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COUNTING IN UNCOUNTABLY CATEGORICAL PSEUDOFINITE
STRUCTURES

ALEXANDER VAN ABEL

Abstract. We show that every definable subset of an uncountably categorical pseudofinite structure
has pseudofinite cardinality which is polynomial (over the rationals) in the size of any strongly minimal
subset, with the degree of the polynomial equal to the Morley rank of the subset. From this fact, we show
that classes of finite structures whose ultraproducts all satisfy the same uncountably categorical theory are
polynomial R-mecs as well as N-dimensional asymptotic classes, where N is the Morley rank of the theory.

§1. Introduction. This article studies nonstandard cardinalities of definable sets
in uncountably categorical pseudofinite structures. An L-structure M is pseudofinite
if for every L-sentence ϕ, ifM |= ϕ then there is a finite L-structureM0 such that
M0 |= ϕ. If M satisfies this definition with the additional stipulation that M0 is a
substructure of M, then M has the finite model property.

Equivalently, a pseudofinite structure is one which is elementarily equivalent to
an ultraproduct of finite structures. An ultraproduct of finite structures carries with
it a notion of cardinality, which takes values in an ultrapower of the reals—roughly,
the pseudofinite cardinality of a definable set in an ultraproduct is the ultraproduct
of the cardinalities of the “slices” of the definable set in the various finite structures.
We make this definition precise in Section 3.

In Pillay’s 2014 note “Strongly minimal pseudofinite structures” [7], he proves the
following result:

Fact 1.1 [7, Theorem 1.1]. Let D be a saturated pseudofinite strongly minimal
structure, and let q ∈ N� be the pseudofinite cardinality of D (written q = |D|). Then:

1. For any definable (with parameters) set X ⊆ Dn, there is a polynomial PX (x)
with integer coefficients and positive leading coefficient such that |X | = PX (q).
Moreover RM (X ) = degree(PX ).

2. In fact, for any L-formula ϕ(x̄, ȳ), there are a finite number P1, ... , Pk of
polynomials over Z, and formulas�1(ȳ), ... , �k(ȳ), such that the�i(ȳ) partition
ȳ-space, and moreover for any b̄, |ϕ(x̄, b̄)(D)| = Pi(q) iff |= ϕi(b̄).

At the end of his paper, Pillay makes this remark: “It is also natural to ask what is
the appropriate level of generality of the precise counting result in Theorem 1.1.
Firstly there should be no problem obtaining a similar result for pseudofinite
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2 ALEXANDER VAN ABEL

ℵ1-categorical theories, where again any definable set will have cardinality an integral
polynomial in q where q is the cardinality of a given strongly minimal set.”

In this paper, we give a proof of Pillay’s suggested result, with the minor alteration
that the polynomial has rational coefficients rather than just integers, in Theorem 5.1:

Theorem. Let T be an uncountably categorical theory in the language L. Let
�(v, w̄) be an L-formula. Then for every L-formula ϕ(x1, ... , xn, ȳ), there are finitely
many polynomials F1(X ), ... , Fr(X ) ∈ Q[X ] and L-formulas �1(ȳ, w̄), ... , �r(ȳ, w̄)
such that for all pseudofinite ultraproducts M and all d̄ ∈M such thatD = �(M, d̄ ) is
strongly minimal, we have that for all b̄ ∈M |ȳ|, the pseudofinite cardinality |ϕ(Mn, b̄)|
is Fi(|D|) for some i, and furthermore for each i the set

{b̄ ∈M : |ϕ(Mn, b̄)| = Fi(|D|)}

is definable over X by �ϕ,i(ȳ, d̄ ).
Additionally, if b̄ satisfies �ϕ,i(ȳ, d̄ ), then the degree of the polynomial Fi(X ) is the

Morley rank of the set ϕ(Mn, b̄).

We show that the stipulation that the coordinates are rational rather than integers
is necessary in Example 6.1. We observe that by letting D be any strongly minimal
subset of M, we obtain a direct analogue of Fact 1.1; we express our theorem in
the stronger but more cumbersome form above in order to apply the theorem to
the sequences of finite structures (M� : � ∈ Λ) for which ultraproducts

∏
�→UM�

satisfy T.
Here we briefly explain our motivations for finding and proving this result.

In the paper [4], the authors demonstrate a number of results of the flavor that
conditions on pseudofinite dimension in a pseudofinite ultraproduct (pseudofinite
dimension is information derived from the pseudofinite cardinalities of the definable
subsets of a structure) imply stability-theoretic properties of the structure, such as
simplicity and supersimplicity. In one such result, the authors show that if the
pseudofinite dimension satisfies a property they refer to as “strong attainability”
or “(SA)” for short, then the structure has a supersimple theory. The authors of
that paper demonstrate that this result does not reverse, by providing an example
of a pseudofinite ultraproduct with supersimple theory which does not satisfy (SA),
although there is an elementarily equivalent pseudofinite ultraproduct which does.

In [8], we give an example of a supersimple pseudofinite theory T such that no
pseudofinite ultraproduct satisfying T has the property (SA). As a general project,
we are interested in finding converses to the results in [4], by which we mean finding
conditions on T which imply that conditions such as (SA) must hold, either in
some pseudofinite ultraproduct or all pseudofinite ultraproducts satisfying T. In
this paper, we obtain one such condition on T—uncountable categoricity—as the
conclusion of our Main Theorem implies the condition (SA).

In addition to that paper, this work also connects with the notions of
multidimensional exact class, as developed in [9], and N-dimensional asymptotic
class as developed in [3]. We prove that uncountably categorical pseudofinite theories
give rise to both types of classes in Propositions 6.5 and 6.10, summarized in the
following theorem:

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jsl.2024.29
Downloaded from https://www.cambridge.org/core. IP address: 3.141.25.201, on 06 Oct 2024 at 15:16:30, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jsl.2024.29
https://www.cambridge.org/core


COUNTING IN UNCOUNTABLY CATEGORICAL PSEUDOFINITE STRUCTURES 3

Theorem. Let T be an uncountably categorical theory, and let (M� : � ∈ Λ) be a
class of finite structures such thatM :=

∏
UM� |= T for any ultrafilter U on Λ. Then

(M� : � ∈ Λ) is both a multidimensional exact class and an N-dimensional asymptotic
class, where N is the Morley rank of M.

§2. Notation. Throughout this paper, L denotes an arbitrary first-order language.
For a tuple x̄, the expression |x̄| denotes the length of the tuple.
For an L-formula ϕ(x̄, ȳ), an L-structure M, a subset X of M |x̄| and a

tuple b̄ ∈M , the expression ϕ(X, b̄) denotes the set {ā ∈M |x̄| : ā ∈ X and
M |= ϕ(ā, b̄)}.

Formulas ϕ1(v̄), ... , ϕn(v̄) are said to partition M |v̄| when the non-empty sets
ϕi(M |v̄|) form a partition ofM |v̄| (we allow some of sets the ϕi(M |v̄|) to be empty).

The word “rank” in this paper will always refer to Morley rank. We will denote
the Morley rank of a definable set X byMR(X ).

§3. Pseudofinite cardinality.

Definition 3.1. A theory T with infinite models is pseudofinite if every sentence
� implied by T has a finite model M such thatM |= �.

Equivalently, T is pseudofinite if there is some sequence of finite L-structures
(M� : � ∈ Λ) and some ultrafilter U on Λ such that the ultraproduct

∏
�→UMi is a

model of T.

In this paper, the term “pseudofinite ultraproduct” will denote a model of the
form

∏
�→UMi for some sequence of finite L-structures (M� : � ∈ Λ) and some

ultrafilter U on Λ
One nice property of ultraproducts of finite structures is that they come with

a notion of subset “cardinality”. Let X be a definable subset of an ultraproduct
M =

∏
�→UM� of finite structures. Then X is the ultraproduct

∏
�→U X�, where

X� ⊆M� is defined by the same formula. Each X� has a cardinality, being a finite
set, and so we can say that X has cardinality (|X�|)�→U , an element of the ultrapower
R� =

∏
�→U R. If X is finite then |X | will agree with the counting cardinality of X ;

if X is infinite then |X | will be an infinite hyperreal in R�.
We can formalize this notion via the following construction, where we pass from

our original language L to a two-sorted expansion, where cardinality takes values
in the second sort. We use the same formalism as in Section 2 of [4].

Definition 3.2. Let L be a first-order language. We define the expansion L+ to
be a two-sorted language. The home sort H has the language L. The second sort
OF is an ordered field language (0, 1, –,+, ·, <). L+ also has, for every L-formula
ϕ(x̄, ȳ), a function symbol fϕ(x̄,ȳ) : H|ȳ| → OF.

Definition 3.3. Let (M� : � ∈ Λ) be a sequence of finite L-structures and let
U be an ultrafilter on Λ. Let M be the ultraproduct

∏
�→UM�. We define the

L+-expansion M+ by expanding each M� to a L+-structure M+
� . In M+

� , we
define the ordered field sort OF to be the ordered field of real numbers R. For an
L-formula ϕ(x̄, ȳ) we define fϕ(x̄,ȳ) by fϕ(x̄,ȳ)(b̄) = |ϕ(M�, b̄)|, the cardinality of

the set ϕ(M�, b̄), for b̄ ∈M |ȳ|
� .
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4 ALEXANDER VAN ABEL

Having defined each M+
� , we let M+ be the ultraproduct of the sequence of

L+-structures (M+
� : � ∈ Λ) with respect to U .

