of Figure 19 satisfies the conditions of Figure 15, when

called with touchables disjoint from the given constraint.

What about our ‘gold standard’ of guess-free completeness under consistent

assumptions, described in Section 6.4? Because of rule dinstg our simplifier does

not meet that definition. For example, the entailment relation can be used to deduce

that

(∀a.C [a]) ∧ C [Int] � C [Int]

but our simplifier will fail due to rule dinstg. Related to this is the issue of

overlapping top-level instances, which our algorithm also does not detect. Consider

for example

(∀a.C [a]) ∧ (∀a.E a ⇒ C [a]) � C [Int]

The simplifier would non-deterministically attempt to use one of the two top-level

axioms, but only one of two would work, as there is no way to discharge E Int.

Excluding such overlapping definitions in the specification is possible though

somewhat heavy. We could require that no given class constraint, or no instance of

top-level axiom, matches an instance of another top-level axiom, but the following

example demonstrates that the correct condition is trickier than that näıve approach.

Consider the top-level axiom schemes

Q = (∀a.D [a]) ∧ (∀a.F [a] ∼ [a])

and a local given constraint Q = D (F [a]). Note that no instance of top-level axiom

exactly matches Q but, rather, there exist an instance of a top-level axiom scheme

that can be rewritten to Q using the top-level axioms.

Hence, we give the following revised definition of consistency (Definition 6.1).

Definition 7.1 (Revised non-overlapping consistency) A constraint Q ∧ Q is non-

overlapping consistent iff

• It satisfies Definition 6.1, and

• For all ground substitutions θg such that Q ∧ θgQ satisfies Definition 6.1, we

have:
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1. If D τ ∈ θgQ then for all axiom schemes ∀a.Q ⇒ D ξ ∈ Q there is no

substitution for a , ϕ such that Q ∧ θgQ � ϕ(ξ) ∼ τ, and

2. If (∀a.Q ⇒ D ξ) ∈ Q and D τ is a ground instantiation of this axiom then

for all other axiom schemes (∀a ′.Q ′ ⇒ D ξ
′
) ∈ Q there is no substitution ϕ

such that Q ∧ θgQ � ϕ(ξ
′
) ∼ τ.

We conjecture that our simplifier is complete for the notion of consistency of

Definition 7.1, but have not formally carried out the proof.

Conjecture 7.1 The simplifier of Figure 19 is guess-free complete (Definition 6.2) for

the notion of consistency given in Definition 7.1.

7.7 Termination

The ↪→ judgement always terminates in the absence of top-level axioms Q, but it

is obvious that top-level axioms threaten termination. After all, if we permitted the

programmer to write

type instance F a = F a

then we could hardly expect the type inference engine to terminate. So the question

becomes: what restrictions on the top-level axioms suffice to guarantee termination?

For equality axiom schemes, here are sufficient (albeit quite restrictive) conditions

identified in previous work (Schrijvers et al., 2008a).7

Definition 7.2 (Termination Conditions for Equality Axiom Schemes) An equality

axiom scheme ∀ā . F ξ̄ ∼ τ satisfies the termination conditions iff τ is either of the

form ξ, or it is of the form G ξ̄′ such that

1. the sum of the number of datatype constructors and schema variables in the

right-hand side is smaller than the similar sum in the left-hand side, and

2. the right-hand side has no more occurrences of any schema variable than the

left-hand side.

These conditions are quite restrictive. For example, they rule out the following

declaration:

type instance F [x] = [F x]

The declaration appears perfectly reasonable but, if permitted, it can cause the

algorithm to diverge. Consider this type signature:

f :: (F [a] ~ a) => ...

This signature will give rise to a given constraint [F a] ∼ a . Canonicalisation

reorients the constraint and flattens it to a ∼ [β] ∧ F a ∼ β. Binary interaction of

the first with the second constraint yields a ∼ [β] ∧ F [β] ∼ β. Note that the latter

7 Where it is called the Strong Termination Condition.
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constraint is a variant of the original one, and the process starts again from scratch;

it does not terminate.

Follow-up work (Schrijvers et al., 2008a) introduces more relaxed conditions,

which do not always guarantee termination, but have a completeness trade-off.8 As

the intricacies of termination are not the central topic of this paper, we refer the

reader to previous work for more details. We are not aware of any related work

that detects non-termination under more relaxed conditions without compromising

completeness.

We apply similar restrictions on type class schemes, also based on previous

work (Sulzmann et al., 2007b).

Definition 7.3 (Termination Conditions for Type Class Axiom Schemes) An equality

axiom scheme (∀a.Q ⇒ D ξ) satisfies the termination conditions iff Q is a conjunction

of type class constraints D’ ξ
′
such that

1. the sum of the number of datatype constructors and schema variables in ξ
′

is

smaller than the similar sum in ξ, and

2. ξ
′
has no more occurrences of any schema variable than ξ.

Note that equality constraints are not allowed to occur in type class scheme

contexts; nor are open type families. So, while equality schemes may affect both

equality and type class constraints, type class schemes only affect type class

constraints.

We conjecture that termination is preserved with somewhat more liberal conditions

that do allow type equality constraints in type class scheme contexts.

Definition 7.4 (Conjectured Termination Conditions) An equality axiom scheme

(∀a.Q ⇒ D ξ) satisfies the termination conditions iff Q is either a conjunction of

type class constraints D’ ξ
′
such that

1. the sum of the number of datatype constructors and schema variables in ξ
′

is

smaller than the similar sum in ξ, and

2. ξ
′
has no more occurrences of any schema variable than ξ.

or it is an equality constraint whose type variables also occur in ξ and it either has

the form Fξ
′ ∼ τ satisfying the Termination Conditions for Equality Axiom Schemes

or the form ξ1 ∼ ξ2.

The restriction on the equality constraints is essential to avoid a scenario similar

to the problematic one above:

instance (F [x] ~ [F x], F [x] ~ x, C x) => C [x]

f :: (C [b]) => ...

8 Completeness, in the sense of how many constraints can be fully discharged by the solver.
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The first type equality constraint in the type class instance context clearly does not

satisfy the above condition. Consider the constraint C [b] in the type signature

of f. The instance scheme reduces it to F [b] ∼ [F b] ∧ F [b] ∼ b ∧ C b.

Canonicalisation reorients and flattens the first constraint to F [b] ∼ [β] ∧ F b ∼ β.

Binary interaction of the first of the flattened constraint with the other one yields,

after canonicalisation, b ∼ [β]. Interaction with the remaining type class constraints

yields C [β], which is a variant of the original type class constraints, leading to

divergence.

Proving (or disproving) that Definition 7.4 rules out all cases of non-termination is

an important challenge for future work. Currently, in order to guarantee termination,

we are forced to impose quite restrictive conditions on top-level axioms. In practice,

it may be more attractive to drop these conditions (perhaps selectively), and instead

accept non-termination, much as we do for executable programs themselves. Finally,

equally important future work is the study of the complexity of the algorithm,

for which we cannot make any formal claims in this paper. In practice, our

implementation is sufficiently fast but there exist a few type-family intensive

programs that give rise to an exponential number of constraint solving steps.

8 Implementation

We have fully implemented OutsideIn(X) in a released version of the Glasgow

Haskell Compiler (GHC, release 7.0). GHC supports many type system extensions

beyond those described here, including: scoped type variables, kind signatures,

unboxed types, type-class defaults, higher rank types, impredicative polymorphism,

associated types, overlapping instances, functional dependencies and implicit pa-

rameters. Happily, the interaction between these features and the OutsideIn(X)

constraint solver is minimal, with the notable exception of functional dependencies

and implicit parameters. Even they were accommodated without much trouble

although the details are beyond the scope of this paper.

8.1 Evidence

When solving type-class constraints, GHC’s type checker transforms the program

by adding extra ‘evidence parameters’ to overloaded functions, and extra ‘evidence

arguments’ to applications of such functions. For example, consider

square :: Num a => a -> a

square x = x * x

then the type checker will add an implicit parameter to square, and an implicit

argument to the call of (*) so that the definition is transformed to this:

square :: Num a -> a -> a

square d x = (*) d x x

Here, d is a tuple of the methods of the Num class.
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GHC extends this evidence idea to all constraints. When solving a constraint,

it generates an evidence term that encodes the proof and decorates the program

with this evidence term, a process known as elaboration. This decoration is not ad

hoc: GHC translates the original implicitly typed Haskell program into an explicitly

typed program in a well-defined core language FC2 (Sulzmann et al., 2007a; Weirich

et al., 2010), an extension of System F. Type checking FC2 is easy and fast, involving

none of the complexities of this paper. In a perfect world, there would be no point

in type-checking the intermediate program, but in practice many, many compiler

bugs are caught by such a check.