For an L-formula ϕ(x̄, ȳ), we define the pseudofinite cardinality of ϕ(M, b̄) to be
the hyperreal fϕ(x̄,ȳ)(b̄) ∈ R� in the L+-expansionM+. We denote this hyperreal as
|ϕ(M, b̄)|.

One benefit of this construction (not used in this paper, but used in, e.g., [4]) is
that the ultraproductM+ is 	1-saturated not just in L but in the full language L+.
Later on in this paper we show that if M is an uncountably categorical structure,
then the two-sorted structureM+ is no more complex than the multi-sorted disjoint
union structure where one sort is M, the other sort is an ultrapower of the reals R�,
with no model-theoretic interaction between the two (Proposition 6.2).

We remark that the pseudofinite cardinality |X | of a pseudofinite ultraproduct M
depends not just on the L-structure of M, but on the sequence of finite L-structures
(M� : � ∈ Λ) and ultrafilter U on Λ such thatM =

∏
�→UM�.

The following lemma is the combinatorial core of our main theorem. This
lemma lets us express the cardinality of X as a rational expression in terms of the
cardinalities of subsets of a set Y and cardinalities of the fibers of a definable relation
R(x, y) between X and Y, so long as there are finitely many such cardinalities.

Lemma 3.4. Letϕ(x̄, ȳ, z̄) be a formula. Let c̄ ∈M |z̄| be parameters. Suppose that
there are finitely many hyperreals A�1, ... , A

�
n such that for all b̄ ∈M |ȳ| there is an i

such that ϕ(M |x̄|, b̄, c̄) = A�i . For each i, let Zi = {b̄ ∈M |ȳ| : |ϕ(M |x̄|, b̄, c̄)| = A�i }
(note that Zi is definable in L+).

1. The equation

|ϕ(M |x̄|+|ȳ|, c̄)| =
n∑

i=1

A�i · |Zi |

holds inM+.
2. Suppose in addition that there is a single hyperreal B� such that for all ā ∈M |x̄|,

if ϕ(ā,M |ȳ|, c̄) �= ∅ then |ϕ(ā,M |ȳ|, c̄)| = B�. Then the equation

|{ā ∈M |x̄| :M |= ∃ȳϕ(ā, ȳ, c̄)}| =

∑n
i=1A

�
i · |Zi |
B�

holds inM+.

Proof. The equation in Statement 1 is easily seen to hold in the finite case. Each
A�i · |Zi | is the cardinality of the set {(ā, b̄) ∈M |x̄|+|ȳ| : b̄ ∈ Zi andM |= ϕ(ā, b̄)}.

To prove Statement 2, note that under our special assumption, Statement 1,
with the roles of x̄ and ȳ switched, tells us that |ϕ(M |x̄|+|ȳ|, c̄)| = B� · |{ā ∈
M |x̄| : |ϕ(ā,M |ȳ|, c̄) = B�}| = B� · |{ā ∈M |x̄| :M |= ∃ȳϕ(ā, ȳ, c̄)}|. Therefore∑n
i=1A

�
i · |Zi | = B� · |{ā ∈M |x̄| :M |= ∃ȳϕ(ā, ȳ, c̄)}|. Dividing both sides by B�

gives the desired result. 	

We also make use of the following easily verified facts.
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COUNTING IN UNCOUNTABLY CATEGORICAL PSEUDOFINITE STRUCTURES 5

Lemma 3.5. Let R� =
∏
�→U R be an ultrapower of the real field R.

1. Suppose F (X ), G(X ) ∈ Q[X ] are polynomials, and suppose A� ∈ R� is an
infinite positive element (i.e., A� > n for every standard natural number n) such
that F (A�) = G(A�). Then F (x) = G(x) for all x ∈ R, i.e., F and G are the
same polynomial.

2. Suppose F (X ) ∈ Q[X ] is a polynomial and suppose A�, B� ∈ R� are infinite
positive elements such that F (A�) = F (B�). Then A� = B�.

3. Suppose F (X ) ∈ Q[X ] is a polynomial, and suppose A� ∈ R� is an infinite
positive element such that F (A�) is positive. Then the leading coefficient of
F (X ) is positive.

Proof. 1. Express A� as an ultralimit (a�)�→U , with each a� ∈ R. Then
F (A�) = (F (a�))�→U and G(A�) = (G(a�))�→U . Since these two ultralimits
are equal, we have F (a�) = G(a�) for almost all � ∈ Λ. Since A� is infinite, for
every standard n ∈ 	 we have a� > n for almost all �. It follows that for every
n there is a real a� > n such that F (a�) = G(a�). Therefore the polynomial
F (x) – G(x) has arbitrarily large zeros in R. Hence it must be constant zero,
and so F (x) = G(x) for all x.

2. In R, there is an n such that F (x) is strictly increasing or decreasing on (n,∞)
(in R)). In particular, the function x �→ F (x) is injective on this open ray. This
is first-order expressible, hence true in R�, and sinceA� > n and B� > n we get
A� = B�.

3. If the leading coefficient of F (x) were negative, then F (a) is negative for
sufficiently large real numbers a—that is, for a > M for some real M. Therefore
if A� = (a�)�∈Λ is positive and infinite, the set {� ∈ Λ : a� > M} is U -large.
Then the set {� ∈ Λ : F (a�) < 0} = {� ∈ Λ : (F (A�))�} is U -large, whence
F (A�) is negative. Fact 3 follows contrapositively. 	

§4. Uncountably categorical theories. We begin by recalling some basic facts
about uncountably categorical theories.

Fact 4.1 [2, Lemma 3.4.10]. Let M be an uncountable model of an ℵ1-categorical
theory T. Then M is saturated.

Definition 4.2. Let T be theory. We say that T has definable and finite Morley
Rank if:

1. Every definable subset of every model of T has finite Morley rank.
2. For every formula ϕ(x̄, ȳ) and every n < 	, there is a formulaMorϕ,n(ȳ) such

that in anyM |= T ,M |=Morϕ,n(ȳ) if and only ifMR(ϕ(M |x̄|, b̄)) = n

Fact 4.3 [6, Chapter 1, Propositions 5.14 and 5.18]. Let T be an uncountably
categorical theory. Then T has definable and finite Morley rank.

We use the following well-known fact about uncountably categorical models (see
[2, Lemma 3.1.12]; this fact is also a consequence of Fact 4.3, since a definable subset
X is finite if and only ifMR(X ) = 0).

Fact 4.4. Suppose T is ℵ1-categorical and ϕ(x̄, ȳ) is a formula. Then there is a
natural number n such that in all models M of T and all b̄ ∈M |ȳ|, either ϕ(M |x̄|, b̄)
is infinite or |ϕ(M |x̄|, b̄)| ≤ n.
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6 ALEXANDER VAN ABEL

Definition 4.5. Let T be an ℵ1-categorical theory (or more generally any theory
of which Fact 4.4 holds). Let ϕ(x̄, ȳ) be a formula. DefineNumT (ϕ(x̄, ȳ)) to be the
least numberN ∈ 	 such that in any model M of T and any b̄ ∈M |ȳ|, if ϕ(M |x̄|, b̄)
is finite then |ϕ(M |x̄|, b̄)| < N .

The following bit of folklore is well-known, although since the author is having a
difficult time finding a citation, we provide a proof.

Lemma 4.6. Let M be an L-structure. Let A ⊆Mn and B ⊆Mm be definable
subsets such that MR(A) and MR(B) exist and are finite, and let f : A→ B be
a definable surjection such that MR(f–1(b̄)) exists and is finite for all b̄ ∈ B . Let
R,S ∈ 	. Then:

1. IfMR(f–1(b̄)) ≥ R for all b̄ ∈ B andMR(B) ≥ S, thenMR(A) ≥ R + S.
2. SupposeTh(M ) has finite and definable Morley rank (Definition 4.2) and suppose

that M is	1-saturated. IfMR(f–1(b̄)) ≤ R for all b̄ ∈ B andMR(B) = S then
MR(A) ≤ R + S.

Proof. 1. We prove this by induction on S. At S = 0, the statement is
trivial. Specifically, let b̄ ∈ B be any element. Since f–1(b̄) ⊆ A we have
MR(A) ≥MR(f–1(b̄)) ≥ R = R + S.

Suppose the statement is proven for s < S and suppose MR(B) ≥ S.
Let B1, B2, ... be disjoint definable subsets of B of rank S – 1. For i ∈ 	
let Ai = f–1(Bi). Then A1, A2, ... , are disjoint definable subsets of A. Let
fi be the restriction of f to Ai . Then fi is a surjection of Ai onto Bi .
For b̄ ∈ Bi we have f–1

i (b̄) = f–1(b̄) which has rank ≥ R by assumption.
Therefore, by the inductive hypothesis,MR(Ai) ≥ R + S – 1 for each i. Hence
MR(A) ≥ R + S.

2. We prove Statement 2 by induction on R + S, with base case S = 0 (and R
equal to anything).

If S = 0 then MR(B) ≤ S means B is finite. Let B = {b1, ... , bp}. Then
A = f–1(b1) ∪ ··· ∪ f–1(bp). If each f–1(bi) has Morley rank ≤ R, then as a
finite union of such sets, A also has a Morley rank of ≤ R = R + S.

Assume the statement is proven for all pairs r, s such that r + s < R + S.
Suppose first that the Morley degree of B is 1, and suppose towards a
contradiction thatMR(A) > R + S. Then we can findA1, A2, A3, ...which are
disjoint subsets of A of Morley rankR + S. For each i, letBi = f(Ai). Then for
each i, the mapfi which is the restriction of f toAi is a surjection fromAi onto
Bi . The fibers offi are still of rank ≤ R, as they are subsets of the fibers of f. If
MR(Bi) < S then by induction we obtainMR(Ai) ≤ R +MR(Bi) < R + S,
a contradiction. ThereforeMR(Bi) = S for each i, and since B has degree 1, we
obtainMR(B \ Bi) < S for each i, as well as the fact that the Morley degree
of each Bi is 1.

In each Bi , let B+
i = {b̄ ∈ Bi :MR(f–1

i (b̄)) = R} and let B–
i = {b̄ ∈ Bi :

MR(f–1
i (b̄)) < R} = Bi \ B+

i . Each B+
i and B–

i is definable, by definability
of Morley rank in Th(M ). Let A+

i = f–1
i (B+

i ) and A–
i = f–1

i (B–
i ) = Ai \ A+

i .
Then fi is a surjection of A+

i onto B+
i and of A–

i onto B–
i . If R = 0 then

B–
i and A–

i are empty; if R > 0 then the fibers of fi restricted to A–
i have

Morley rank ≤ R – 1, so by induction, MR(A–
i ) ≤ R – 1 + S. In either case,
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COUNTING IN UNCOUNTABLY CATEGORICAL PSEUDOFINITE STRUCTURES 7

MR(A+
i ) =MR(Ai) = R + S and MR(A \ A+

i ) < R + S. If MR(B+
i ) < S

then as in the previous paragraph, since fi surjects A+
i onto B+

i with
fibers of rank R, we would have MR(A+

i ) < R + S, which is false. Therefore
MR(B+

i ) = S for each i, and since B has degree 1, we haveMR(B \ B+
i ) < S

for each i. Therefore for every n, the setB – (B+
1 ∩ ··· ∩ B+

n ) = (B \ B+
1 ) ∪ ··· ∪

(B \ B+
n ) has Morley rank < S, and so B+

1 ∩ ··· ∩ B+
n has Morley rank S.

Consider the partial type �(ȳ) = {“ȳ ∈ B+
i ” : i ∈ 	}, which is definable

with parameters from the set of parameters which define the sets A1, A2, ....
Since B+

1 ∩ ··· ∩ B+
n has Morley rank S and is in particular non-empty for

every n, the type � is consistent. Because M is 	1-saturated, � is realized by
some b̄ ∈ B . ThenMR(f–1

i (b̄)) = R for all i ∈ 	. But then f–1
1 (b̄), f–1

2 (b̄), ...
are disjoint subsets of f–1(b̄) of Morley rank R, hence MR(f–1(b̄)) > R, a
contradiction.

This proves that MR(A) ≤ R + S when the Morley degree of B is 1.
If the degree of B is D > 1, then B is the disjoint union of definable
sets B1, ... , BD ⊆ B , each of Morley rank S and Morley degree 1. Letting
Ai = f–1(Ai) we get by the D = 1 case that MR(Ai) ≤ R + S, and since
A = A1 ∪ ··· ∪ Ai this completes the proof. 	

Our main tool in proving Theorem 5.1 is an early result of Zil’ber’s found in
[10], as well as his book [11]. His result uses the concept of stratification, defined as
follows.

Definition 4.7 [11, Chapter 1, Section 2, after Fact 2.2]. Let A,B be definable
unary subsets of a totally transcendental model M. A stratification of A with respect
to B is a formula �(x, v, c̄) with parameters c̄ such that A =

⋃
b∈B �(M,b, c̄).

A stratification of rank at most r is a stratification �(x, v, c̄) such that
MR(�(M,b, c̄)) ≤ r for all b ∈ B .

A proper stratification is a stratification �(x, y, c̄) of rank at most rk(A) – 1.

We observe that for formulas ϕ(x, ȳ), �(v, ȳ), and �(x, v, z̄), the notion

�(x, v, c̄) is a stratification of ϕ(M, b̄) with respect to �(v, d̄ )

is first-order ∅-definable in b̄, c̄, d̄ .
If we are working in a theory with definable and finite Morley Rank, then

additionally, the notions “�(x,w, d̄ ) is a stratification of rank at most r of ϕ(M, b̄)
with respect to �(v, d̄ )” and “�(x, v, c̄) is a proper stratification of ϕ(M, b̄) with
respect to �(v, d̄ )” are ∅-definable in b̄, c̄, d̄ .

Definition 4.8. Suppose T is a theory with definable and finite Morley rank.
Let ϕ(x, ȳ), �(x, v, z̄), and �(v, w̄) be L-formulas. Let PrStratT,�,ϕ,�(ȳ, z̄, w̄) be a
formula such that in anyM |= T , we haveM |= PrStratT,�,ϕ,�(b̄, c̄, d̄ ) if and only
if �(x, v, c̄) is a proper stratification of ϕ(M, b̄) with respect to �(M, d̄ ).

In the sequel we will drop the subscripted T, as the theory will be clear from
context.

Zil’ber’s result tells us that in a ℵ1-categorical theory, any infinite definable subset
has a proper stratification over any strongly minimal set.
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8 ALEXANDER VAN ABEL

Fact 4.9 [10, Lemma 1]. Let T be an uncountably categorical theory and let
M |= T be uncountable. Let A,B ⊂M be infinite definable sets, with B strongly
minimal. Then there exists a proper stratification of A with respect to B.

We need a slightly stronger statement for our main proof, which follows quickly
from Zil’ber’s result and from the saturation of any uncountable model of T.

Corollary 4.10. Let T be an uncountably categorical theory. Let ϕ(x, ȳ) and
�(v, w̄) be formulas. Then there are formulas �1(x, v, z̄), ... , �n(x, v, z̄) such that for
all uncountable M |= T and b̄, d̄ ∈M such that �(M, d̄ ) is strongly minimal, there
is an i such that for some c̄ ∈M , the formula �i(x, v, c̄) is a proper stratification of
ϕ(M, b̄) with respect to �(M, d̄ ).

Furthermore, we may choose formulas �i so that in the above paragraph, there is a
unique i such that for some c̄ ∈M , the formula �i(x, v, c̄) is a proper stratification.

Proof. Consider the partial type Π(ȳ, w̄) consisting of the formulas

∀z̄[Mor�(x,w̄)∧�(x,z̄),0(z̄, w̄) ∨Mor�(x,w̄)∧¬�(x,z̄),0(z̄, w̄)]

and

∀z̄[¬PrStrat�,ϕ,�(ȳ, z̄, w̄)]

for all L-formulas �(x, z̄) and �(x, v, z̄) (recall Morφ,n) from Definition 4.2 and
PrStratϕ,�,� from Definition 4.8.) IfM |= Π(b̄, d̄ ), the first formula schema tells us
that �(M, d̄ ) is strongly minimal, and the second formula schema tells us that there
is no proper stratification of ϕ(M, b̄) with respect to �(M, d̄ ).

Suppose the first paragraph of the corollary were false. Then for any finite
collection of L-formulas�1(x, v, z̄), ... , �n(x, v, z̄), there is anM |= T and b̄, d̄ ∈M
such that �(M, d̄ ) is strongly minimal and such that for each i, there is no c̄ ∈M
such that �i(x, v, c̄) is a proper stratification of ϕ(M, b̄) with respect to �(M, d̄ ).
Then Π(ȳ, w̄) is consistent: we can realize any finite subset of Π(ȳ, w̄) with such
a b̄, d̄ . Choose an uncountable M which is a model of T. Then M is a saturated
model, by categoricity. Therefore Π is realized by some b̄, d̄ ∈M . Let A = ϕ(M, b̄)
and B = �(M, d̄ ). Then B is strongly minimal, and there is no proper stratification
of A with respect to B, contradicting Fact 4.9.

Therefore the first paragraph of the corollary holds. We can force the index i to be
unique by modifying our formulas �i so that, for instance, �2(x, v, c̄) implies that
�1(x, v, c̄) does not properly stratify ϕ(M, b̄) with respect to �(M, b̄′). 	

The two statements in the following lemma are noted and used in proofs by Zil’ber
in [11]. We use them to obtain the fact that the degree of the polynomial giving the
cardinality of a definable set is exactly the Morley rank of the set. First we need
another fact from [10] (also found in [11]).

Fact 4.11 [10, Theorem 3]. Let Δ(x),Φ(x) be L-formulas over A ⊂M with
MR(Δ(M )) = m and let �(v0, v1) be a stratification of Φ(M ) with respect to Δ(M )
of rank at most n. ThenMR(Φ(M )) ≤ m + n.

Lemma 4.12. Let M be a structure. Let X,D ⊆M be definable subsets with D
strongly minimal. Let�(x, y) be a proper stratification of X with respect to D (possibly
with parameters).
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COUNTING IN UNCOUNTABLY CATEGORICAL PSEUDOFINITE STRUCTURES 9

1. There is an N ∈ 	 such that rk({a ∈ X : |�(a,D)| > N}) < rk(X ).
2. The set {d ∈ D : rk(�(X, d )) = rk(X ) – 1} is cofinite in D.