8.2 Brief sketch of the implementation

GHC’s implementation is heavily influenced by the need to generate evidence,

but the code still directly reflects the structure of the solver described in this

paper:

• A single pass generates constraints, just as described in Section 5.4. The type

checker deals with a very large source language: the syntax tree has dozens of

data types and hundreds of constructors. As a result, the constraint generator

has many lines of code, but it is mostly very simple. Moreover, it required

very little alteration when we switched to OutsideIn(X). For example, the

bidirectional propagation of type information needed to support higher rank

inference remains untouched (Peyton Jones et al., 2007).

• The main practical refinement to the constraint generator is that it performs

on-the-fly unification using side effects, just like a conventional Damas–Milner

type inference algorithm (Peyton Jones et al., 2007). In the vastly common

case, this unifier can solve the equality constraint on the spot, but if it has any

difficulty – for example if a type family is involved or if it is asked to unify

a variable not belonging in the current set of touchable variables – it bales

out by adding a new, unsolved, equality constraint to the accumulating set of

constraints.

• A single module, TcSimplify, solves implication constraints, using the generic

algorithm described in Section 5.5.

• It in turn needs to solve flat constraints, so here the solver has to know the

specifics of the constraints (Section 7). The first step is to canonicalise each

constraint, as described in Section 7.4.1, implemented in TcCanonical. The

structure of canonical constraints is so useful for the rest of the solver that

GHC defines a separate data type for them, used only internally in the solver.

• Then, the canonical constraints are solved using the pairwise interaction

rules of Section 7.4.2. The interaction solver, implemented by TcInteract,

works by maintaining an inert set of (canonical) constraints that have no

pairwise interactions, and a work set of un-processed (canonical) constraints.

We repeatedly take a constraint from the work set, interact it with each

member of the inert set, and add any ‘reaction products’ back to the work

set.
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Lines of: Code Comments

Constraint generation
TcAnnotations.lhs 9113
TcArrows.lhs 941991
TcBinds.lhs 076785
TcClassDcl.lhs 972233
TcDefaults.lhs 1416
TcDeriv.lhs 718607
TcExpr.lhs 467376
TcForeign.lhs 341212
TcGenDeriv.lhs 429570,1
TcHsType.lhs 405445
TcInstDcls.lhs 428144
TcMatches.lhs 272083
TcPat.lhs 985474
TcRnDriver.lhs 007379
TcRules.lhs 9626
TcSplice.lhs 476946
TcTyClsDecls.lhs 776478
TcTyDecls.lhs 262201

TOTAL 7,702 8,377

Constraint solver
TcSimplify.lhs 586085
TcInteract.lhs 852 1,183
TcUnify.lhs 608885
TcCanonical.lhs 065535

TOTAL 2,555 3,234

Infrastructure (type definitions, monads, error reporting)
Inst.lhs 282523
FamInst.lhs 801401
TcEnv.lhs 743893
TcErrors.lhs 392085
TcHsSyn.lhs 073447
TcType.lhs 676547
TcMType.lhs 308948
TcSMonad.lhs 233425
TcRnTypes.lhs 536725
TcRnMonad.lhs 754247

TOTAL 5,538 4,303

GRAND TOTAL 15,795 15,914

Fig. 25. GHC’s type checker.

Figure 25 summarises the line count for the type checker. The constraint-generation

code is voluminous but simple. The higher ratio of comments to code in the

constraint solver reflects its relative subtlety.
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Compared to the implementation of GHC 6.12, the total size of code did not

substantially change. There, the total lines of code were 16,222 and total lines of

comments were 15,656. On the other hand, in GHC 6.12 we had:

GHC 6.12 constraint solver

TcSimplify.lhs 1,151 2,165

TcTyFuns.lhs 1,004 685

TcUnify.lhs 1,123 938

TOTAL 3,278 3,788

Putting these numbers side-to-side with the 2,555 lines of code of the new constraint

solver indicates that the new solver is much smaller (albeit still substantial). In

addition, it is now more robust to new source-language constructs.