Proof. 1. As D is strongly minimal, there is anN ∈ 	 such that for all a ∈M
we have that either |�(a,D)| ≤ N or |¬�(a,D)| ≤ N . Letd1, ... , dN , dN+1 ∈ D
be distinct elements. For each i = 1, ... , N + 1 let Xi = �(X, di). As � is
a proper stratification, we have MR(Xi) < MR(X ) for each i. Therefore
MR(X1 ∪ ··· ∪ XN+1) < MR(X ). If a ∈ X and |�(a,D)| > N then�(a,D) is
cofinite in D with |D – �(a,D)| ≤ N . Therefore at least one of d1, ... , dN+1

must be an element of �(a,D), that is, M |= �(a, di) for some i. Then
a ∈ ϕ(X, di) = Xi . Hence {a ∈ X : |�(a,D)| > N} ⊆ X1 ∪ ... ∪ XN+1, and
thereforeMR({a ∈ X : |�(a,D)| > N}) ≤MR(X1 ∪ ... XN+1) < MR(X ).

2. Suppose otherwise. Then {d ∈ D :MR(�(M,d )) =MR(X ) – 1} is finite
and {d ∈ D :MR(�(M,d )) ≤MR(X ) – 2} is cofinite. Let {d ∈ D :
MR(�(M,d )) =MR(X ) – 1}={d1, ... , dn}. For i= 1, ... , n let Xi =�(M,di)
and let X ′ =

⋃
d∈D–{d1,...,dn} �(M,d ). Then X = X1 ∪ ··· ∪ Xn ∪ X ′. Each

Xi has Morley rank MR(X ) – 1. X ′ is stratified by �(x, y) over D –
{d1, ... , dn}, and this stratification has rank at most MR(X ) – 2. Therefore
MR(X ′) ≤MR(X ) – 2 +MR(D – {d1, ... , dn}) =MR(X ) – 1. So X is
the union of finitely many sets of Morley rank at most MR(X ) – 1, an
impossibility. Therefore the set {d ∈ D : rk(�(X, d )) = rk(X ) – 1} must be
cofinite in D. 	

§5. Main theorem.

Theorem 5.1. Let T be an uncountably categorical theory in the language L. Let
�(v, w̄) be an L-formula. Then for every L-formula ϕ(x1, ... , xn, ȳ), there are finitely
many polynomials F1(X ), ... , Fr(X ) ∈ Q[X ] and L-formulas �1(ȳ, w̄), ... , �r(ȳ, w̄)
such that for all pseudofinite ultraproducts M and all d̄ ∈M such thatD = �(M, d̄ ) is
strongly minimal, we have that for all b̄ ∈M |ȳ|, the pseudofinite cardinality |ϕ(Mn, b̄)|
is Fi(|D|) for some i, and furthermore for each i the set

{b̄ ∈M : |ϕ(Mn, b̄)| = Fi(|D|)}

is definable over X by �ϕ,i(ȳ, d̄ ).
Additionally, if b̄ satisfies �ϕ,i(ȳ, d̄ ), then the degree of the polynomial Fi(X ) is the

Morley rank of the set ϕ(Mn, b̄).

We first prove Theorem 5.1 for the case n = 1 (Proposition 5.2), which takes
up most of the proof. The full theorem will follow from a relatively fast inductive
fiber-decomposition argument.

First we give an overview of our proof of the single-variable case, leaving aside
the fine details to the forthcoming sequence of lemmas. Let X ⊆M be a definable
subset of rank R of which we will find the pseudofinite cardinality. Let �(x, y) be
a stratification of X with respect to D, with parameters hidden for the moment.
Partition X into X1, X2, ... , Xs so that the pseudofinite cardinality of the fiber
�(a,D) is a constant A�j over a ∈ Xj . By strong minimality of D, there are only
finitely many such cardinalities. Then |X | =

∑s
i=1 |Xi |, so it suffices to show that

each Xi has cardinality F (|D|) for some F ∈ Q[x] (the details of definability in this
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10 ALEXANDER VAN ABEL

argument are in Lemma 5.5). If rk(Xj) < rk(X ) then this is true by induction. If
rk(Xj) = rk(X ) then this is shown in Lemma 5.4. In that proof, we use Lemma 3.4
with respect to the relation�(x, y) betweenXj and D to express |Xi | as a polynomial
in the sizes of subsets of D and fibers�(Xi , d ) for d ∈ D. Each of these cardinalities
is itself a polynomial in |D|. For subsets of D this holds by strong minimality, and
for fibers �(Xi , d ) this holds by induction, as � is a proper stratification.

We now prove Proposition 5.2 rigorously, and in a particular form which lends
itself to our inductive argument.

Proposition 5.2. For every R ∈ 	 and every L-formula ϕ(x, ȳ), there are
polynomials F1(x), ... , Fn(x) of degree R and L-formulas �1(ȳ, w̄), ... , �n(ȳ, w̄) such
that for all b̄ ∈M |ȳ| and all d̄ ∈M |w̄| such thatD = �(M, d̄ ) is strongly minimal,

• IfMR(ϕ(x, b̄)) = R then |ϕ(M, b̄)| = Fi (|D|) for some i.
• For all i, the set

{b̄ ∈M |ȳ| :MR(ϕ(M, b̄)) = R and |ϕ(M, b̄)| = Fi (|D|)}

is definable by �i (ȳ, d̄ ).

We will prove this proposition by induction on R, through a sequence of lemmas.
First we handle the base case R = 0.

For this sequence of lemmas, recall (Definition 4.5) that NumT (ϕ(x̄, ȳ)) is the
least numberN ∈ 	 such that wheneverM |= T and b̄ ∈M |ȳ|, ifϕ(M |x̄|, b̄) is finite
then |ϕ(M |x̄|, b̄)| < N .

Lemma 5.3. The statement of Proposition 5.2 holds for R = 0.

Proof. Let n = NumT (ϕ(x, ȳ)). Then for M |= T and b̄ ∈ M , if
RK(ϕ(M, b̄)) = 0—which means ϕ(M, b̄) is finite—then |ϕ(M, b̄)| < n. We take
our F1(x), ... , Fn(x) to be the constant degree-0 polynomials 0, ... , n – 1 and take
each �i(ȳ) to be an L-formula expressing “|ϕ(M, b̄)| = i – 1”—note that this is a
formula over ∅. 	

Now assume R > 0 and that Proposition 5.2 is proven for all ranks r < R.
Recall the formulasMorϕ(x,ȳ),n(ȳ) from Definition 4.2 and PrStrat�,ϕ,�(ȳ, z̄, w̄)

from Definition 4.8.

Lemma 5.4. Let ϕ(x, ȳ) be an L-formula. Suppose there is a formula �(x, v, z̄)
and a natural number n such that for allM |= T , all b̄ ∈M |ȳ|, and all d̄ ∈M |z̄| such
that Dd̄ = �(M, d̄ ) is strongly minimal, ifMR(ϕ(M, b̄)) ≤ R and ϕ(M, b̄) is infinite
then there is a c̄ ∈M |z̄| such that:

1. �(x, v, c̄) is a proper stratification of ϕ(M, b̄) with respect to Dd̄ .
2. For every a ∈ ϕ(M, b̄), the cardinality of the set �(a,Dd̄ , c̄) is n.

Then Proposition 5.2 holds of R and ϕ(x, ȳ).

Proof. By the inductive hypothesis, there are polynomials G1, ... , Gm ∈ Q[x]
of degree < R and formulas �1(v, z̄, w̄), ... , �m(v, z̄, w̄) such that for all models
M |= T , all d̄ ∈M |w̄| such that Dd̄ = �(M, d̄ ) is strongly minimal, and all
(e, c̄) ∈M 1+|z̄|,
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COUNTING IN UNCOUNTABLY CATEGORICAL PSEUDOFINITE STRUCTURES 11

• ifMR(�(M, e, c̄)) < R then |�(M, e, c̄)| = Gi (|Dd̄ |) for some i, and
• each �i defines the set {(e, c̄, d̄ ) :MR(�(M, e, c̄)) < R and |�(M, e, c̄)| =
Gi (|Dd̄ |)}, and

• ifM |= �i (e, c̄, d̄ ) then degGi =MR(�(M, e, c̄)).

Let N be the maximum of the 2m numbers given by NumT (�i(v; z̄w̄))
and NumT (�′i (v; z̄)) for i = 1, ... , m, where �i(v; z̄w̄) is �(v, w̄) ∧ �i(v, z̄, w̄) and
�′i (v; z̄w̄) is �(v, w̄) ∧ ¬�i(v, z̄, w̄). Then if �(M, d̄ ) is strongly minimal, we
have that for each i = 1, ... , m and for all c̄′ ∈M |z̄|, either |�i(D, c̄′)| < N or
|D – �i(D, c̄′)| < N .

Let b̄ ∈Morϕ,R(M |ȳ|) and d̄ ∈M |w̄| such thatDd̄ = �(M, d̄ ) is strongly minimal.
By the assumptions of our lemma, there is c̄ ∈M |z̄| such that �(x, v, c̄) is a proper
stratification of ϕ(M, b̄) with respect to Dd̄—i.e., M |= PrStrat�,ϕ,�(b̄, c̄, d̄ ) (this
formula is defined in the remarks before Lemma 5.4).

If c̄ is such that M |= PrStrat�,ϕ,�(b̄, c̄, d̄ ) then since �(x,w, c̄) is a proper
stratification of ϕ(M, b̄), the x-fibers �(M, e, c̄) have rank < R for all e ∈ D.
Therefore for each e ∈ Dd̄ there is a unique i such that M |= �i(e, c̄, d̄ ). So the
sets �1(Dd̄ , c̄), ... , �m(Dd̄ , c̄) partitionDd̄ . Therefore all but one of these sets is finite
of cardinality ≤ N , and one of these sets is cofinite of pseudofinite cardinality at
least |Dd̄ | – N (in fact, exactly equal to |Dd̄ | – K where K is the sum of the remaining
finite cardinalities, which must therefore be no greater than N).

Let ΣN,m be the finite set {(�1, ... , �m) ∈ {0, 1, ... , N,∞}m : �i = ∞ for exactly
one i, and

∑
j �=i �j ≤ N}.

For b̄ ∈Morϕ,R(M |ȳ|) and c̄ ∈ PrStrat�,ϕ,�(b̄,M |z̄|, d̄ ), let �(b̄, c̄, d̄ ) be the tuple
(�1, ... , �m) ∈ ΣN,m such that �i = |�i(Dd̄ , c̄, d̄ )| if this set is finite, and �i = ∞ if i is
the unique index such that �i(Dd̄ , c̄, d̄ ) is infinite. Note that for any � ∈ ΣN,m, the set
{(b̄, c̄, d̄ ) : b̄ ∈Morϕ,R(M |ȳ|) and c̄ ∈ PrStrat�,ϕ,�(b̄,M |z̄|, d̄ ) and �(b̄, c̄, d̄ ) = �}
is definable by a formula ��(ȳ, z̄, w̄) over ∅.

Suppose�(b̄, c̄, d̄ ) = � = (�1, ... , �m). Let i be the unique index such that�i = ∞,
and let n� :=

∑
j �=i �j . Noting that for j �= i the set �j(Dd̄ , c̄, d̄ ) is the set {b ∈ Dd̄ :

|�(M,b, c̄)| = Gj(|Dd̄ |)}, we obtain by Lemma 3.4 the equation

|ϕ(M, b̄)| =
Gi(|Dd̄ |) · (|Dd̄ | – n�) +

∑
j �=i Gj(|Dd̄ |) · �j

n
.

Therefore |ϕ(M, b̄)| = F�(|Dd̄ |), where

F�(X ) =
Gi(X ) · (X – n�) +

∑
j �=i Gj(X ) · �j

n
∈ Q[X ].

By induction, each Gj(X ) has degree < R. Moreover, Gi(X ) has degree exactly
R – 1, which follows from Lemma 4.12.2, since i is the unique i such that {b ∈ Dd̄ :
|�(M,b, c̄)| = Gi(Dd̄ )} is cofinite. Therefore F�(X ) is a polynomial of degree R.

Suppose c̄′ is another element of PrStrat�,ϕ,�(b̄,M |z̄|, d̄ ). Let �′ = �(b̄, c̄′, d̄ )
with coordinates (�′1, ... , �

′
m). Let i ′ be the unique index such that �′

i′ = ∞ and let
n�′ =

∑
j �=i′ �j . Then as before we have
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12 ALEXANDER VAN ABEL

|ϕ(M, b̄)| =
Gi′(|Dd̄ |) · (|Dd̄ | – n�′) +

∑
j �=i′ Gj(|Dd̄ |) · �′j

n
.

Therefore the polynomial F�′(x) =
Gi′ (x)·(x–n�′ )+

∑
j �=i′ Gj (x)·�′j

n agrees with the
polynomial F�(x) when applied to the infinite hyper-integer |Dd̄ |. By Lemma 3.5.1,
the polynomials F� and F�′ are equal.

This shows that the choice of c̄ ∈ PrStrat�,ϕ,�(b̄,M |z̄|, d̄ ) does not affect the
polynomial F� . Formally, we can quotient ΣN,m by the equivalence relation ≈ where
� ≈ �′ if F� = F�′ . Then for each ≈-equivalence class [�]≈, we can define the set
{b̄ ∈Morϕ,R(M |ȳ|) : �(b̄, c̄, d̄ ) ≈ � for all c̄ ∈ PrStrat�,ϕ,�(b̄,M |z̄|, d̄ )} by
�[�]≈(ȳ, d̄ ) for an L-formula �[�]≈(ȳ, w̄) (as ΣN,m is finite, we may explicitly list out
the tuples which are equivalent to �). Then Proposition 5.2 holds for R and ϕ(x, ȳ),
witnessed by the polynomials F�(X ) and formulas �[�]≈(ȳ, w̄) as [�]≈ ranges over
the finitely many equivalence classes. 	

Now we can remove the restriction that the v-fibers of �(x, v, z̄) have a constant
finite cardinality.

Lemma 5.5. Suppose there is a formula �(x, v, w̄) such that for all M |= T ,
all b̄ ∈M |ȳ| and all d̄ ∈M |w̄| such that Dd̄ = �(M, d̄ ) is strongly minimal, if
MR(ϕ(x, b̄)) = R then there is a c̄ ∈M |w̄| such that �(x, v, c̄) is a proper
stratification of ϕ(M, b̄) with respect to Dd̄ . Then Proposition 5.2 holds for ϕ(x, ȳ).

Proof. Let N be the maximum of NumT (�(v;xz̄w̄)) and NumT (�′(v;xz̄w̄))
(recall Definition 4.5) where �(v;xz̄w̄) is �(v, w̄) ∧ �(x, v, z̄) and �′(v;xz̄w̄) is
�(v, w̄) ∧ ¬�(x, v, z̄). Then if Dd̄ := �(M, d̄ ) is strongly minimal, we have that for
all a′, c̄′ ∈M 1+|z̄|, either |�(a,Dd̄ , c̄

′)| < N or |Dd̄ – �(a,Dd̄ , c̄
′)| < N .

For 1 ≤ i ≤ N – 1, let ϕi(x, ȳ, z̄, w̄) be the formula such that ϕi(a, b̄, c̄, d̄ )
expresses “ϕ(a, b̄) and |�(a,Dd̄ , c̄)| = i”. Let ϕ0(x, ȳ, z̄, w̄) be the formula
such that ϕ0(a, b̄, c̄, d̄ ) expresses “ϕ(a, b̄) and |�(a,Dd̄ , c̄)| > N”, and note that
|�(a,Dd̄ , c̄)| > N implies the set �(a,Dd̄ , c̄) is infinite, in fact cofinite, when
Dd̄ is strongly minimal. For 0 ≤ i ≤ N – 1 let �i(x, v, ȳ, z̄, w̄) be �(x, v, z̄) ∧
ϕi(x, ȳ, z̄, w̄).

Note that if Dd̄ is strongly minimal and �(x,w, c̄) is a stratification of ϕ(M, b̄)
with respect toDd̄ , then the setsϕ0(M, b̄, c̄, d̄ ), ... , ϕN (M, b̄, c̄, d̄ ) partitionϕ(M, b̄).

By induction and by Lemma 5.4, for each i there is an si ∈ 	 and there are
polynomials Gi,j(X ) ∈ Q[X ] and formulas �i,j(ȳ, z̄, w̄) for 0 ≤ i ≤ N – 1 and
1 ≤ j ≤ si such that for each i and all b̄, c̄, d̄ , if Dd̄ is strongly minimal and
either MR(ϕi(M, b̄, c̄)) < R or ϕi(M, b̄, c̄) is properly stratified by an instance of
�i(x, v, ȳz̄w̄) with constant finiteDd̄ -fibers, then |ϕi(M, b̄, c̄)| = Gi,j(|Dd̄ |) for some
j, and for each j the set of all such (b̄, c̄) ∈M |ȳ|+|z̄| is defined by �i,j(ȳ, z̄, d̄ ). To
make notation easier, we can let all si = s for some large enough s, by including
additional (arbitrary) polynomials Gi,j(X ) and non-realized formulas �i,j(ȳ, z̄, w̄)
(for example, y1 �= y1) for si < j ≤ s .

Suppose Dd̄ is strongly minimal and MR(ϕ(M, b̄)) = R, and suppose
M |= PrStrat�,ϕ,�(b̄, c̄, d̄ ), so that �(x, v, c̄) is a stratification of ϕ(M, b̄)
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COUNTING IN UNCOUNTABLY CATEGORICAL PSEUDOFINITE STRUCTURES 13

with respect to Dd̄ . Then by Lemma 4.12.1, MR(ϕ0(M, b̄, c̄, d̄ )) < R. If
MR(ϕi(M, b̄, c̄, d̄ )) = R, then

�i(x,w, b̄, c̄, d̄ ) := �(x,w, c̄) ∧ ϕi(x, b̄, c̄, d̄ )

is a proper stratification of ϕi(M, b̄, c̄, d̄ ) with respect to Dd̄ , and the w-fibers
�i(a,Dd̄ , b̄, c̄, d̄ ) all have finite cardinality i, by the definition of ϕi . So in either
case, the pseudofinite cardinality |ϕi(M, b̄, c̄, d̄ )| is Gi,j(|Dd̄ |), where j is the unique
j such thatM |= �i,j(b̄, c̄, d̄ ).