9 Related work

There has been a significant volume of related work on constraint-based type systems

and type inference for advanced type system features, a fragment of which we discuss

in the rest of this Section.

9.1 Constraint-based type inference

There is a very long line of work in Hindley–Milner derivatives, parameterised

over various constraint domains (Jones, 1992; Odersky et al., 1999; Sulzmann et al.,

1999; Sulzmann, 2000). Pottier & Rémy (2005) give a comprehensive account of type

inference for HM(X) (Hindley–Milner, parameterised over the constraint domain

X). To our knowledge, our presentation is the first one that deals with local

assumptions introduced by type signatures and data constructors, and where those

local assumptions may include type equalities. At the same time, a drawback of our

system is that it does not handle local let-generalisation, an essential ingredient of

HM(X).

Simonet & Pottier (2007) study type inference for GADTs, where local GADT type

equalities may be introduced as a result of pattern matching. They propose a solution

that does generalisation over local let-bound definitions, by abstracting over the full

generated constraint. We have seen that this approach has practical disadvantages,

though theoretically appealing and technically straightforward. Interestingly, since

ML is call-by-value the constraints arising from a let-bound definition have to be

satisfiable by some substitution, since the expression will be evaluated independently

of whether it will be called or not. By contrast, in Haskell, we may postpone

the satisfiability check of the generated constraints all the way to the call sites of a

definition. In the case of our previous work on type inference for GADTs (Schrijvers

et al., 2009) such a satisfiability check happens implicitly since at local let-bound

definitions, the constraint generation procedure calls the solver to discharge the

generated constraints by means of substitutions.

The pioneering work of Mark Jones on qualified types (Jones, 1992) is closely

related to our approach, except for the fact that we additionally have to deal with

type equalities and local assumptions.
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9.2 The special case of GADTs

In the special case of GADTs, there has been a flurry of papers on inference

algorithms to support them in a practical programming language. One approach is

to assume that the program is fully type-annotated, i.e. each sub-expression carries

explicit type information. Under this (strong) assumption, we speak of type checking

rather than inference. Type checking boils down to unification, which is decidable.

Hence, we can conclude that type checking for GADTs is decidable. For example,

consider Cheney & Hinze (2003) and Simonet & Pottier (2007).

On the other hand, type inference for un-annotated (or partially annotated)

GADT programs turns out to be extremely hard. The difficulty lies in the fact

that GADT pattern matches bring into scope local type assumptions. Following

the standard route of reducing type inference to constraint solving, GADTs require

implication constraints to capture the inference problem precisely (Sulzmann et al.,

2008). Unification is no longer sufficient to solve such constraints. We require more

complicated solving methods, such as constraint abduction (Maher, 2005) and E-

unification (Gallier et al., 1992). It is fairly straightforward to construct examples,

which show that no principal solutions (and therefore, no principal types) exist.

How do previous inference approaches tackle these problems? Apart from the

aforementioned work of Simonet & Pottier (2007), Sulzmann et al. (2008) go the

other direction, by keeping constraints (in types) simple, and instead apply a very

powerful abductive solving mechanism, inspired by Maher’s work (Maher, 2005).

Compared to our simplifier principality conditions, Figure 15, Sulzmann et al.

propose a more powerful form of constraint abduction and introduce the weaker

fully maximally general condition where Qgiven ∧ Qwanted and Qgiven ∧ Qresidual

are equivalent. Simplified principal solutions Qresidual ∧ Eθ are fully maximally

general but the other direction does not hold in general. For example, consider

Qgiven = (α ∼ Bool) and Qgiven = (b ∼ Bool). Then, Qresidual = (α ∼ b) is fully

maximally general but violates the simplifier principality conditions.

9.2.1 Practical compromises for GADT type inference

Since tractable type inference for completely un-annotated GADT programs is

impossible, it becomes acceptable to demand a certain amount of user-provided

type information. We know of three well-documented approaches:

Pottier & Régis-Gianas (2006) stratify type inference into two passes. The first

figures out the ‘shape’ of types involving GADTs, while the second performs more-or-

less conventional type inference. Régis-Gianas and Pottier present two different shape

analysis procedures, the W and Z systems. The W system has similar expressiveness

and need for annotation as in Peyton Jones et al. (2006). The Z system on the

other hand has similar expressiveness as our system, with a very aggressive iterated

shape analysis process. This is reminiscent of our unification of simple constraints

arising potentially from far-away in the program text, prior to solving a particular

implication constraint. In terms of expressiveness, the vast majority of programs

typeable by our system are typeable in Z but we conjecture that there exist programs
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typeable in our system not typeable in Z, because unification of simple (global)

constraints may be able to figure more out about the types of expressions than

the preprocessing shape analysis of Z. On the other hand, Z lacks a declarative

specification and therefore requires the programmer to understand the intricacies of

shape propagation.

Peyton Jones et al. (2006) require that the scrutinee of a GADT match has a

‘rigid’ type, known to the type checker ab initio. A number of ad hoc rules describe

how a type signature is propagated to control rigidity. Because rigidity analysis is

more aggressive in our system, we type many more programs than in Peyton Jones et

al. (2006), including the carefully chosen Example 7.2 from Pottier & Régis-Gianas

(2006). On the other hand, a program fails to type check in our approach if the type

of a case branch is not determined by some ‘outer’ constraint:

data Eq a b where { Refl :: forall a. Eq a a }

test :: forall a b. Eq a b -> Int

test x = let funny_id = \z -> case x of Refl -> z

in funny_id 3

By contrast this program is typeable in Peyton Jones et al. (2006). Arguably, though,

this program should be rejected because there are several incomparable types for

funny_id (in the unrestricted system of Figure 10), including ∀c . c → c and a → b.

The previous implementation of GHC (6.12) was a slight variation that requires

that the right-hand side of a pattern match clause be typed in a rigid environment.9

Hence, it would reject the previous example. Our system is strictly more expressive

than this variation:

test :: forall a b. Eq a b -> Int

test x = (\z -> case x of Eq -> z) 34

The above program would fail to type check in previous versions of GHC, as the

‘wobbly’ variable z cannot be used in the right-hand side of a pattern match clause,

but in our system it would be typeable because the ‘outer’ constraint forces z to get

type Int.

In both approaches, inferred types are maximal, but not necessarily principal in

the unrestricted natural GADT type system. The choice for a particular maximal

type over others relies on the ad hoc rigidity analysis or shape pre-processing. By

contrast, in our system only programs that enjoy principal types in the unrestricted

type system are accepted.

Moreover, in both approaches, the programmer is required to understand an

entirely new concept (shape or rigidity, respectively), with somewhat complex and

ad hoc rules (e.g. Figure 6 inPottier & Régis-Gianas, 2006). Nor is the implementation

straightforward; e.g., GHC’s implementation of Peyton Jones et al. (2006) is known

to be flawed in a non-trivial way.

9 GHC’s algorithm is described in an Appendix to the online version of that paper, available at:
http://research.microsoft.com/people/simonpj/papers/gadt
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Lin and Sheard (2010a) recently presented point-wise GADTs, a type system for

GADTs where unification in GADT pattern matching is replaced by a unidirectional

matching procedure between the scrutinee type and the data constructor type. The

authors claim that limiting the power of unification in GADT pattern matching

increases predictability and gives rise to more intuitive behaviour and error messages.

9.3 The special case of multi-parameter type classes

Sulzmann et al. (2006a) describe an implication solver for multi-parameter type

classes. In the multi-parameter type class setting, local constraints may only include

type classes and not type equations. The implication solver described in Sulzmann

et al. (2006a) is more powerful and uses a form of abduction to infer the missing

constraints to solve implication constraints. The consequence is that Sulzmann et al.

require stronger conditions imposed on type classes to guarantee that their solver

yields principal solutions if successful.