Let ΞN,s be the finite set of all tuples � = (�1, ... , �N ) ∈ {1, ... , s}N . For
� ∈ ΞN,s , let ��(ȳ, z̄, w̄) be the formula

∧
0≤i≤N �i,�i (ȳ, z̄, w̄). For b̄ ∈ Pϕ,R and

c̄ ∈ PrStrat�,ϕ,�(b̄,M |z̄|, d̄ ), let �(b̄, c̄, d̄ ) be the tuple � = (�1, ... , �N ) such that
M |= �i,�(i)(b̄, c̄, d̄ ) for each i—i.e., such that M |= ��(b̄, c̄, d̄ ). Let F�(X ) ∈ Q[X ]
be the polynomial

∑N
i=0Gi,�i (X ).

When Dd̄ is strongly minimal, the formulas {��(ȳ, z̄, d̄ ) : � ∈ ΞN,s} partition

{(b̄, c̄) ∈M |ȳ|+|z̄| :MR(ϕ(M, b̄)) = R and PrStrat�,ϕ,�(b̄, c̄, d̄ )}.

If Dd̄ is strongly minimal and M |= ��(b̄, c̄, d̄ ) then the pseudofinite cardinality
|ϕ(M, b̄)| is

∑N
i=0 |ϕi(M, b̄, c̄, d̄ )| which equals F�(|Dd̄ |), since |ϕi(M, b̄, c̄, d̄ )| =

Gi,�(i)(|Dd̄ |) for each i. We note that at least one ϕi(M, b̄, c̄, d̄ ) must have full Morley
rank (since this is a finite partition of ϕ(M, b̄)), and so at least one Gi,�(i)(X ) has
degree R, hence G�(X ) does as well.

As in the previous lemma, if c̄′ ∈M and M |= PrStrat�,ϕ,�(b̄, c̄′, d̄ ) and
�(b̄, c̄′, d̄ ) = �′, then as in the previous lemma we also have |ϕ(M, b̄)| = F�′(|Dd̄ |),
so F�(X ) = F�′(X ) as polynomials, again by Lemma 3.5.1. Then, as in that proof,
we quotient ΞN,s by the equivalence relation defined as � ≈ �′ when F� = F�′ , and
taking our polynomials to be F[�]≈(X ) and our defining formulas �[�]≈(ȳ, w̄) to be
“for all z̄, if PrStrat�,ϕ,�(ȳ, z̄, w̄) holds then ��′(ȳ, z̄, w̄) holds for some �′ ≈ �,”
which is definable since there are finitely many �′ ≈ �. 	

Now we can prove the full one-variable case.

Proof of Proposition 5.2. By Corollary 4.10, there are formulas �1(x, v, z̄), ... ,
�s(x, v, z̄) such that for all b̄ ∈M |ȳ| and all d̄ such that Dd̄ is strongly minimal,
there is a unique i ∈ {1, ... , s} such that for some c̄ ∈M |z̄|, the formula �i(x,w, c̄)
stratifies ϕ(M, b̄) with respect to Dd̄ . Apply Lemma 5.5 to each �i to obtain s ∈ 	
and polynomialsGi,1(X ), ... , Gi,s(X ) ∈ Q[X ] and formulas �i,1(ȳ, w̄), ... , �i,s(ȳ, w̄)
for each i as in the statement of Proposition 5.2. Taking our polynomials to be
the polynomials Gi,j(X ) and our formulas to be “(∃z̄PrStrat�i ,ϕ,�(ȳ, z̄, w̄)) and
�i,j(ȳ, w̄)” proves the proposition. 	

We can now the proof of the full main theorem.

Proof of Proposition 5.1. The case n = 1 is proven in Proposition 5.2.
Let us assume the theorem is true for n and let ϕ(x1, ... , xn, xn+1, z̄) be a formula.

By Proposition 5.2, there are G1(X ), ... , Gs(X ) ∈ Q[X ] of degree at most N such
that for all ā ∈Mn, all b̄ ∈M |ȳ| and all d̄ ∈M |w̄| such thatDd̄ is strongly minimal,
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14 ALEXANDER VAN ABEL

we have |ϕ(M, ā, b̄)| = Gi(|Dd̄ |) for some i, and for each i the set of all āb̄ such that
|ϕ(M, ā, b̄)| = Gi(|Dd̄ |) is definable by the formula �i(x2, ... , xn+1, ȳ, d̄ ).

By induction, for each i there are polynomials Hi,1(X ), ... , Hi,m(X ) ∈ Q[X ] and
formulas i,1(ȳ, w̄), ... , i,m(ȳ, w̄) such that for all b̄ ∈M |ȳ| and d̄ ∈M |w̄| with Dd̄
strongly minimal, there is a j ∈ {1, ... , m} such that |�i(Mn, b̄, d̄ )| = Hi,j(|Dd̄ |),
and degHi,j(X ) =MR(�(x̄, b̄, d̄ )), and for all j the formula i,j(ȳ, d̄ ) defines the
set of all b̄ such that |�i(Mn, b̄, d̄ )| = Hi,j(|Dd̄ |). (As in the proofs above, we may
not have the same number of polynomials for each �i , but we may add additional
unused polynomials to get a uniform number.)

For every tuple � = (�1, ... , �s) ∈ {1, ... , m}s , let �(z̄, w̄) be the formula∧
i i,�i (z̄, w̄). Note that the formulas when Dd̄ is strongly minimal the formulas
�(z̄, d̄ ) partition M |z̄| as � ranges over {1, ... , m}s (with some empty sets in this
partition, if any of the polynomials Hi,j is unattained).

If� = (�1, ... , �s),M |= �(c̄), andDd̄ is strongly minimal, then |�i(M |ȳ|, b̄, d̄ )| =
Hi,�i (|Dd̄ |) for each i. By Lemma 3.4.1, we have that

|ϕ(Mn+1, b̄)| =
s∑

i=1

Fi(|Dd̄ |) ·Hi,�i (|Dd̄ |) = F�(|Dd̄ |),

where F�(X ) is the polynomial
∑s
i=1Gi(X ) ·Hi,�i (X ). We note that this equa-

tion comes from the fact that ϕ(Mn+1, b̄) is the disjoint union of the sets
Zi := {(c, ā, b̄) :M |= �i(ā, b̄) andM |= ϕ(c, ā, b̄)} for i = 1, ... , s , each of which
has cardinality Gi(|Dd̄ |) ·Hi,�i (|Dd̄ |). The fibers {c ∈M : (c, ā) ∈ Zi} all have
pseudofinite cardinality Gi(|Dd̄ |) by the definition of Zi , hence they all have the
same Morley rank which is degGi(X ). Therefore by Lemma 4.6, taking the definable
surjection f to be the projection of Zi onto the coordinates (x2, ... , xn), the Morley
rank of Zi is degGi +MR(�i(Mn, b̄, d̄ )) = degGi(X ) + degHi,�i (X ), which is
the degree of the polynomial Gi(X ) ·Hi,�i (X ). So degF�(X ) = max(degGi(X ) ·
Hi,�i (X ) : i ≤ s) = max(MR(Zi) : i ≤ s) =MR(ϕ(Mn+1, b̄)). 	

§6. Additional results. We illustrate that our counting polynomials may need to
have strictly rational coefficients, as opposed to the strongly minimal case, where
the coefficients are integer-valued.

Example 6.1. Let L contain unary predicates P0, P1 and a binary relation R.
Let T be the complete theory axiomatized by:

• P0 and P1 partition the universe M into infinite disjoint sets.
• For all x, y ∈M if R(x, y) holds then x ∈ P0 and y ∈ P1.
• For all x ∈ P0 there are exactly three y ∈ P1 such that R(x, y) holds.
• For all y ∈ P1 there are exactly two x ∈ P0 such that R(x, y) holds.
• For all x, x′ ∈ P0 and y, y′ ∈ P1, if R(x, y) and R(x′, y) and R(x, y′) hold

then R(x′, y′) holds.

The reduct of any model M of T to {R} looks like an infinite disjoint union of
complete two-to-three bipartite digraphs, directed versions of the complete bipartite
graphK2,3, with arrows going from the side with two elements to the side with three
elements. The predicate P0 picks out the source nodes and the predicate P1 picks
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COUNTING IN UNCOUNTABLY CATEGORICAL PSEUDOFINITE STRUCTURES 15

out the target nodes. This theory is totally categorical. In any model M of T, the
sets P0(M ) and P1(M ) are strongly minimal. T is a pseudofinite theory which
may be satisfied by any ultraproduct of M1,M2,M3, ... where Mn is the disjoint
union of n copies of the complete two-to-three bipartite digraph. Then |Mn| = 5n
and |P0(Mn)| = 2n and |P1(Mn)| = 3n. It follows that in any infinite ultraproduct
M =

∏
n→UMn we have |P0(M )| = 2

3 |P1(M )|, and |P1(M )| = 3
2 |P0(M )|. This

shows that the polynomials in the theorem may be required to have strictly rational
coefficients.

In our next result, we show that when a pseudofinite ultraproduct M has
uncountably categorical theory, then the two-sorted structureM+ is uncomplicated
in a model-theoretic sense. To formulate this result, we need the notion of a disjoint
union structure. Suppose L1 and L2 are disjoint languages, and let M1 be an L1-
structure andM2 an L2-structure. The disjoint union ofM1 andM2 is a two-sorted
structure. One sort is forM1 and has the language L1, and the other sort is forM2

in the language L2. Each sort inherits the full structure of the Mi , and there is no
defined interaction between the two sorts. The disjoint union is, in a sense, the least
model-theoretically complicated way of joining the structures M1 and M2. In this
next proposition, we show that the counting structureM+ is definable in the disjoint
union of M and the real closed field R�.

Proposition 6.2. Let (M� : � ∈ Λ) be a sequence of finite L-structures and let U
be an ultrafilter on Λ such that M :=

∏
�→UM� is ℵ1-categorical. Let M+ be the

L+-expansion of M with respect to (M� : � ∈ Λ) and U . ThenM+ is definable over a
singleton c ∈ OF and a tuple d̄ ∈M in the two-sorted disjoint union structure of M
and RU , where d̄ is such that �(M, d̄ ) is strongly minimal for an L-formula �(v, w̄)
and where c is the pseudofinite cardinality of any infinite definable set X ⊆Mm ( for
any arity m).

Proof. LetD = �(M, d̄ ) be a definable strongly minimal set. Then |X | = F (|D|)
for some polynomial F (X ) ∈ Q[x], by Theorem 5.1. Since |X | and |D| are both
non-standard integers, the hyperreal |D| is the unique positive hyperreal z such that
F (z) = |X |, by Lemma 3.5.2. So |D| is definable over |X | in RU . Therefore to prove
our theorem, it suffices to let c = |D|, and show thatM+ is definable in the disjoint
union L+-structureM ∪ RU over c ∈ R� and d̄ ∈M .

To show that M+ is definable in the disjoint union, we show that for every
L-formula ϕ(x̄, ȳ), the function fϕ(x̄,ȳ) is definable over c = |D| ∈ R� and d̄ ∈M .
Let ϕ(x̄, ȳ) be an L-formula. By Theorem 5.1, there are finitely many polynomials
F1(X ), ... , Fr(X ) ∈ Q[X ] and formulas�1(ȳ, w̄), ... , �r(ȳ, w̄) such that the formulas
�i(ȳ, d̄ ) partitionM |ȳ| and for every b̄ we have |ϕ(M, b̄)| = Fi(|D|) iffM |= �i(b̄).
Then for any b̄ ∈M |ȳ| and any e ∈ RU ,

M+ |= fϕ(x̄,ȳ)(b̄) = e

if and only if

(M,RU ) |=
r∨

i=1

[�i(b̄, d̄ ) ∧ e = Fi(c)]

which is definable in the disjoint union. 	
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16 ALEXANDER VAN ABEL

In our final two propositions, we will demonstrate how Theorem 5.1 passes down
to give information about cardinalities of sets in finite structures. These propositions
will be about particular kinds of families of sets defined as follows.

Definition 6.3. Let L be a language and let (M� : � ∈ Λ) be a sequence of
L-structures. We say that (M� : � ∈ Λ) has a zero-one law if for every L-sentence ϕ,
eitherM� |= ϕ for all-but-finitely many � orM� |= ¬ϕ for all-but-finitely many �.

Equivalently, (M� : � ∈ Λ) has a zero-one law if any two non-principal ultraprod-
ucts of the family are elementarily equivalent.

We also say that (M� : � ∈ Λ) is a zero-one class.
If (M� : � ∈ Λ) is a zero-one class, we call the theory of any/all non-principal

ultraproducts of the family the limit theory.

Let us also recall the little-o notation “f = o(g)”, which is an abbreviation for
the statement

lim
x→∞

f(x)
g(x)

= 0.

First we show that a zero-one class with an uncountably categorical limit theory
is an R-mec, a notion devised by Anscombe, Macpherson, Steinhorn, and Wolf to
appear in their upcoming paper [1], and explored in detail in Wolf’s thesis [9].

Definition 6.4. Let C be a class of finite L-structures. Let R be a set of functions
from C to R≥0. Then C is an R-mec if for every L-formula ϕ(x̄, ȳ) there are finitely
many h1(X ), ... , hn(X ) ∈ R and L-formulas �1(ȳ), ... , �n(ȳ) such that for each
M ∈ C,

• for each b̄ ∈M |ȳ|, there is an i such that |ϕ(M, b̄)| = hi (M ), and
• for each i the formula �i (ȳ) defines the set {b̄ ∈M |ȳ| : |ϕ(M, b̄)| = hi (M )}.

The word “mec” is short for “multidimensional exact class”. It is a special case
of the more general notion of multidimensional asymptotic class, introduced in [1]
and explored in [9] as R-mecs are, the definition of which is similar to the above
definition except instead of stipulating that |ϕ(M, b̄)| = hi(M ), we stipulate that the

two are “asymptotically” equal, in the sense that the quotient |ϕ(M,b̄)|–hi (M )
hi (M ) tends to

zero as hi(M ) goes to infinity. That is, |ϕ(M, b̄)| – hi(M ) = o(hi(M )), as M ranges
over C and b̄ ranges over �i(M |ȳ|). We note that hi takes as input the structure M,
not the number |M |.

In this proposition, we prove that a class of finite structures whose ultraproduct
theory is uncountably categorical is an R-mec for a particularly simple class of
functions R.

Proposition 6.5. Let T be an uncountably categorical pseudofinite theory. Suppose
(M� : � ∈ Λ) is a sequence of finite L-structures with a zero-one law and limit theory
T. Let �(v, w̄) be a formula such that �(M, d̄ ) is strongly minimal for someM |= T
and d̄ ∈M . Then for every formula ϕ(x̄, ȳ), there are polynomials F1, ... , Fr ∈ Q[x]
and formulas �1(ȳ, w̄), ... , �r(ȳ, w̄) such that in all finite structuresM� there is a tuple
d̄� ∈M |w̄|

� such that for all b̄ ∈M |ȳ|
� , there is i ∈ {1, ... , r} such that |ϕ(M |x̄|

� , b̄)| =

Fi(|�(M�, d̄�)|), and for each i the set �i(M
|ȳ|
� , d̄�) is the set of all b̄ ∈M |ȳ|

n for which
this equation holds.
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COUNTING IN UNCOUNTABLY CATEGORICAL PSEUDOFINITE STRUCTURES 17

In particular, the class (M� : � ∈ Λ) is an R-mec, where R is the set of functions
defined by

f(M�) = F (|�(M�, d̄�)|)

as F (x) ranges over Q[x] and d̄� ranges over elements ofM�.

Proof. Let �(v, w̄) be an L-formula such that some/every (saturated) model M
of the theory T has a d̄ ∈M such that �(M, d̄ ) is strongly minimal.

Let ϕ(x̄, ȳ) be an L-formula. Let F1(X ), ... , Fr(X ) ∈ Q[X ] be the polynomials
and �1(ȳ, w̄), ... , �r(ȳ, w̄) be the formulas obtained in Theorem 5.1 as applied to
ϕ(x̄, ȳ) and �(v, w̄).

Let Ψ(w̄) be an L+-formula such that Ψ(d̄ ) expresses the conjunction of the two
conditions:

1. �1(ȳ, d̄ ), ... , �r(ȳ, d̄ ) partitionM |ȳ|, and
2. for all b̄ ∈M |ȳ| we have |ϕ(M |x̄|, b̄)| = Fi(|�(M, d̄ )|) if and only if
M |= �i(b̄, d̄ ).

Then for every M |= T and d̄ ∈M , if �(M, d̄ ) is strongly minimal then
M+ |= Ψ(d̄ ). Since every uncountable model of T is saturated, every uncountable
model of T contains a tuple d̄ such that �(M, d̄ ) is strongly minimal. Therefore
whenever M is a pseudofinite ultraproduct which satisfies T, the expanded structure
M+ satisfies the L+-sentence ∃w̄Ψ(w̄).

By assumption, every nonprincipal ultraproduct of the family (M� : � ∈ Λ)
satisfies the theory T. Therefore every infinite ultraproduct of the expanded finite
structuresM+

� satisfies the sentence ∃w̄Ψ(w̄). Hence this sentence is satisfied in all
but finitely many of the L+-expansionsM+

� . IfM+
� satisfies ∃w̄Ψ(w̄) then, taking

d̄� to be a witness, the structureM+
� satisfies the conclusion of the proposition.

Let M1, ... ,Mk be the finitely many structures in our family whose expansions
M+
i do not satisfy the L+-formula ∃w̄Ψ(w̄). Let N be a number greater than

max{|M1|, ... , |Mk |}. Let us add polynomials Fr+1(X ), ... , Fr+N (X ) where Fr+k(X )
is the constant polynomial k – 1, and add new formulas �r+1(ȳ, w̄), ... , �r+N (ȳ, w̄),
where �r+k(b̄, d̄ ) expresses “|ϕ(M, b̄)| = k – 1”. Finally, let us modify the formulas
�1(ȳ, w̄), ... , �r(ȳ, w̄) by conjoining them each with a formula such that �i(b̄, d̄ )
implies “|ϕ(M, b̄)| ≥ N”. With this alteration, the conclusion of the proposition
holds for every structureM�. 	

The following notion was introduced by Elwes in [3].

Definition 6.6. A family of finite L-structures (M� : � ∈ Λ) is an N-dimensional
asymptotic class if for every L-formula ϕ(x̄, ȳ), there exist finitely many pairs
(�1, d1), ... , (�s , ds) ∈ R≥0 × 	 and L-formulas �1(ȳ), ... �s(ȳ) over ∅ such that for
every � ∈M�, the following two conditions hold:

• The formulas �1(ȳ), ... , �s (ȳ) partitionM |ȳ|
�

.