9.4 Solving equalities involving type families

Our solver is based on ideas from completion and congruence closure in term-rewriting

systems (Beckert, 1994; Kapur, 1997; Bachmair & Tiwari, 2000; Nieuwenhuis &

Oliveras, 2005) and is an improvement and simplification of previous work by

Schrijvers et al. (2008a). That work presented a completion-based solver, where the

top-level set of axioms was transformed to a strongly normalising and confluent

rewrite system, along with the current given equations. Our algorithm streamlines

the completion, achieved by flattening, decomposing and orienting, in the actual

solving procedure, and hence, it provides a more uniform approach to the problem.

Moreover, the details of flattening and canonical constraints slightly differ between

the two papers. Yet another difference is that the simplifier in this paper is aware

of the touchable variables, which significantly simplifies the previous treatment of

unification variables. Finally, this paper gives the complete story of how the simplifier

for type families plugs into in a general-purpose constraint-based type system with

local assumptions, required for the OutsideIn(X) approach.

Finally, closely related to this work is the Chameleon system described in Sulzmann

et al. (2006b). Chameleon makes use of the Constraint Handling Rules (CHR)

formalism (Frühwirth, 1998) for the specification of type class relations potentially

involving functional dependencies. CHR is a committed-choice language consisting

of constraint rewrite rules. Using CHR rewrite rules, we can model open type

functions. As in the solver of this paper (but not in Schrijvers et al. 2008a), the

CHR type inference strategies (Stuckey & Sulzmann, 2005) mix completion and

solving. On the other hand, whereas our solver is designed with evidence generation

in mind, the issue of evidence generation has not been fully addressed for CHR yet.

9.5 Let generalisation for units of measure and type families

Kennedy’s system of units of measure (Kennedy, 1996) was briefly sketched in

Section 2 and demonstrates related problems with generalising let-bound
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definitions. Lacking qualified types, Kennedy adopted NoQual (Section 4.2.4) but

then, quite unexpectedly, discovered a type inference completeness problem:

div :: forall u1 u2.

num (u1*u2) -> num u1 -> num u2

main x = let f = div x

in (f this, f that)

In the program above, div is a typed division function. Let us assume that x gets

type num u in the environment, for some unknown u. From type checking the body

of f, we get the constraint u ∼ u1 ∗ u2 for some unknown instantiations of div. If

the unifier näıvely substitutes u away for u1 ∗ u2, those variables become bound in

the environment, and hence, we are not allowed to apply f polymorphically in the

body of the definition.

Kennedy found a technical fix, by exploiting the fact that units of measure happen

to form an Abelian group, and adapting an algebraic normalisation procedure to

types. For example, the normal form type for f above is:

forall u. num u -> num (u/u1)

His technique is ingenious, but leads to a significant complexity burden in the

inference algorithm. More seriously, it does not generalise because it relies on

special algebraic properties of units of measure. Naturally, his solution fails for

arbitrary type functions.

Kennedy’s problematic situations are encodable in our case through the use of

type families. Even worse, for type families case NoQual is not an option for one

extra reason: the order of solving the constraints may affect typeability. Consider:

type instance F Int b = b

let f x = (let h y = e1 in 42, x + 42)

Assume that x is assigned a unification variable α and y is assigned β, respectively,

and assume that e1 yields the constraint F α β ∼ Int. If we first attempt to solve

this constraint to generalise h, we will simply fail, as we can’t quantify over it. On the

other hand, if we first solve the constraint from x + 42, we may learn that α 
→ Int,

which can then be used to rewrite the constraint from e1 to F Int β ∼ Int. This,

in turn, is solvable by using the top-level axiom, and h is perfectly well-typed! Since

NoQual is a non-option and quantifying freely means we have to defer unifications,

we see that type families even further necessitate our abandoning of local let

generalisation.

An interesting possibility would be to allow programmers to extend the constraint

canonicalisation rules with domain-specific algebraic normalisation procedures, but

we have not carried out this experiment.

9.6 Ambiguity

There has been work on addressing the ambiguity problem, described earlier in

Section 6, by imposing conditions on the types or the typing derivations of a
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constraint-based type system (Nipkow & Prehofer, 1995). Jones (1992) identified a

type of the form ∀a.Q ⇒ τ as unambiguous iff all quantified variables a appear in

τ. His proposal was to reject those programs whose more general type is ambiguous,

and this seems to work for qualified types, in the absence of local constraints, type

signatures and type families.