• For i = 1, ... , s , we have that |ϕ(M |x̄|
�
, b̄)| – �i |M�|di /N = o(|M�|di /N ) as

|M�| → ∞, for b̄ ∈ �i (M |ȳ|
�

).
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18 ALEXANDER VAN ABEL

Clause 2 may be restated as: for every � > 0 there is a number C such that whenever
|M�| > C and b̄ ∈ �i(M |ȳ|

� ) we have
∣∣|ϕ(M |x̄|

� , b̄)| – �i |M�|di /N
∣∣ < �|M�|di /N .

We prove that a zero-one family of finite structures whose limit theory is
uncountably categorical is an N-dimensional asymptotic class, where N is the
Morley rank of the limit theory. As the definition of an N-dimensional asymptotic
class requires that the formulas �i be definable without parameters, while the
conclusion of Proposition 6.5 allows for parameters, we shall need the following
fact, which for example may be found as a consequence of [5, Corollary 6.1.16].

Fact 6.7. Let T be an uncountably categorical theory. Then every model of T
contains a strongly minimal set defined by a formula whose parameters have an isolated
type. That is, there exist formulas κ(w̄) and �(v, w̄) where κ(w̄) isolates a type p such
that for a modelM |= T and d̄ ∈M , if tp(d̄ ) = p then �(M, d̄ ) is strongly minimal.

We shall need the following corollary of Proposition 6.5.

Corollary 6.8. Assume that (M� : � ∈ Λ) is a zero-one class with uncountably
categorical limit theory T. Let κ(w̄) and �(v, w̄) be as in Fact 6.7. Then in the
conclusion of Proposition 6.5, the tuple d̄� may be taken to be any tuple in κ(M |w̄|

� ),
provided that this set is nonempty, which is the case in cofinitely manyM�.

Proof. We slightly modify the proof of Proposition 6.5. We conjoin to Ψ(w̄)
the formula κ(w̄). Then it remains true that all-but-finitely many of the finite
expansions M+

� satisfy ∃w̄Ψ(w̄), and we may explicitly encode out the finitely
many counterexamples as in the proof of Proposition 6.5. 	

For the counting clause of the definition of an N-dimensional asymptotic class,
we shall apply the following lemma about the asymptotics of the inverse function of
a polynomial.

Lemma 6.9. Let F (X ) = anxn + an–1x
n–1 ··· + a1x + a0 ∈ R[X ], with an > 0.

Let C ∈ R be such that the function F (x) is increasing on [C,∞), and let
F –1 : [F (C ),∞) → [C,∞) be the inverse function. Then

lim
x→∞

[(x/an)1/n – F –1(x)] =
an–1

nan
.

Furthermore, let G(x) = bmxm + bm–1x
m–1 + ··· + b1x + b0. Then

(bm/a
m/n
n )xm/n – G(F –1(x)) = o(xm/n).

Proof. We compare F (X ) to polynomials of the form

an(x + α)n = anxn + an · nαxn–1 + ··· + an · nαn–1x + anαn.

Note that the inverse of an(x + α)n is (x/an)1/n – α.
It is easily seen that an(x + α)n > F (x) for sufficiently large x if an · nα > an–1—

that is, if α > an–1/(nan)—and that an(x + �)n < F (x) for sufficiently large x if
� < an–1/(nan).

In general, if f(x), g(x) : R → R are increasing functions such that f(x) >
g(x) for all (sufficiently large) x, then f–1(x) < g–1(x) for all (sufficiently
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COUNTING IN UNCOUNTABLY CATEGORICAL PSEUDOFINITE STRUCTURES 19

large) x. Therefore if α > an–1/(nan) we have that (x/an)1/n – α < F –1(x) even-
tually, and if � < an–1/(nan) then (x/an)1/n – � > F –1(x) eventually. Rearranging
these inequalities, we obtain that � < (x/an)1/n – F –1(x) < α eventually for all
α > an–1/(nan) > � , which proves that

lim
x→∞

(x/an)1/n – F –1(x) = an–1/(nan).

To prove that

(bm/a
m/n
n )xm/n – G(F –1(x)) = o(xm/n)

it suffices to prove the asymptotic equations

bm(x/an)m/n – G((x/an)1/n) = o(xm/n)

and

G((x/an)1/n) – G(F –1(x)) = o(xm/n).

For the first, rewrite

lim
x→∞

bm(x/an)m/n – G((x/an)1/n)
xm/n

as

lim
z→∞

bmz
m – G(z)

a
m/n
n zm

after making the variable substitution z = (x/an)1/n. The numerator is a polynomial
of degree less than m, therefore the limit is 0 as required.

To verify the second asymptotic equation, we observe that the first part of this
lemma implies the existence of a B such thatF –1(x) ∈ ((x/an)1/n – B, (x/an)1/n + B)
for all x. Then

|G(F –1(x)) – G((x/an)1/n)| < |G((x/an)1/n + B) – G((x/an)1/n – B)|

for sufficiently large x. Therefore it suffices to show

lim
x→∞

G((x/an)1/n + B) – G((x/an)1/n – B)
xm/n

= 0,

which is equivalent to saying

lim
z→∞

G(z + B) – G(z – B)

a
m/n
n zm

= 0

as in the previous calculation. The polynomial G(z + B) – G(z – B) simplifies to a
polynomial of degree less than m, and so the limit is correct, and the conclusion of
the lemma is true. 	

With this lemma, we are able to prove that any class of finite structures with
a zero-one law (as defined earlier) and uncountably categorical limit theory is an
N-dimensional asymptotic class, where N is the Morley rank of the limit theory.
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Proposition 6.10. Let T be an uncountably categorical pseudofinite theory.
Suppose (M� : � ∈ Λ) is a sequence of finite L-structures such that

∏
�→UM� |= T

for every non-principal ultrafilter U on 	. Then (M� : � ∈ Λ) is an N-dimensional
asymptotic class, where N is the Morley rank of T.

Proof. Let κ(w̄), �(v, w̄) and p be as in Fact 6.7.
First we show Definition 6.6 holds for the formula �(x, ȳ) ∧ κ(w̄) (with variables

as in that definition partitioned as x, ȳw̄). We apply Corollary 6.8 to the formula
“x = x” to obtain polynomials

F1(X ), ... , Fr(X ) ∈ Q[X ]

of the Morley rank of the formula (which is N) and formulas �1(w̄), ... , �r(w̄).
Let i be such that p � �i(w̄). Then M� |= (κ(w̄) → �i(w̄)) for cofinitely
many M�. For such a M�, if M� |= κ(d̄ ) then |M�| = Fi(|�(M�, d̄ )|). If
M� |= κ(d̄ ′) as well then |M�| = Fi(|�(M�, d̄ ′)|). By injectivity of polynomials
on a tail, this implies the existence of a C such that for |M�| > C , if
d̄ , d̄ ′ ∈ κ(M |w̄|

� ) then |�(M�, d̄ )| = |�(M�, d̄ ′)|, and |M�| = Fi(|�(M�, d̄ )|). Let
F (X ) = Fi(X ) = aNXN + ··· + a1X + a0. It follows from Lemma 6.9 that

lim
|M�|→∞

|�(M�, d̄ )| – (1/aN )N |M�|1/N
|M�|1/N

= 0

if we take d̄ ∈ κ(M |w̄|
� ).

Now let ϕ(x1, ... , xn, ȳ) be an arbitrary L-formula. Apply Corollary 6.8 to
ϕ(x1, ... , xn, ȳ) to get polynomials G1(X ), ... , Gs(X ) and formulas �1(ȳ, w̄), ... ,
�s(ȳ, w̄) such that the conclusion of that proposition holds. Then if b̄, d̄ ∈M�
with |M�| sufficiently large and M� |= κ(d̄ ) ∧ �i(b̄, d̄ ) then |ϕ(Mn� , b̄)| =
Gi(|�(M�, d̄ )|) = Gi(F –1(|M�|)). For each i = 1, ... , s let Gi(X ) = ai,Ni X

Ni +
··· + ai,1X + ai,0. By Lemma 6.9, we have

lim
x→∞

Gi(F –1(x)) – (ai,Ni /a
1/N
N )xNi/N

xNi/N
= 0.

Therefore we have

lim
x→∞

|ϕ(Mn� , b̄)| – (ai,Ni /a
1/N
N )|M�|Ni/N

|M�|Ni/N
= 0

for all b̄, d̄ ∈M� withM� |= �i(b̄, d̄ ) ∧ κ(d̄ ). That is,

|ϕ(Mn� , b̄)| – (ai,Ni /a
1/N
N )|M�|Ni/N = o(|M�|Ni/N ),

whence the definition of N-dimensional asymptotic classes almost applies to the
formula ϕ(x̄, ȳ), with (�i , di) being ((ai,Ni /a

1/N
N ), Ni) and defining formulas being

“∃w̄[κ(w̄) ∧ �i(ȳ, w̄)].” The only difference from the definition is that the defining
formulas do not necessarily partition everyM�. However they do partition allM�
with |M�| sufficiently large. This is sufficient for the family to be an N-dimensional
asymptotic class—in general, an N-dimensional asymptotic class remains so after
adding arbitrarily many structures of size at most K, for any fixed K. 	
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