In the presence of more complex constraints and local type signatures, this

definition is no longer sufficient. Stuckey & Sulzmann (2005) employ a more

elaborate ambiguity condition than Jones.

Definition 9.1 (Stuckey–Sulzmann unambiguous types) A type ∀a.Q ⇒ τ is unam-

biguous in Q, iff for some fresh set of variables b in bijection with a , we have that

Q ∧ Q ∧ ([a 
→ b]Q) ∧ (τ ∼ [a 
→ b]τ) � a ∼ b

In other words, the equality between two instantiated types implies equality of instan-

tiations.

For example, consider the type: ∀ab . F a ∼ b ⇒ Int → a and a renaming

[a 
→ a1, b 
→ b1]. Then, we must show that

F a ∼ b ∧ F a1 ∼ b1 ∧ a ∼ a1 � (a ∼ a1) ∧ (b ∼ b1)

One important reason for extending Jones’ definition is that there even exist entirely

constraint-free types that are ambiguous. Take, for example ∀a . F a → Int.

Assuming a renaming [a 
→ a1], it does not follow that:

F a1 ∼ F a � a1 ∼ a

as type functions need not be injective. In practical terms, this means that we

can never apply a function with that type to a value of type, say, F Int. To get

completeness by avoiding ambiguity, Stuckey and Sulzmann require that every sub-

expression in their type system must have a principal type which is unambiguous.

Such a condition is rather heavyweight as it involves a quantification over all possible

types of every subexpression in the program; but it’s the only condition we know

of in the literature that effectively eliminates ambiguity. Adapting it to our setting

is not entirely straightforward as many subexpressions due to local assumptions do

not have principal quantified types and we would probably have to employ, on top

of those conditions, an Outside-In flavoured type system (Schrijvers et al., 2009). It

remains therefore open whether it is possible to restrict the type system specification

of Figure 10 so that we obtain sound and complete type inference.

Finally, ambiguity seems also related to the discussion about type functions and

type classes being defined under an ‘open’ or ‘closed’ world assumption (Sulzmann,

2000). For example, if the set of axioms was considered fixed (closed world), one

could consider more elaborate search-based strategies that would more effectively

detect ambiguity.
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9.7 Is the emphasis on principal types well justified?

Although from a software engineering viewpoint principal types in the natural type

system are extremely useful, they may be less desirable from a program correctness

viewpoint – an issue that we have seen mentioned in Lin & Sheard (2010b). For

instance, consider the program below.

data R a where

RInt :: Int -> R Int

RBool :: Bool -> R Bool

RChar :: Char -> R Char

flop1 (RInt x) = x

Function flop1 can be assigned two types: ∀a.R a → a or ∀a.R a → Int neither

of which is an instance of the other; however, there is a third type that is arguably

more desirable and that type is R Int → Int. The reason that this type is more

desirable for flop is because it rules out applications of flop to values of type

R Bool or R Char, which would result in runtime errors.

Though this is valid for flop1, what happens in the following variation?

flop2 (RInt x) = x

flop2 (RBool x) = x

By the same reasoning, the most desirable type for flop2 would be a type like

R a → a but where a must be constrained to be either Int or Bool. Unfortunately,

ordinary polymorphic types are too weak to express this restriction and we can only

get ∀a.R a → a for flop2, which does not rule the application of flop to values

of type R Char. In conclusion, giving up on some natural principal types in favour

of more specialised types that eliminate more pattern match errors at runtime is

appealing but does not quite work unless we consider a more expressive syntax of

types. Furthermore, it is far from obvious how to specify these typings in a high-level

declarative specification.

10 Future work

We have already implemented a variation of the algorithm and the solver described

in this paper in GHC 7.

Our ambitious plan is to eventually support extensibility of a type inference system

that supports local assumptions with new forms of constraints and interactions with

each other. The implication constraint infrastructure sets the ground for this but

there remain many open problems to address in future work, such as how to combine

multiple constraint domains, how to specify language extensions and have existing

library code use them and how to ensure type safety.
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